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I. Introduction

Abiotic stresses significantly reduce agricultural productivity 
worldwide. Plant growth and crop productivity are affected by 

environmental factors, especially saline stress [1]. Therefore, it is 
important to know the genes implicated in tolerance to salinity [1]. 
Furthermore, technological advances in the field of genomics, such 
as DNA sequencing, have generated a wealth of genetic information 
[2]. Such information includes expression profile levels of thousands 
of genes under various experimental conditions [3]. Hence, a better 
biological view of the presumed gene functions can be obtained. 

Therefore, a wide range of machine learning methods such as 
clustering have been developed [4], [5]. They are being used in a variety 
of applications, such as cancer diagnosis [6], pharmacovigilance [7] 
and plant breeding [8]. “Omics research” has thereafter relied on 
clustering techniques to group genes. The main objective of clustering 
techniques is  exploring the results of  DNA chips to classify and 
group identical expression profiles [4], identify co-expressed genes 
[4], find their biological functions [8], [9], and explain their regulatory 
mechanisms [9], [10].

In Gene chips data analysis, some classical clustering techniques 
were implemented. One of these is the Hierarchical algorithm 
commonly called UPGMA  [11], [12]. It generates dendrograms and 
heat maps that display and intuitive visualization of genes and their 
relationships [12]-[15]. Other clustering methods, called Partitioning 

methods like K-Means, PAM and CLARA were developed. Their 
purpose is to partition the gene expression dataset into (k) coherent 
clusters with same biological characteristics [16]-[18]. Model based 
clustering methods, such as Self Organization Map (SOM) is also 
another clustering technique. Their aim is similar to K-Means and 
Hierarchical algorithms. The advantage of the SOM algorithm is its 
ability to visualize and optimize the high-dimensional data on an 
output map of neurons with similar gene functions [19]. 

Some of these methods have been combined. For instance, 
Hierarchical algorithm with SOM algorithm designated Self-
Organizing Tree Algorithm (SOTA) [20] and Self-Dynamically 
Growing Self-Organizing Tree (DGSOT) [20] algorithms were 
developed for improving clustering performance  when there is noisy 
data and determining a good quality of partition of the gene expression 
data [20], [21]. 

Another combination of the Hierarchical algorithm that was 
associated with the K-Means algorithm is called Hierarchical K-Means 
[22]. This combination took advantage of both algorithms. The 
hierarchical algorithm provided a tree structure of groups that was used 
by the K-Means algorithm to determine relevant and compact gene 
expression groups [22].

Many more algorithms were implemented in order to enhance 
the convergence and efficiency of the clustering result. There are 
for example, Fuzzy clustering [17, 23], Fuzzy clustering based on 
Local Approximation of MEmbership (FLAME) [23], Graph-based 
clustering method like MST [24], Grid-based clustering method 
(STING, CLIQUE) [24], Density-based clustering method (OPTCS, 
DBSCAN) [24], Gaussians and Spectral Clustering methods [24]. 
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While all these algorithms have been compared in different studies, 
there was no clear agreement on the most appropriate clustering 
algorithm to be used for clustering genes with their associated 
expression profiles [25]-[27]. 

Mostly, each clustering method has its own parameters for 
calculating clusters. The decision to use a particular method for 
clustering will depend on the nature of the datasets being studied and 
what the researcher expects to achieve using that method [26]-[29].

Based on these considerations, we decided to conduct a comparative 
study of seven most commonly used clustering algorithms on gene 
expression datasets from three model plants under saline stress. These 
methods are evaluated based on both internal and relative validity 
measures. The main objective of this study is to address biologists’ 
concerns about the most appropriate algorithm to be used for achieving 
the desired gene clustering.

The remaining of this paper is organized as follows: Section II 
presents an overview of clustering techniques used in gene expression. 
Section III, is dedicated to gene expression experiments, the choice of 
clustering techniques and the clustering Validity concepts. Section IV, 
provides the results and discussion of the performance of the respective 
algorithms. Finally, Section V concludes by summarizing findings and 
identifying possible future work.

II. Related Work

In the previous section, we have mentioned the importance of 
analyzing and studying gene expression data with clustering techniques. 
These techniques have helped to answer several biological questions.

Hierarchical algorithms (HC) are the earliest ones used in gene 
expression data. Eisen et al. [12] used HC for an empirical analysis to 
classifying and visualizing gene expression on yeast Saccharomyces 
cerevisiae datasets. Dendrogram tree and Heat maps are well-known 
HC graphic tools that illustrate the correlation of these genes. 

