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Abstract

SM3 is a Chinese hash standard. HMAC SM3 uses a secret key to encrypt the input text and gives an output as 
the HMAC of the input text. If the key is recovered, adversaries can easily forge a valid HMAC. We can choose 
different methods, such as traditional side channel analysis, template attack-based side channel analysis to 
recover the secret key. Deep Learning has recently been introduced as a new alternative to perform Side-
Channel analysis. In this paper, we try to recover the secret key with deep learning-based side channel analysis. 
We should train the network recursively for different parameters by using the same dataset and attack the 
target dataset with the trained network to recover different parameters. The experiment results show that 
the secret key can be recovered with deep learning-based side channel analysis. This work demonstrates the 
interests of this new method and show that this attack can be performed in practice.
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I. Introduction

SIDE CHANNEL analysis is a powerful technique that helps an 
adversary recover sensitive information without damaging the 

target. Target device leaks information (e.g. power consumption [1], 
Electromagnetic emanation [2], temperature [3], acoustic [4], etc.) 
that is related to sensitive data during calculation [5]. An adversary 
can make use of the leakage to recover sensitive data. In order to 
decrease the leakage, several countermeasures such as masking and 
hiding are used in the cryptographic implementation. However, even 
with countermeasures, adversaries can come up with more powerful 
methods to recover the sensitive information.

Following the current trend in the side channel analysis research 
area, recent works have demonstrated that deep learning algorithms 
were very efficient to conduct security evaluations of embedded 
systems and had many advantages compared to the other methods.

Nowadays, machine learning becomes a popular topic in many 
areas. It is usually divided into three classes: supervised learning, 
unsupervised learning and semi-supervised learning. In most 
situation, supervised learning is mainly used. There are many kinds of 
structures which are used in machine learning, such as Support Vector 
Machine (SVM) and Random Forest, etc. Deep learning is a kind of 
machine learning. It extracts features by several non-linear layers. 
Deep learning becomes popular since AlexNet [6] is proposed in 2012. 
Then, more and more complex network structures are proposed, such 
as VGGNet [7], GoogLeNet [8] and ResNet [9], etc. These networks 
work well in many areas, e.g. image recognition area, face recognition 
area and so on. 

In recent years, it appears that deep learning techniques are applied in 
side channel analysis research area [10], [11]. Comparing to traditional 
side channel method, deep learning-based side channel analysis performs 
better. Deep learning-based side channel analysis performs better 
especially when the implementation has mask or jitter [12]. Without 
alignment or pre-processing, neural network can recover sensitive 
information as well, which is much more convenient than the traditional 
side channel method. Many researches are done in recent years. In 2013, 
Martinasek. et al., play an attack on an AES implementation working on 
PIC16F84A with only one hidden layer [13]. Another work [14] compares 
different kind of machine learning method on DPA contest V2 dataset. 
A research [15] proposed a CNN based side channel analysis and claim 
that this method is robust to trace misalignment. Different structures 
of network are applied on the dataset and come up with a CNN-best 
structure for the dataset. Picek et al. compare different methods for the 
class imbalance situation on DL-SCA [16]. Last, a research [17] come up 
with correlation-based loss function.

In this paper, we use a deep learning-based side channel analysis 
technique to analyze HMAC SM3 algorithm implementation. The 
structure of this paper is as follows: In Section II, we introduce the 
SM3 algorithm, HMAC SM3, basic idea of CNN as well as the attack 
path. This section will help readers have a basic understanding of 
the algorithm and the attack method. The attacks on real traces are 
demonstrated in Section III. In this section, the target, the structure of 
the network and the attack are illustrated. In the end, conclusion and 
future work are presented in Section IV.

II. Background

A. SM3 Algorithm
SM3 is the Chinese hash standard [18]. The structure of the 
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algorithm is shown in Fig. 1. The input data of the function is padded 
such that it can be split into N blocks of 512 bits. Each block will be 
treated in a same procedure: the former block calculates a new IV for 
the latter block through function f(), and the output of block N is the 
hash result of the algorithm.
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Fig. 1. Structure of SM3 algorithm.

The structure of function f() is show in Fig 2. The function T() 
convert the 512-bit input into 64 32-bit word pairs. Each pair (Wi, 
Wi*) are used during round Ri, and the result of each round is used 
as input of the next round. When the 64th round is completed, a final 
transformation is applied by adding the input of the first round and 
the output of the last round together as the output of the function f().

