
- 113 -- 113 -

Deep Learning-based Side Channel Attack on HMAC
SM3
Xin Jin1, Yong Xiao1, Shiqi Li2*, Suying Wang2

1 CSG Electric Power Research Institute, Guangzhou (China)
2 Open Security Research, Inc., Shenzhen (China)

Received 1 July 2020 | Accepted 2 November 2020 | Published 16 November 2020

Keywords

CNN, Neural Network,
HMAC, Side Channel
Analysis, HMAC-SM3.

Abstract

SM3 is a Chinese hash standard. HMAC SM3 uses a secret key to encrypt the input text and gives an output as
the HMAC of the input text. If the key is recovered, adversaries can easily forge a valid HMAC. We can choose
different methods, such as traditional side channel analysis, template attack-based side channel analysis to
recover the secret key. Deep Learning has recently been introduced as a new alternative to perform Side-
Channel analysis. In this paper, we try to recover the secret key with deep learning-based side channel analysis.
We should train the network recursively for different parameters by using the same dataset and attack the
target dataset with the trained network to recover different parameters. The experiment results show that
the secret key can be recovered with deep learning-based side channel analysis. This work demonstrates the
interests of this new method and show that this attack can be performed in practice.

* Corresponding author.

E-mail address: shiqi.li@osr-tech.com

DOI: 10.9781/ijimai.2020.11.007

I. Introduction

SIDE CHANNEL analysis is a powerful technique that helps an
adversary recover sensitive information without damaging the

target. Target device leaks information (e.g. power consumption [1],
Electromagnetic emanation [2], temperature [3], acoustic [4], etc.)
that is related to sensitive data during calculation [5]. An adversary
can make use of the leakage to recover sensitive data. In order to
decrease the leakage, several countermeasures such as masking and
hiding are used in the cryptographic implementation. However, even
with countermeasures, adversaries can come up with more powerful
methods to recover the sensitive information.

Following the current trend in the side channel analysis research
area, recent works have demonstrated that deep learning algorithms
were very efficient to conduct security evaluations of embedded
systems and had many advantages compared to the other methods.

Nowadays, machine learning becomes a popular topic in many
areas. It is usually divided into three classes: supervised learning,
unsupervised learning and semi-supervised learning. In most
situation, supervised learning is mainly used. There are many kinds of
structures which are used in machine learning, such as Support Vector
Machine (SVM) and Random Forest, etc. Deep learning is a kind of
machine learning. It extracts features by several non-linear layers.
Deep learning becomes popular since AlexNet [6] is proposed in 2012.
Then, more and more complex network structures are proposed, such
as VGGNet [7], GoogLeNet [8] and ResNet [9], etc. These networks
work well in many areas, e.g. image recognition area, face recognition
area and so on.

In recent years, it appears that deep learning techniques are applied in
side channel analysis research area [10], [11]. Comparing to traditional
side channel method, deep learning-based side channel analysis performs
better. Deep learning-based side channel analysis performs better
especially when the implementation has mask or jitter [12]. Without
alignment or pre-processing, neural network can recover sensitive
information as well, which is much more convenient than the traditional
side channel method. Many researches are done in recent years. In 2013,
Martinasek. et al., play an attack on an AES implementation working on
PIC16F84A with only one hidden layer [13]. Another work [14] compares
different kind of machine learning method on DPA contest V2 dataset.
A research [15] proposed a CNN based side channel analysis and claim
that this method is robust to trace misalignment. Different structures
of network are applied on the dataset and come up with a CNN-best
structure for the dataset. Picek et al. compare different methods for the
class imbalance situation on DL-SCA [16]. Last, a research [17] come up
with correlation-based loss function.

In this paper, we use a deep learning-based side channel analysis
technique to analyze HMAC SM3 algorithm implementation. The
structure of this paper is as follows: In Section II, we introduce the
SM3 algorithm, HMAC SM3, basic idea of CNN as well as the attack
path. This section will help readers have a basic understanding of
the algorithm and the attack method. The attacks on real traces are
demonstrated in Section III. In this section, the target, the structure of
the network and the attack are illustrated. In the end, conclusion and
future work are presented in Section IV.