Alizadeh et al. [13] applied the same method on Diffuse large 
B-cell Lymphoma (DLBCL), HC has permitted the discovery of new 
molecular subtypes with three different genetic signatures. 

Bajsa et al. [14] focused on the determination of the transcription 
level of the cellular pathways on the model plant Arabidopsis. The 
result of the heat map with dendrogram revealed the up-regulated gene 
and down-regulated ones in different time courses under salt stress. 

Hossen et al. [15] analyzed the clustering proximity effect on two 
types of gene expression datasets (Affimetrix and cDNA). The authors 
implemented seven Hierarchical algorithms (Single Linkage, Complete 
Linkage, Average Linkage, Ward, Centroid, Median, Mcquitty) 
according to five proximity measures (Euclidean, Manhattan, Pearson, 
Spearman and, Cosine). The Ward method with Cosine distance was 
outperforming on both types of datasets. 

Takahashi et al. [16] studied gene expression of 4 varieties of 
Wheat, the analysis concerned different levels of salinity tolerance. 
K-Means Clustering algorithm optimized to 3 the number of clusters: 
Cluster I included genes expressed as an early response that occurred 
within 24 hours under control conditions. Cluster II assembled genes 
expressed during the second day under control conditions and Cluster 
III included the genes expressed in the late response that occurred on 
the third day. The Hierarchical clustering (with Pearson correlation and 
average linkage) method and Principal component analysis were used 
for visualization of results [16]. 

Gasch et al. [17], worked on the Yeast gene expression profile. 
K-Means and Fuzzy C-means (FCM) have established the expression 
profile during seven periods of the cell cycle in Yeast. They validate 
their results with the Davis Bouldin Index (DBI). FCM has achieved 

the DBI of 0.31452 for K=3 and 0.37822 for K=4 which is better than 
K-Means clustering. 

The study conducted by Ge et al. [18], with Hierarchical clustering 
and K-Means methods allowed identifying eight (08) distinctive 
gene groups regulated by abiotic stress in Glycine soja. The authors 
successfully discovered the corresponding co-regulated genes and their 
functions.

FLAME is an extension of Fuzzy clustering based on the Local 
Approximation of Membership that was implemented for microarray 
data [23]. The advantage of the FLAME algorithm compared to the 
FCM algorithm is its ability to define various and homogeneous groups 
of genes, and to give a relevant subdivision of biological functions 
patterns [23]. 

SOM algorithm was applied to Yeast Sporulation, Human 
Fibroblasts Serum and Rat CNS datasets [19]. This method provides 
a better result for the recognition and classification of the features in 
complex and multidimensional datasets.  Luo et al. [30] have used the 
SOTA algorithm to discover Transcription Factor (TF) gene families 
in Medicago sativa during ABA treatment. In that case, 82 TF genes 
families were distributed into four clusters with the number of genes 
equal respectively 15, 34, 18 and, 14.

The comparison study between the following Clustering algorithms 
(HC, K-Means, and SOM) was performed on Solanum tuberosum 
genes showing differential expression in abiotic stress [25]. The author 
in this study, obtains almost the same number of the clusters for these 
different algorithms. 

López-Kleine et al. [26] applied AGNES, DIANA, K-Means (with 
Euclidean and Manhattan distances) and SOM for clustering the genes 
involved in pathogen resistance on Tomato. The results showed that 
AGNES, K-Means, and SOM grouped these genes into two clusters: 
genes implicated or no in plant resistance. DIANA was abandoned 
because almost all genes were assigned to one cluster. 

In other comparison work [27], Hierarchical algorithms with 
single, complete and average linkage, K-Means, Gaussians Clustering 
methods (FMC), Spectral Clustering (SP) methods and a Nearest 
Neighbour-based methods were evaluated on 35 gene expression 
datasets of various cancerous tissue types. FMC and K-Means were 
the most appropriate methods to recover the true structure of this kind 
of datasets. 

Singh et al. [28] assessed the efficiency of K-Means (KM), 
Density-based clustering (DBC) and expectation maximization (EM) 
methods by using the sum of squared error, log-likelihood measures. 
These methods were tested on SRBCT, Lymphoma and three different 
Leukemia datasets. The results showed that EM algorithm gives the 
best result with log-likelihood measurement. KM and DBC algorithms 
produced similar results with regards to the sum of squared error 
measurement. 

Bihari et al. [29] compared the performance of KM, HC clustering, 
SOM and DBSCAN on Iris flower gene expression data. The 
comparison results of these methods were validated by using internal 
and external indices. According to the experimental analysis KM is 
more appropriate for gene clustering.