8*32 8*32

2*32 2*32

(W0, W0
*) (W63, W63

*)

T

512

R0 R1 R63 ⊕

...

Fig. 2. Structure of the f function.

In order to explain the detail of each loop, we define the loop by 
function: IVi = f(IVi-1, Blocki)

The first constant IV0 is:

IV0,0 = 0x7380166F (1)

IV0,1 = 0x4914B2B9 (2)

IV0,2 = 0x172442D7 (3)

IV0,3 = 0xDA8A0600 (4)

IV0,4 = 0xA96F30BC (5)

IV0,5 = 0x163138AA (6)

IV0,6 = 0xE38DEE4D (7)

IV0,7 = 0xB0FB0E4E (8)

The detail of each loop is as follows:

First, initialize the 8 32-bit local variables named a to h:

a0 = IVi −1, ···0 (9)

b0 = IVi −1, ···1 (10)

c0 = IVi −1, ···2 (11)

d0 = IVi −1, ···3 (12)

e0 = IVi −1, ···4 (13)

f0 = IVi −1, ···5 (14)

g0 = IVi −1, ···6 (15)

h0 = IVi −1, ···7 (16)

For each round Rj, j∈[0,63], we compute:

SS1j = ((aj <<< 12) + ej + (Tj <<< j) <<< 7) (17)

SS2j = SS1j ⊕ (aj <<< 12) (18)

TT1j = FFj (aj, bj, cj) + dj + SS2j + Wj
* (19)

TT2j = GGj (ej, f j, gj) + hj + SS1j + Wj (20)

aj+1 = TT1j (21)

bj+1 = aj (22)

cj+1 = bj <<< 9 (23)

dj+1 = cj (24)

ej+1 = P0 (TT2j) (25)

f j+1 = ej (26)

gj+1 = f j <<< 19 (27)

hj+1 = gj (28)

where all additions are done modulo 232 <<< n means left rotation 
of n bits, constants Tj is:

 (29)

Function FFj is:

 (30)

Function GGj is:

 (31)

Function Pk is:

 (32)

Input plaintext of each block PlainBlock is split into 32-bit words 
PlainBlock = {PB0, PB1, …, PB15}. Then the parameter Wj is computed as:

  (33)

And the parameter Wj
* is computed as:

Wj
* = Wj

  ⊕ Wj+4 (34)

The function f() is finished by 32-bit XOR with the initial state:

IVi,0 = IVi−1,0 ⊕ a64 (35)

IVi,1 = IVi−1,1 ⊕ b64 (36)

IVi,2 = IVi−1,2 ⊕ c64 (37)

IVi,3 = IVi−1,3 ⊕ d64 (38)

IVi,4 = IVi−1,4 ⊕ e64 (39)
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IVi,5 = IVi−1,5 ⊕ f64 (40)

IVi,6 = IVi−1,6 ⊕ g64 (41)

IVi,7 = IVi−1,7 ⊕ h64 (42)

B. SM3 Based HMAC
The HMAC stands for keyed- Hash Message Authentication Code 

and is a NIST standard which can be found in [19]. Fig. 3 presents the 
process of HMAC SM3.
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Fig. 3. Structure of HMAC SM3.

The process of HMAC SM3 is as follows:

Derive key pair (Ki, Ko) from the key K.

Calculate the first hash with Ki and input data: first hash = H(Ki│T)

Calculate HMAC with Ko and first hash: HMAC = H(Ko│first hash), 
where H() is the SM3 hash function.

C. Side Channel Analysis
Side Channel Analysis (SCA) is first proposed by Kocher et al. in 

1996[22]. It is a technique to retrieve the secret information of an 
algorithm by monitoring the physical information of a device (such 
as power, heating, time consuming, electromagnetic signals, etc., as 
shown in Fig. 4.  The reason that SCA can recover secret is that the 
physical signal of a cryptographic device demonstrates correlation 
with the internal statement.

