Spatial-Aware Multi-Level Parsing Network for Human-Object Interaction
Author | |
Keywords | |
Abstract |
Human-Object Interaction (HOI) detection focuses on human-centered visual relationship detection, which is a challenging task due to the complexity and diversity of image content. Unlike most recent HOI detection works that only rely on paired instance-level information in the union range, our proposed Spatial-aware Multilevel Parsing Network (SMPNet) uses a multi-level information detection strategy, including instance-level visual features of detected human-object pair, part-level related features of the human body, and scene-level features extracted by the graph neural network. After fusing the three levels of features, the HOI relationship is predicted. We validate our method on two public datasets, V-COCO and HICO-DET. Compared with prior works, our proposed method achieves the state-of-the-art results on both datasets in terms of mAProle, which demonstrates the effectiveness of our proposed multi-level information detection strategy.
|
Year of Publication |
In Press
|
Journal |
International Journal of Interactive Multimedia and Artificial Intelligence
|
Volume |
In Press
|
Start Page |
1
|
Issue |
In Press
|
Number |
In Press
|
Number of Pages |
1-10
|
Date Published |
06/2023
|
ISSN Number |
1989-1660
|
URL | |
DOI | |
Attachment |
ip2023_06_004.pdf7.68 MB
|