In Table I, we summarize some algorithms that we have mentioned 
in the state of the art. We will give their main characteristics with respect 
to the following parameters: (i) influence of noisy data, (ii) ability to 
work properly with large dataset and (iii) algorithm computation time.

III.  Methods

This section describes the different experiences conduced to 
analyze and compare the clustering methods for plant genes expression 
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TABLE I. Characteristics of Various Clustering Algorithms
“n” is the number of points in the dataset, “k” is the number of clusters, “l” is the number of iterations, “m” is the number of initial sub-clusters produced by the 
graph partitioning algorithm.

Clustering
method Algorithm Type 

of data
Sensitive to 
noisy data

Dealing with high 
dimensional data Scale Computational 

time

H
ie

ra
rc

hi
ca

l

AGNES: a bottom-up approach 
[30], [44]. Numerical Not very

sensitive No NA O(n2)

DIANA: a top-down approach 
[31], [44]. Numerical Not very

Sensitive Yes NA O(2n)

BIRCH: agglomerative hierarchical 
based clustering algorithm [32], [44]. Numerical Very

Insensitive No Yes O(n)

CURE: has been developed to handle 
a huge volume of data, insensitive to 
outliers and capable of working with 
clusters of different shapes and sizes 
[33], [44].

Numerical Insensitive Yes Yes O (n2+nmmma+  n2log n)

ROCK: uses the concept of the 
number of links between two records to 
assess the similarity of the categorical 
attributes of the dataset [34], [44].

Categorical Not very
Sensitive No Yes O  (n2log n)

CAMELEON: based on a dynamic 
model for merging clusters. It 
calculates the interconnectivity and the 
proximity of two clusters in order to 
discover the similarity between them 
[35], [44].

Numerical⁄ 
Categorical NA No Yes NA

Pa
rt

iti
on

in
g

K-MEANS: is a method which aims to 
divide the dataset elements into groups 
that are well separated from each other 
[36], [44].

Numerical Sensitive No Yes O(Ikmn)

PAM: algorithm aims to find a 
sequence of objects called medoids that 
are located in the center of clusters. It 
is a more robust partitioning algorithm 
against outliers than the k-means 
partitioning algorithm [37], [44].

Numerical Not very
 Sensitive No Yes O(k(n-k)2)

CLARA: was developed in order to 
deal with large datasets. It does not 
work with the whole set of data, but 
with a small portion of the data which 
is chosen randomly [38], [44]

Numerical Not very
Sensitive No Yes O (k(40+k)2+ k(n-k))

CLARANS: is an extension of the 
CLARA algorithm. It is a combination 
of sampling techniques with the PAM 
algorithm [39], [44].

Numerical Sensitive No Yes O(kn2)

Model
based

SOM: consists in projecting the 
large data space observed on a 2 or 3 
dimensional space called a map. This 
map is composed of groups of neurons 
connected together according to the 
concept of neighborhood [40], [44].

Numerical Not very
sensitive Yes Yes O(I)

Fuzzy 
based

FCM: allows assigning an element to 
one or more clusters [41], [44]. Numerical Sensitive No Yes O(n)

Grid 
based

CLIQUE: finds clusters in subspaces 
of high density data [42], [44]. Numerical Not very

Sensitive No Yes O(n+k2)

Density 
based

DBSCAN: groups in the neighborhood 
of a point having a given radius (ε) a 
minimum number of points (MinPts) 
[43], [44].

Numerical Very insensitive No No O(m log m)

(NA) information is not mentioned by authors.
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data. The proposed workflow is described in Fig. 1
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Fig. 1. Flowchart of the Experimental Process.

A. Datasets Selection 
Three datasets of expression data relating to plants Arabidopsis 

thaliana, Solanum lycopersicom (Tomato) and Medicago truncatula 
under salt stress were considered. In this experimental study, we 
choose to work with these datasets because they are based on model 
plants. Arabidopsis thaliana is regarded to be the first most studied 
and investigated model plant. Solanum lycopersicom and Medicago 
truncatula are also model plants, each representing a family of plant 
species. Datasets for these model plants cover a broad spectrum of 
gene expressions.

1. Dataset 1: Arabidopsis Thaliana (A. Thaliana) Salt Stress 
This dataset describes the salt stress experiment of model 

Arabidopsis thaliana leaves using Affymetrix Array, 2 samples of 
leaves from 3 genotypes of A. thaliana with and without 100 mM 
NaCl. This dataset shows the salt-stress influence on leaves from 
these 3 genotypes. The experiment results explain a global change on 
related genes and provide an insight into the molecular mechanisms 
underlying variation in salt stress responses [45]. The Arabidopsis 
thaliana dataset was downloaded from https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE16765.