II. Background

A. SM3 Algorithm
SM3 is the Chinese hash standard [18]. The structure of the

Artificial Intelligence and Sensor Informatics: Exploring Smart City and Construction Business Implications

- 114 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº4

algorithm is shown in Fig. 1. The input data of the function is padded
such that it can be split into N blocks of 512 bits. Each block will be
treated in a same procedure: the former block calculates a new IV for
the latter block through function f(), and the output of block N is the
hash result of the algorithm.

0 bit ≤ Data < 264 bits

Padding

512

8*32

8*32 8*32

2*32 2*32

Block #1

IV0

(W0, W0
*) (W63, W63

*)

IV1f IV2f IV3 IVN-1f

T

f hash

Block #2 Block #3 Block #N

512 512

512

512

R0 R1 R63 ⊕

...

...

...

...

Fig. 1. Structure of SM3 algorithm.

The structure of function f() is show in Fig 2. The function T()
convert the 512-bit input into 64 32-bit word pairs. Each pair (Wi,
Wi*) are used during round Ri, and the result of each round is used
as input of the next round. When the 64th round is completed, a final
transformation is applied by adding the input of the first round and
the output of the last round together as the output of the function f().

8*32 8*32

2*32 2*32

(W0, W0
*) (W63, W63

*)

T

512

R0 R1 R63 ⊕

...

Fig. 2. Structure of the f function.

In order to explain the detail of each loop, we define the loop by
function: IVi = f(IVi-1, Blocki)

The first constant IV0 is:

IV0,0 = 0x7380166F (1)

IV0,1 = 0x4914B2B9 (2)

IV0,2 = 0x172442D7 (3)

IV0,3 = 0xDA8A0600 (4)

IV0,4 = 0xA96F30BC (5)

IV0,5 = 0x163138AA (6)

IV0,6 = 0xE38DEE4D (7)

IV0,7 = 0xB0FB0E4E (8)

The detail of each loop is as follows:

First, initialize the 8 32-bit local variables named a to h:

a0 = IVi −1, ···0 (9)

b0 = IVi −1, ···1 (10)

c0 = IVi −1, ···2 (11)

d0 = IVi −1, ···3 (12)

e0 = IVi −1, ···4 (13)

f0 = IVi −1, ···5 (14)

g0 = IVi −1, ···6 (15)

h0 = IVi −1, ···7 (16)

For each round Rj, j∈[0,63], we compute:

SS1j = ((aj <<< 12) + ej + (Tj <<< j) <<< 7) (17)

SS2j = SS1j ⊕ (aj <<< 12) (18)

TT1j = FFj (aj, bj, cj) + dj + SS2j + Wj
* (19)

TT2j = GGj (ej, f j, gj) + hj + SS1j + Wj (20)

aj+1 = TT1j (21)

bj+1 = aj (22)

cj+1 = bj <<< 9 (23)

dj+1 = cj (24)

ej+1 = P0 (TT2j) (25)

f j+1 = ej (26)

gj+1 = f j <<< 19 (27)

hj+1 = gj (28)

where all additions are done modulo 232 <<< n means left rotation
of n bits, constants Tj is:

 (29)

Function FFj is:

 (30)

Function GGj is:

 (31)

Function Pk is:

 (32)

Input plaintext of each block PlainBlock is split into 32-bit words
PlainBlock = {PB0, PB1, …, PB15}. Then the parameter Wj is computed as:

 (33)

And the parameter Wj
* is computed as:

Wj
* = Wj

 ⊕ Wj+4 (34)

The function f() is finished by 32-bit XOR with the initial state:

IVi,0 = IVi−1,0 ⊕ a64 (35)

IVi,1 = IVi−1,1 ⊕ b64 (36)

IVi,2 = IVi−1,2 ⊕ c64 (37)

IVi,3 = IVi−1,3 ⊕ d64 (38)

IVi,4 = IVi−1,4 ⊕ e64 (39)

- 115 -

IVi,5 = IVi−1,5 ⊕ f64 (40)

IVi,6 = IVi−1,6 ⊕ g64 (41)

IVi,7 = IVi−1,7 ⊕ h64 (42)

B. SM3 Based HMAC
The HMAC stands for keyed- Hash Message Authentication Code

and is a NIST standard which can be found in [19]. Fig. 3 presents the
process of HMAC SM3.

⊕

⊕

Data

Precomputation

Padding

Key K

Key Padding

Padding

512 bit512 bit

ipad

8*32
bit

512 bit

512 bit

512 bit 512 bit

Block 2Block 1

Block 2

Hi

K1

Hc

ff

f

f f fIV2IV0 IV1 =

512 bit

opad

8*32
bit

Block 1

K0

fIV0 IV1 =

IV3 IV4 IVN

first
hash

hmac

Block 3 Block 4 Block N-1...