It is much easier to recover information from side channel signals 
than directly breaking the core implementation. There are several 
kinds of SCA, e.g. simple power analysis, correlation power analysis, 
template attack, etc. Simple power analysis [23] is an easy way to 
recover secret information. By observing the side channel signals, the 
attacker can find the difference and recover the sensitive information 
according to the differences.  Correlation power analysis (CPA) 
[24] needs much more traces. When using CPA to recover sensitive 
information, we need to guess the secret key to calculate a certain 
mid-value. Since different traces correspond to different plaintext, 
we can have a set of mid-value for every guesses. By computing the 
correlation between mid-values and the side channel signals, we can 
figure out the correct guess. Template attack (TA) is another kind 
of passive attack. It has two stages: first, template building, second, 
template matching. Deep learning based SCA is similar to TA. We will 
discuss TA and deep learning based SCA in the following section.

D. Deep Learning Based Side Channel Analysis
Template attack [20] is a traditional method of side channel 

analysis. During the attack, we should take a reference set of trace 
from a reference device first in the learning phase. For this set, we 

know the key, the plaintext and all the details of every trace. We 
can set up templates for each mid-value using the reference set. For 
attacking phase, we can use the templates in the learning phase to 
attack the target trace set to recover the mid-value such that the secret 
key can be recovered as well.

Deep learning-based side channel analysis is similar to the 
traditional template at-tack, which has two phases: a learning phase 
and an attacking phase. The whole procedure is shown in Fig. 5.

Sensitive Data
(Label)

Profiling Traces

A�acking Traces

A�acking Phase

Learning Phase

Trained Model

Trained Model Sensitive Data recovered

Fig. 5 .The procedure of deep learning-based side channel analysis.

In the learning phase, a trace set is collected from the reference 
device. For each trace, we add a label that is related to the sensitive 
data (e.g. key). The neural network will be trained with the traces and 
labels. Parameters in the neural network is updated. The goal of the 
learning phase is to try to make the output (prediction) of the neural 
network be closer to the true label. After the learning phase, the 
parameters updated in the network will be saved.

The network saved at the end of learning phase can be applied to 
the attacking phase. In the attacking phase, we have a trace set with 
only traces but we do not know the label. With each trace, the network 
can give us a prediction of the label using the parameters saved in the 
learning phase. We can recover the sensitive data (e.g. key) according 
to the predictions.
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E. Neural Network Architecture
In this paper, we will primarily focus on Convolutional Neural 

Network. We will introduce the basic idea of the Convolutional Neural 
Network.

Convolutional Neural Network (CNN) [21] is a popular network 
in deep learning do-main. Usually, CNN is consisting of three kinds 
of layers: convolutional layers, pooling layers, as well as fully 
connected layers. The convolutional layers work as pattern detectors 
by convolution operations. Kernels in Convolutional layers can be 
updated by backpropagation. In this way, we can get different kernels 
using the same set of input. These kernels can detect different kinds 
of edges to track different features. Usually one kernel corresponds to 
one feature and a convolutional layer contains several kernels. In the 
meantime, since the kernels doing convolution by moving through the 
whole dataset, same pattern in different positions can be detected by 
the same kernel. We should notice that the kernels in the convolutional 
layer always have a small size compare to the input data, which reduce 
the computation complexity of the neural network.

Pooling layers always come after convolutional layers, which 
reduce the size of the inputs. We can choose average pooling to reduce 
the size by local averaging or max pooling to reduce the size by picking 
up the max value in a certain area. By averaging or max pooling, the 
pooling layer extract features of the input and reduce the size. This 
operation makes the CNN more robust to the shift and deformation of 
the input. In addition, it can reduce the possibility of overfitting since 
it reduces the size of the input data.

Fully connected layer usually comes at the end of the neural 
network. Each neural in fully connected layers are connect to every 
input. 

We can choose the number of convolutional layers, pooling layers 
and fully connected layers arbitrarily. With more layers, the neural 
network can learn more com-plex features. However, with more 
layers, the network will be easier to get over-fit. Thus, the structure 
should be chosen carefully according to the input data.

The detailed architecture of MLPbest, MLPmonobit, MLPmulti-label, CNNbest, 
CNNmonobit and CNNmulti-label is shown in Fig. 6. The mark “FC-200” 
means a fully connected layer of 200 neurons, “conv11-64, Relu” means 
64 convolutional kernels of size 11 using Relu activation function, 
and “average pooling, 2 by 2” means an average pooling layer, whose 
pooling window size is 2 and the stride is 2.