2. Dataset 2: Solanum Lycopersicom (Tomato) Salt Stress  
This dataset describes the salt stress experiment of an old Tomato 

leaves using Affymetrix Array, 6 samples of leaves-old with 200 mM 
NaCl for 5 h, 6 samples of leaves-old without 200 mM NaCl for 5 
h. This dataset compares the salt-stress influence analysis on leaves-
old from 2 genotypes of Tomato. The experiment results that the Wild 
tomato genotype is significantly more salt-tolerant than a Cultivar, 
Solanum lycopersicom [46]. The Solanum lycopersicom dataset 
was downloaded from http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE16401.

3. Dataset 3: Medicago Truncatula (M. Truncatula) Salt Stress
This dataset describes the time-course salt stress experiment of 

model legume Medicago truncatula roots using Affymetrix Array, 
6 samples of Medicago truncatula seedlings grew in two weeks in 
hydroponics media with 200mM NaCl salt stress at 0, 6, 24, 48 hours, 
12 samples other of Medicago truncatula seedlings 3 days Petri dishes 
with 180mM NaCl salt stress at 0, 1, 2, 5, 10, 24 hours. This dataset 
reveals the salt stress effect on Medicago truncatula seedlings [47]. The 

Medicago truncatula dataset was downloaded from https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE14029.

These datasets are retrieved from the Gene Expression Omnibus 
database [48]. Table II gives all the information concerning these three 
datasets.

B. Preprocessing
As shown in Fig. 1, before gene clustering, it is necessary to pre-

process datasets (removing missing values). And then, every gene 
vector is normalized according to whether its mean is equal to 0 and its 
standard deviation has a value of 1 [49]. For more homogeneity with 
the number of genes present in the Tomato dataset, only 1000 genes 
of the Arabidopsis thaliana and the Medicago truncatula datasets 
were randomly extracted for analysis. They were randomly selected to 
eliminate selection bias. This selection is due to the fact that the number 
of genes annotated on tomato is less important than for Arabidopsis 
thaliana and the Medicago truncatula in this type of dataset.

C. Clustering
For analyzing and evaluating the three datasets cited before, we 

used the open-source R environment which contains a variety of 
functions for data clustering. Among the clustering algorithms, we 
have chosen seven one: Hierarchical algorithms (AGNES, DIANA), 
Partitioning algorithms (K-MEANS, PAM and CLARA), Fuzzy 
Clustering (FANNY). These categories of methods are functions 
defined in R package named “cluster”. Model-based Clustering (SOM) 
in this category of methods depends on R packages “kohonen” and 
“mclust”. All these seven methods are contained in the R package 
named “clValid” that includes some validity measures that we used 
for testing our three datasets. These algorithms are the most commonly 
used, as the time complexity is low and they offer an easy interpretation 
of results by biologists. The code source link of each clustering method 
used and their validation is:  http://github.com/Projet-82/New-Project/
blob/master/Clustering_eva-lunation_codesource.R.

TABLE II. Dataset Description

Data
set #Genes #Samples Genotypes Salt-Stress 

concentration
Time 
points

1       A. thaliana_salt stress

15 288 18

6 Ws 0 mM NaCl
100 mM NaCl NA

6 Col 0 mM NaCl
100 mM NaCl NA

6 Col(gl) NaCl
100 mM NaCl NA

2       Tomato_salt stress

1 000 12

6 Money
maker

0 mM NaCl
200 mM NaCl 5 hours

6 PI365967 0 mM NaCl
200 mM NaCl 5 hours

3       M. truncatula_salt stress

2 394 18

6 NA 180 mM NaCl
0, 1, 2, 

5, 10, 24 
hours

12 NA 200 mM NaCl 0, 6, 24,
48 hours
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D. Evaluation 
To evaluate and compare the clustering algorithms, we consider 

two important concepts: Cohesion and separation. The Cluster cohesion 
measures how closely related are objects in a cluster. [50]. Cluster 
separation measures how distinct a cluster is from other clusters [50]. 

For this study, the following measures are used to assess the quality 
and consistency of the clusters on terms of the cohesion and separation 
of clusters resulting from different clustering algorithms: Connectivity 
index [50], [51], Dunn index [50], [51], and Silhouette coefficient [50], 
[51]. These 3 measurements are called internal measures. 