...

Fig. 3. Structure of HMAC SM3.

The process of HMAC SM3 is as follows:

Derive key pair (Ki, Ko) from the key K.

Calculate the first hash with Ki and input data: first hash = H(Ki│T)

Calculate HMAC with Ko and first hash: HMAC = H(Ko│first hash),
where H() is the SM3 hash function.

C. Side Channel Analysis
Side Channel Analysis (SCA) is first proposed by Kocher et al. in

1996[22]. It is a technique to retrieve the secret information of an
algorithm by monitoring the physical information of a device (such
as power, heating, time consuming, electromagnetic signals, etc., as
shown in Fig. 4. The reason that SCA can recover secret is that the
physical signal of a cryptographic device demonstrates correlation
with the internal statement.

It is much easier to recover information from side channel signals
than directly breaking the core implementation. There are several
kinds of SCA, e.g. simple power analysis, correlation power analysis,
template attack, etc. Simple power analysis [23] is an easy way to
recover secret information. By observing the side channel signals, the
attacker can find the difference and recover the sensitive information
according to the differences. Correlation power analysis (CPA)
[24] needs much more traces. When using CPA to recover sensitive
information, we need to guess the secret key to calculate a certain
mid-value. Since different traces correspond to different plaintext,
we can have a set of mid-value for every guesses. By computing the
correlation between mid-values and the side channel signals, we can
figure out the correct guess. Template attack (TA) is another kind
of passive attack. It has two stages: first, template building, second,
template matching. Deep learning based SCA is similar to TA. We will
discuss TA and deep learning based SCA in the following section.

D. Deep Learning Based Side Channel Analysis
Template attack [20] is a traditional method of side channel

analysis. During the attack, we should take a reference set of trace
from a reference device first in the learning phase. For this set, we

know the key, the plaintext and all the details of every trace. We
can set up templates for each mid-value using the reference set. For
attacking phase, we can use the templates in the learning phase to
attack the target trace set to recover the mid-value such that the secret
key can be recovered as well.

Deep learning-based side channel analysis is similar to the
traditional template at-tack, which has two phases: a learning phase
and an attacking phase. The whole procedure is shown in Fig. 5.

Sensitive Data
(Label)

Profiling Traces

A�acking Traces

A�acking Phase

Learning Phase

Trained Model

Trained Model Sensitive Data recovered

Fig. 5 .The procedure of deep learning-based side channel analysis.

In the learning phase, a trace set is collected from the reference
device. For each trace, we add a label that is related to the sensitive
data (e.g. key). The neural network will be trained with the traces and
labels. Parameters in the neural network is updated. The goal of the
learning phase is to try to make the output (prediction) of the neural
network be closer to the true label. After the learning phase, the
parameters updated in the network will be saved.

The network saved at the end of learning phase can be applied to
the attacking phase. In the attacking phase, we have a trace set with
only traces but we do not know the label. With each trace, the network
can give us a prediction of the label using the parameters saved in the
learning phase. We can recover the sensitive data (e.g. key) according
to the predictions.

Artificial Intelligence and Sensor Informatics: Exploring Smart City and Construction Business Implications

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0 20 40 60 80 100 120 140 160 180 200

- 0.1
- 0.2

C
or

re
la

ti
on

Time

right keys
wrong keys

Fig. 4. Side Channel Leakage.

- 116 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº4

E. Neural Network Architecture
In this paper, we will primarily focus on Convolutional Neural

Network. We will introduce the basic idea of the Convolutional Neural
Network.

Convolutional Neural Network (CNN) [21] is a popular network
in deep learning do-main. Usually, CNN is consisting of three kinds
of layers: convolutional layers, pooling layers, as well as fully
connected layers. The convolutional layers work as pattern detectors
by convolution operations. Kernels in Convolutional layers can be
updated by backpropagation. In this way, we can get different kernels
using the same set of input. These kernels can detect different kinds
of edges to track different features. Usually one kernel corresponds to
one feature and a convolutional layer contains several kernels. In the
meantime, since the kernels doing convolution by moving through the
whole dataset, same pattern in different positions can be detected by
the same kernel. We should notice that the kernels in the convolutional
layer always have a small size compare to the input data, which reduce
the computation complexity of the neural network.