For a deep insight into the differences of identity model and our 
multi-label model, the architecture of the output layers of CNNbest and 
CNNmulti-label (the same for MLPbest and MLPmulti-label) is depicted in Fig. 
7, the output layer of CNNbest has 256 output neurons with softmax 
activation function while the output layer of CNNmulti-label has 8 neurons 
with sigmoid activation function. Correspondingly, CNNbest uses cross-
entropy as the loss function and CNNmulti-label utilizes the binary cross-
entropy since there are 8 binary labels.

F. Attack Path
Since SM3 algorithm has no secret key, we cannot attack SM3 

directly. We can only attack HMAC SM3 to recover the key K used in 
the HMAC process. In order to recover the key K, we should recover 
the key pair (Ki, Ko) first. Thus, we should recover the first hash IV: Hi 
and the second hash IV: Ho to recover the key pair. 

We use Ho and first hash result to calculate the HMAC. To recover 
Ho, we should know the first hash result first. In order to get the first 
hash result, we should recover the first hash IV(Hi) first. Recovering Hi 
and Ho can use the same process. If Hi is recovered, Ho can be easily 
recovered as well. In this paper, we only consider recovering Hi and 
our target is to recover a0, b0, c0, d0, e0, f0, g0 and h0 related to Hi. 
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Fig. 6. Details of NN architecture.
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Fig. 7. The difference of output layers between CNNbest and CNNmulti-label. Left: 
the output layer of CNNbest. Right: the output layer of CNNmulti-label.

In order to illustrate the attack path more clearly, we denote part of 
the TT1j and TT2j computation as δ1, j and δ2, j respectively:

δ1, j = FFj (aj, bj, cj) + dj + SS2j (43)

δ2, j = FFj (ej, f j, gj) + hj + SS1j (44)

We can first recover δ1,0 and δ2,0 according to Equation (3) and 
Equation (4) respectively when j is equal to 0. With δ1,0 and δ2,0 
known, TT10 and TT20 can be easily calculated since W0

* and W0 are 
known. Then, we can recover a0 by targeting at TT10⊕a0, recover b0 by 
targeting at TT10⊕a0⊕(b0<<<9). c0 can be recovered through targeting 
at the computation c0 + FF0(TT10, a0, (b0<<<9) + SS21 + W1

*. After δ1,0, 
a0, b0 and c0 are recovered, we can simply recover d0 by computing d0 
= δ1,0 - (a0⊕b0⊕c0) - SS20. Similarly, we can recover e0, f0, g0 and h0 with 
TT20 and W1. Thus, the IV Hi can be recovered.

III. Attack on Real Traces

A. Experiment Setup and Data Set
The testing target is a software HMAC SM3 running on a 32-bit 

microprocessor Infineon TC1782. The experiment setup consists of a 
high-performance Digital Storage Oscilloscope (DSO), high-precision 
XYZ stage and near-field high-bandwidth EM probe, as shown in Fig. 8.

EM traces are acquired when the HMAC SM3 is running. A single 
measurement contains 50,000 points, representing the computation of 
first hash. 
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Fig. 8. Experiment equipment and devices.

We collect two set of traces: Set A: 200,000 traces with input data 
and the first hash IV Hi varying; Set B: 50,000 traces with variance 
input data and fixed first hash IV Hi. Set A is used in the learning 
phase, while Set B is used for the attack phase. In the training phase, 
180,000 traces of Set A are used as training set while the rest 20,000 
traces are used as validation set to choose the best network parameter.

B. Neural Network Structure
Fig. 9 shows the structure of the network. We only use one 

convolutional layer with kernel size 3 and 32 convolutional filters. For 
the pooling layer, we use set both the pooling size and the stride to 2. 
The first fully connected layer has 1024 neuros while the second has 
512 neuros. The input layer contains 5000 neuros while the output 
layer contains 9 neuros, which stands for Hamming Weight 0 to 
Hamming Weight 9.

Input CONV

32

POOL FC1 FC2 Ouput

Fig. 9. Structure of the Neural Network.

The network contains 82,450,569 parameters in total, as shown in 
Fig. 10.