In the other hand, the stability measures compare the results from 
clustering based on the full data to clustering based on removing each 
column, one at a time. These 4 measures work especially well if the 
data are highly correlated, which is often the case in high-throughput 
genomic data. They included Average proportion of non-overlap (APN) 
[50], [51], Average distance (AD) [50], [51], Average distance between 
means (ADM) [50], [51], and the figure of merit (FOM) [50], [51]. 
These lasts are called relative measures.

1. Connectivity Index
It measures how much neighbouring data points have been ranked 

in the same cluster [50], [51]. It is calculated by the following formula:

, ( )
1 1

( )
N L

i nn j
i j

Conn c x
= =

=∑∑
 (1)

With

( )
( )

,

1 , :

0,

k k ki j

i li nn
if c i c nn c

j
otherwise

x
 ∈ ∧ ∈= 




 (2)

Where:  
“K” is the total number of clusters.
“N” is the total number of rows (observations).
nn( j ) is the jth nearest neighbour of the data point. 
“L” is the parameter determining the number of neighbours that 

contribute to connectivity measure. Connectivity should be minimal.

2. Dunn Index
Dunn’s goal is to identify dense and well-isolated clusters. It 

describes the proportion between the minimum and the maximum 
distances separating the clusters [50], [51]. It is computed by the 
following formula:

1

1

min ( , )
max '( )

i j n

i j n

d i j
D

d k
≤ ≤ ≤

≤ ≤ ≤
=

 (3)

Where: 
d(i j) describes the two cluster’s distance i and j. 
d‘(k) measures the intra-group distance of cluster k. 
d(i, j) is the inter-group distance. In this case the distance 

corresponds to the centroids distance.

3. Silhouette Coefficient
The silhouette width coefficient defines the compactness based on 

the paired distance between all items in the cluster, and the separation 
based on paired distance between all items on the cluster and all items 
in the nearest cluster [50], [51]. The Silhouette score is defined as:

( ) ( )
max{ ( ) ( )}

( ) b i a i
a i b i

S i −
−

=
 (4)

Where: 
a(i) is the average distance of gene i to other genes in the same 

cluster. b(i) is the average distance of gene i to genes in its nearest 
neighbour cluster. The average of S(i) across all genes reflects the 
overall quality of the clustering result.

4. Average Proportion of Non-overlap (APN)
The APN measure calculates the average proportion between 

observations that are not affected in their similar cluster by grouping 
together the complete data and grouping together the data with one 
column removed [50], [51]. The APN measure is denoted as follows:

, ,0

,0
1 1

1 ( )1
( )

( )
i l iN M

i
i l

n C C
MN n C

APN K
= =

 ∩
− 

 
= ∑∑

 (5)

Where: 
“K” is the total number of clusters.
“M” is the total number of columns (attributes)
“N” is the total number of rows (observations).
“n(C i,0)” represents the cluster that contains observation i using the 

original clustering (based on all available data). 
“C i,l” represents the cluster that contains observation i where the 

clustering is based on the dataset with column removed.

5. Average Distance (AD)
The mean distance between observations that are not assigned in a 

similar cluster by grouping based on complete data and grouping based 
on data with one column deleted is estimated by the AD measure [50], 
[51] which is denoted as follows:

( )
,0 ,

, ,0
1 1 ,

( , )

( )

1 1
( ) i i l

N M

i l i j
i C j C

i
i l

di

AD K

st g g
NM n C C ∈ ∈= =

 
 
  

=

∩∑∑ ∑
 (6)

Where: 
dist(gi, gj) is a distance (e.g. Euclidean, Manhattan, etc.) between 

two expression genes profiles i and j. 
“K” is the total number of clusters. 
“M” is the total number of columns (attributes).
 “N” is the total number of rows (observations). 
“n(C i,0)” represents the cluster that contains observation i using the 

original clustering (based on all available data). 
“C i,l” represents the cluster that contains observation i where the 

clustering is based on the dataset with column removed.

6. Average Distance between Means (ADM)
The ADM measure calculates the mean distance between cluster 

centers that are not assigned in a similar cluster by grouping based on 
complete data and grouping based on data with one column [50], [51].  
The ADM measure is denoted as follows:

, ,0

1 1
( )

1 ( , )i l iC C

N M

i l
ADM K dist x x

NM = =

= ∑∑
 (7)

Where: 
“M” is the total number of columns (a collection of samples, time 

points…). 
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“N” is the total number of rows (observations). 
 is the mean of the observations in the cluster which contains 

observation i, when clustering is based on the full data.
 is the mean of the observations in the cluster which contains 

observation i, when clustering is based on the dataset with column 
removed. Currently, ADM only uses the Euclidean distance.

