TY - JOUR KW - Fuzzy Logic KW - Voltage Stability KW - Whale Optimization Algorithm KW - Distribution Generator AU - Ali Selim AU - Salah Kamel AU - Francisco Jurado AU - Loai Nasrat AB - Assessment of power systems voltage stability is considered an important assignment for the operation and planning of power system. In this paper, a voltage stability study using Continuous Power Flow (CPF) is introduced to evaluate the impact of Distribution Generator (DG) on radial distribution systems. On the way to allocate the DG, a hybrid between the Voltage Stability Index (VSI) and Whale Optimization Algorithm (WOA) is developed. The main purpose of using VSI is to find the most sensitive buses for allocating the DG in the system. Hence, Fuzzy logic control with the Normalized VSI (NVSI) and the voltage magnitude at each bus are used to determine the candidate buses. However, the best DG size is calculated using WOA. Four standard radial distribution systems are used in this paper; 12, 33, 69, and 85-bus. The developed hybrid optimization method is compared with other existing analytical and metaheuristic optimization techniques to prove its efficiency. The results prove the ability of the developed method in the allocation of DG. In addition, the influence of the DG integration on enhancing the voltage stability through injecting the proper active and reactive powers is studied. IS - Special Issue on Soft Computing M1 - 1 N2 - Assessment of power systems voltage stability is considered an important assignment for the operation and planning of power system. In this paper, a voltage stability study using Continuous Power Flow (CPF) is introduced to evaluate the impact of Distribution Generator (DG) on radial distribution systems. On the way to allocate the DG, a hybrid between the Voltage Stability Index (VSI) and Whale Optimization Algorithm (WOA) is developed. The main purpose of using VSI is to find the most sensitive buses for allocating the DG in the system. Hence, Fuzzy logic control with the Normalized VSI (NVSI) and the voltage magnitude at each bus are used to determine the candidate buses. However, the best DG size is calculated using WOA. Four standard radial distribution systems are used in this paper; 12, 33, 69, and 85-bus. The developed hybrid optimization method is compared with other existing analytical and metaheuristic optimization techniques to prove its efficiency. The results prove the ability of the developed method in the allocation of DG. In addition, the influence of the DG integration on enhancing the voltage stability through injecting the proper active and reactive powers is studied. PY - 2020 SP - 32 EP - 40 T2 - International Journal of Interactive Multimedia and Artificial Intelligence TI - Voltage Stability Assessment of Radial Distribution Systems Including Optimal Allocation of Distributed Generators UR - https://www.ijimai.org/journal/sites/default/files/files/2020/02/ijimai20206_1_4_pdf_13565.pdf VL - 6 SN - 1989-1660 ER -