C. Experimental Result
We try to recover δ1,0 first. Instead of recover all 32-bits of δ1,0, we 

recover δ1,0 byte by byte. With learning rate 0.0001, batch size 200, we 
trained each model 10 epochs using Set A. The training result is shown 
in Fig. 11. the blue line corresponds to the training set while the orange 
line corresponds to the validation set. We can find that for every byte, 
the loss increases and the accuracy decrease in the validation set after 
several epochs. Thus, we save the network with best performance 
instead of the network obtained when training is finished.

Layer (type) Output Shape Param #

Input (InputLayer) (None, 5000, 1) 0

block1_conv (Conv1D) (None, 5000, 32) 128

block1_pool (AveragePoolingl(None, 2500, 32) 0

flatten (Flatten) (None, 80000) 128

fc1 (Dense) (None, 1024) 81921024

fc2 (Dense) (None, 512) 524800

predictions (Dense)

Total params: 82, 450, 569
Trainable params: 82, 450, 569
Non-trainable params: 0

(None, 9) 4617

Fig. 10. Parameters and Structure of the Neural Network.

0.40

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0 2 4 6 8 10
ac

cu
ra

cy

epochs

train_acc
val_acc 185

180

175

170

165

160

155

150

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(a)

0.40

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0.24

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc 185

190

180

175

170

165

160

155

150

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(b)

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0.24

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc

185

180

175

170

165

160

155

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(c)
0.40

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc

185

190

180

175

170

165

160

155

150
0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(d)

Fig. 11. Training result of δ1,0: (a) Byte3 (b) Byte 2 (c) Byte 1 (d) Byte 0.
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Fig. 12. Attack result of δ1,0: (a) Byte 3 (b) Byte 2 (c) Byte 1 (d) Byte 0.

The attack results on Set B are shown in Fig. 12. The line in blue 
indicates the expected value of different bytes. We can find that all 
bytes in δ1,0 can be recovered with only several thousands of traces 
in Set B.

With δ1,0 recovered, we can calculate TT10 for every trace according 
to the corresponding W0

*. The EM traces leaks information related to 
a0 when calculating a0⊕TT10. The training result is shown in Fig. 13.

We recover a0 byte by byte as well. The result is shown in Fig. 14. 
The line in blue indicate the expected value of different a0 bytes. We 
can find from the result that we need to use almost all traces in Set B 
to recover all the four bytes of a0. Unlike the result of δ1,0, the correct 
candidates of a0 are not very distinguishable from other candidates. 
The result of δ1,0 seems more distinguishable than that of a0, the reason 

may be that the process that leaks information about a0 is a XOR 
operation while the leakage about δ1,0 is an ADD operation.
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Fig. 13. Training result of a0: (a) Byte 3 (b) Byte 2 (c) Byte 1 (d) Byte 0.
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Fig. 14. Attack result of a0: (a) Byte 3 (b) Byte 2 (c) Byte 1 (d) Byte 0.

We can repeat the attack on all the other parameters using the same 
set of data by changing the target label to recover b0, c0, δ2,0, e0, f0 and 
g0. Then, d0 and h0 can be calculated simply.

IV. Conclusion and Future Work

In this paper, we demonstrate a Deep Learning-based Side Channel 
Attack on HMAC SM3 algorithm. In order to recover the key used in 
HMAC SM3, the attacker should recover two IVs: Hi and Ho. In this 
paper, we only focus on recovering Hi since the method of recovering 
the two IVs are the same. We try to recover δ1,0, δ2,0, a0, b0, c0, d0, e0, f0, g0 
and h0 to recover Hi. The experiment result shows that we can recover 
the IV with 50,000 traces. In addition, we can find that when we focus 
on an add operation, the attack result is much better than focusing on 
a XOR operation. Thus, we need more traces to recover parameters 
when focusing on XOR operations. Although the correct candidate for 
XOR operation is not quite distinguishable from other candidates, we 
can recover the correct candidate. This situation may be solved if more 
traces are added to the attacking set.

In this paper, we focus on a software implementation of HMAC 
SM3 without any countermeasures. In future work, we can try several 
different HMAC implementations: (a) hardware implementation 
without countermeasures; (b) software implementation with some 
countermeasures; (c) hardware implementation with countermeasures. 
By doing experiments on different implementations, we can check 

whether deep learning works well on both unprotected and protected 
situations. In addition, we can try to figure out the difference of the 
structure of the network when attacking a hardware implementation 
and a software implementation. 
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