7. Figure of Merit (FOM)
The intra-cluster mean variance of the suppressed column 

observations is computed by the FOM measurement, the resulting 
classification is being based on the remaining samples (not cleared). 
This estimates the average error using predictions based on cluster 
averages [50], [51]. For a particular left-out column l, the FOM is:

( ),
1 ( )

( , )
1 ( , )C lk

k

K

i l
k i C l

FOM l K dist x x
N = ∈

= ∑ ∑
 (8)

Where: 
“K” is the total number of clusters. 
“N” is the total number of rows (observations). 
xi,l is the value of the ith observation in the lth column in the cluster. 

 is the average of the cluster Ck (l). Currently, the only 
distance available for FOM is Euclidean.

IV. Results & Discussion

In this section, we comment on and discuss the results obtained. 
Tables III, IV and V describe the various performance measures and 
validity indices corresponding to the three best clustering algorithms 
applied on our three datasets. The rest of the clustering algorithms are 
not shown.

A. Dataset 1: A. Thaliana Salt Stress
It can be seen from the results of Table III that in the case of 

Hierarchical algorithms, AGNES gives, for an optimal number of 
clusters K=4, high performance with a lower Connectivity Index equal 
to 25.049,  best Silhouette index score equal to 0.488  and with best 
Dunn index value score equal to 0.228. This algorithm performance 
is followed by K-Means and DIANA algorithms for the Dunn index, 
with a value of 0.0576 (resp. 0.0579) for a cluster number equal to 10. 
SOM is less rated than DIANA by the index of Silhouette which is 
worth 0.2818 (resp. 0.5068) for K = 2. Also, we found that FANNY 
algorithm does not provide any results because of its inability to 
generate measurable clusters. 

On the other side, the cluster stability measures describes that the 
Model based Clustering algorithm, SOM presents high performance 
too with AD measure value equal to 3.6581 and FOM measure value 
equal to 0.6988 for K = 10. 

AGNES, followed by DIANA gives good performance with an 
APN value equal to 0.0047 (respectively 0.0056). And on the contrary, 
DIANA is followed by AGNES with an ADM value equal to 0.0518 
(resp. 0.0677) for K = 2. PAM is better than K-Means in AD measure 
with a value equal to 3.7822 (or 3.8037). K-Means is better than PAM 
in FOM measurement with a value equal to 0.7083 (respectively 
0.7196) for K=10.

B. Dataset 2: Tomato Salt Stress
From the results presented in Table IV, we can observe that 

concerning Hierarchical Clustering algorithms, for the optimal 
numbers of clusters K=4, AGNES gives high performance with lower 
Connectivity index value equal to 25.128, best Silhouette index score 

equal to 0.7229 and with best Dunn index value score equal to 0.124. 
This performance is followed by the DIANA algorithm for the Dunn 
and Silhouette indices, whose value is 0.0648 (resp. 0.7161) for a 
cluster number equal to 4 (resp.2). SOM is lower than DIANA, for the 
Silhouette index is worth 0.7161 (resp. 0.7122) for K = 2.

On another side, the relative measures show that the partitioning 
Clustering algorithm, PAM produces high performance too with AD 
measure equal to 0.992 and FOM measure equal to 0.324 for number 
of clusters K=10, DIANA as well performed with APN measure equal 
to 0.0076 followed by FANNY and K-Means values equal to 0.0111 
(resp. 0.0116) for an optimal number of K = 2. PAM done a good result 
with an AD measure score equal to 0.9924 and FOM with a score equal 
to 0.3241 for K=10.

CLARA obtains a good result too with AD and ADM measures 
value equal to 1.0751 (resp. 0.0817) for K=10. FANNY presents a 
good performance with an APN and AD measures with values equal 
to 0.0111 (resp. 1.0690) for K=2 (resp. K=10) and K-Means presents 
the same behavior for ADM and FOM values equal to 0.0804 (resp. 
0.3280) for the same number of clusters.

TABLE IV. Evaluation of the 3 Best Clustering Techniques on Tomato 
Salt Stress Dataset

Algorithm rank
1 2 3

Algorithm [parameter K] Score

In
te

rn
al

 v
al

id
at

io
n Conn. 

index
AGNES[K=4]

25.128
CLARA[K=2]

30.249
K-Means[K=2]

35.0825

Dunn 
index

AGNES[K=4]
0.1239

DIANA[K=4]
0.0648

CLARA[K=10]
0.0353

Silhouette
index

AGNES[K=4]
0.7229

DIANA[K=2]
0.7161

SOM[K=10]
0.7122

R
el

at
iv

e 
va

lid
at

io
n

APN 
measure

DIANA[K=2]
0.0076

FANNY [K=2]
0.0111

K-Means[K=2]
0.0116

AD 
measure

PAM[K=2]
0.9924

FANNY[K=10]
1.0690

CLARA[K=10]
1.0751

ADM 
measure

FANNY[K=2]
0.0538

K-Means[K=2]
0.0804

CLARA[K=10]
0.0817

FOM 
measure

PAM[K=10]
0.3241

K-Means[K=10]
0.3280

SOM[K=10]
0.3290

TABLE III. Evaluation of the 3 Best Clustering Techniques  
on A. Thaliana Salt Stress Dataset

Algorithm rank
1 2 3

Algorithm [parameter K] score

In
te

rn
al

 v
al

id
at

io
n Conn. 

index
AGNES[K=4]

25.048
DIANA[K=2]

37.637
K-Means[K=2]

147.272

Dunn 
index

AGNES[K=4]
0.2281

K-Means[K=10]
0.0579

DIANA[K=10]
0.0576

Silhouette 
index

AGNES[K=4]
0.4880

DIANA [K=2]
0.5068

SOM[K=2]
0.2818

R
el

at
iv

e 
va

lid
at

io
n

APN 
measure

AGNES[K=2]
0.0047

DIANA[K=2]
0.0056

K-Means[K=2]
0.0236

AD 
measure

SOM[K=10]
3.6581

PAM [K=10]
3.7822

K-Means[K=10]
3.8037

ADM
Measure

DIANA[K=2]
0.0518

AGNES[K=2]
0.0677

K-Means[K=2]
0.1045

FOM 
measure

SOM[K=10]
0.6988

K-Means[K=10]
0.7083

K-Means[K=10]
0.7196
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C. Dataset 3: M. Truncatula Salt Stress
From the results reported in Table V, the Hierarchical Clustering 

algorithms, for the optimal numbers of clusters K = 4, AGNES presents 
high performance with lower Connectivity index value equal to 2.9290, 
a best Dunn and with best Silhouette index of 0.8296 (resp. 0.9587). 
This performance is followed by the DIANA method with Connectivity 
and Silhouette indices equal to 5.2869 and. 0.9406, respectively, for a 
cluster number equal to 2.

On the other side, the relative stability describes that DIANA as 
well performed with a value of APN measure equal to 0.0001. This 
performance is followed by AGNES and CLARA with values equal 
to 0.0007 (resp. 0.0053) and the same behavior with the inverse 
ordered algorithms is shown with ADM measure equal respectively 
for CLARA 0.0288 and AGNES 0.0307 with a cluster number of K = 
2. K-Means performs in FOM measure with a value equal to 0.3487 
followed by PAM and SOM with a value equal to 0.3497 (resp. 0.4059) 
with a cluster number of K = 10.

TABLE V. Evaluation of the 3 Best Clustering Techniques on M. 
Truncatula Salt Stress Dataset

Algorithm rank
1 2 3

Algorithm [parameter K] score

In
te

rn
al

 v
al

id
at

io
n Conn. 

index
AGNES[K=4]

2.9290
DIANA[K=2]

5.2869
K-Means[K=2]

24.5222
Dunn 
index

AGNES[K=4]
0.8296

DIANA[K=2]
0.3359

SOM[K=6]
0.0044

Silhouette
index

AGNES[K=4]
0.9587

DIANA[K=2]
0.9406

K-Means[K=10]
0.8822

R
el

at
iv

e 
va

lid
at

io
n

APN 
measure

DIANA[K=2]
0.0001

DIANA[K=2]
0.0007

K-Means[K=2]
0.0053

AD 
measure

PAM[K=10]
0.9523

PAM[K=10]
0.9945

K-Means[K=10]
1.0745

ADM 
measure

DIANA[K=2]
0.0001

AGNES[K=2]
0.0288

K-Means[K=2]
0.0307

FOM 
measure

K-Means[K=10]
0.3487

K-Means[K=10]
0.3497

PAM[K=10]
0.4059

According to the three internal validity measures Connectivity, 
Silhouette and Dunn index value, Hierarchical Clustering (AGNES) 
appears to be the most efficient with K = 4 clusters for the three 
datasets examined (Fig. 2, 3 and 4). However, the number of plant 
genes categories as found by authors who have submitted these 
different datasets is higher than 4 categories. 

Fig. 2. Performance of Connectivity index using A. thaliana salt stress dataset.

Fig. 3. Performance of Silhouette index using A. thaliana salt stress dataset.

Fig. 4. Performance of Dunn index using A. thaliana salt stress dataset.

On the other side, the relative validity measures report that SOM 
algorithm performs well for dataset 1, with AD measure value equal to 
3.6581 and FOM measure value equal to 0.6988 (Fig. 5 and 6). PAM and 
K-Mean provide good results for dataset 2 and 3 with the same number 
of clusters equal to 10 (Fig. 5 and 6). Also, this number of clusters would 
correspond biologically to the number of gene families found. 

Fig 5. Performance of AD index with K=10.
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Fig 6. Performance of FOM index with K=10.

Finally, this study demonstrates that, according to the values of 
the validity indices (internal and relative) and the number of optimal 
clusters:
• For dataset 1, the SOM algorithm is the most efficient with the 

relative validation indices (ADM and FOM) for an optimal cluster 
number of 10. This cluster number is compatible with the biological 
reality of different gene families obtained by the submitters of this 
dataset. This algorithm has confirmed its performance in other 
datasets of complex organisms such as: Human Fibroblasts Serum 
and Rat CNS datasets [19]. 

• For datasets 2 and 3, PAM and K-Means algorithms are also 
distinguished by their performance for the same relative validation 
indices (ADM and FOM) and for the same cluster number equal 
to 10 compatible with the biological reality of different gene 
families obtained by the experimenters. These algorithms revealed 
interesting results in different kind of datasets: cancerous tissue 
types [52] and on the plant functions [53].
When we consider only the values of validity indices (internal 

and relative) without taking into count the cluster number expected 
by biologist:
• For all datasets, the AGNES algorithm presents the best internal 

indices values (Connectivity, Dunn and Silhouette) with an optimal 
number of clusters K=4. We also note that according to the relative 
validity indices (APN, ADM and FOM), the K-Means algorithm 
seems to be suitable for the three datasets with an APN index value 
of 0.0236 for dataset 1, which decreases to 0.0116 for dataset 2 and 
0.0053 for dataset 3 when the number of clusters is set to 2. The 
ADM index also shows a decreasing trend with values of 0.1045 
for dataset 1, and 0.0804 (respectively 0.0307) for datasets 2 and 
3 respectively with the same number of clusters K=2. For the 
last index, which is FOM, it is equal to 0.7083 for dataset 1 and 
decreases to 0.3280 for dataset 2 and 0.3497 for dataset 3 for K=10. 
And here the number of clusters is in adequacy with the biological 
reality of the families of genes.
However, firstly it should be kept in mind that these datasets are not 

reference datasets and therefore they are not necessarily “potentially 
groupable” which may explain the mismatch between the number of 
optimum clusters obtained and the number of expected clusters by 
biologists. Secondly, we have had to retain only a number of 1000 
genes for each datasets. This reduced size of the gene sample is due to 
the number of genes annotated on tomato which is less than that of the 
other two plants. This fact may have contributed to this mismatch or 
competed to make the datasets less groupable.

V. Conclusion

In this paper, seven clustering algorithms were compared and evaluated 
on three sets of gene expression data from plants subjected to salt stress. 
The purpose was to determine the best performing algorithm that produces 
the optimal number of clusters reflecting the biological reality.

The results showed that the SOM algorithm allows a good 
distribution of genes for dataset 1. The partitioning algorithms PAM 
and K-Means for datasets 2 and 3 lead to the same results but with 
slightly lower validity index values. When we take into account 
only the internal validity indices, we see that the AGNES algorithm 
presents for the three data sets, the best values (Connectivity, Dunn and 
Silhouette) with a number of clusters equal to 4.  In this case, we also 
note that the values of the relative validity indices allow the emergence 
of a trend indicating an acceptable performance of K-Means for the 
three sets of data.

This work has certain limitations: (i) The number of genes 
studied: Only 1000 genes are selected. (ii) Noise and outliers are 
inherent in the expression data. Clustering methods can be affected 
by this phenomenon. But, although K-Means is generally deemed as 
a sensitive method to outliers, it appears in this study that it is not the 
case. Because we obtained for this later a result with acceptable indices 
values and with an optimal cluster number identical to the one expected 
by biologists.

These results provide guidance for future work. The use of AGNES 
and K-Means clustering methods may be recommended for the analysis 
of this type of datasets. The additional orientation would be to associate 
the expression profiles (numerical aspect) with the corresponding 
annotations described by the ontologies (semantic aspect) in order to 
provide enrichment in the gene clustering. 
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