Pooling layers always come after convolutional layers, which
reduce the size of the inputs. We can choose average pooling to reduce
the size by local averaging or max pooling to reduce the size by picking
up the max value in a certain area. By averaging or max pooling, the
pooling layer extract features of the input and reduce the size. This
operation makes the CNN more robust to the shift and deformation of
the input. In addition, it can reduce the possibility of overfitting since
it reduces the size of the input data.

Fully connected layer usually comes at the end of the neural
network. Each neural in fully connected layers are connect to every
input.

We can choose the number of convolutional layers, pooling layers
and fully connected layers arbitrarily. With more layers, the neural
network can learn more com-plex features. However, with more
layers, the network will be easier to get over-fit. Thus, the structure
should be chosen carefully according to the input data.

The detailed architecture of MLPbest, MLPmonobit, MLPmulti-label, CNNbest,
CNNmonobit and CNNmulti-label is shown in Fig. 6. The mark “FC-200”
means a fully connected layer of 200 neurons, “conv11-64, Relu” means
64 convolutional kernels of size 11 using Relu activation function,
and “average pooling, 2 by 2” means an average pooling layer, whose
pooling window size is 2 and the stride is 2.

For a deep insight into the differences of identity model and our
multi-label model, the architecture of the output layers of CNNbest and
CNNmulti-label (the same for MLPbest and MLPmulti-label) is depicted in Fig.
7, the output layer of CNNbest has 256 output neurons with softmax
activation function while the output layer of CNNmulti-label has 8 neurons
with sigmoid activation function. Correspondingly, CNNbest uses cross-
entropy as the loss function and CNNmulti-label utilizes the binary cross-
entropy since there are 8 binary labels.

F. Attack Path
Since SM3 algorithm has no secret key, we cannot attack SM3

directly. We can only attack HMAC SM3 to recover the key K used in
the HMAC process. In order to recover the key K, we should recover
the key pair (Ki, Ko) first. Thus, we should recover the first hash IV: Hi
and the second hash IV: Ho to recover the key pair.

We use Ho and first hash result to calculate the HMAC. To recover
Ho, we should know the first hash result first. In order to get the first
hash result, we should recover the first hash IV(Hi) first. Recovering Hi
and Ho can use the same process. If Hi is recovered, Ho can be easily
recovered as well. In this paper, we only consider recovering Hi and
our target is to recover a0, b0, c0, d0, e0, f0, g0 and h0 related to Hi.

MLPbest MLPmonobit MLPmulti-label CNNbest CNNmonobit CNNmulti-label

6 weights layers 8 weights layers

352,456 params
301,201
params

302,608
params

66,652,544
params

65,607,809
params

65,636,488
params

input

FC-200, Relu
conv11-64, Relu

average pooling, 2 by 2

FC-200, Relu
conv11-128, Relu

average pooling, 2 by 2

FC-200, Relu
conv11-256, Relu

average pooling, 2 by 2

FC-200, Relu
conv11-512, Relu

average pooling, 2 by 2

FC-200, Relu
FC-200, Relu

conv11-512, Relu

average pooling, 2 by 2

FC-4096, Relu

FC-4096, Relu

FC-256 softmax FC-1, sigmoid FC-8, sigmoid FC-256, sigmoid FC-1, sigmoid FC-8, sigmoid

Fig. 6. Details of NN architecture.

Last Layer

Output Layer
so�max

so�max

so�max

256

Last Layer

Output Layer
sigmoid

sigmoid

sigmoid

8

Fig. 7. The difference of output layers between CNNbest and CNNmulti-label. Left:
the output layer of CNNbest. Right: the output layer of CNNmulti-label.

In order to illustrate the attack path more clearly, we denote part of
the TT1j and TT2j computation as δ1, j and δ2, j respectively:

δ1, j = FFj (aj, bj, cj) + dj + SS2j (43)

δ2, j = FFj (ej, f j, gj) + hj + SS1j (44)

We can first recover δ1,0 and δ2,0 according to Equation (3) and
Equation (4) respectively when j is equal to 0. With δ1,0 and δ2,0
known, TT10 and TT20 can be easily calculated since W0

* and W0 are
known. Then, we can recover a0 by targeting at TT10⊕a0, recover b0 by
targeting at TT10⊕a0⊕(b0<<<9). c0 can be recovered through targeting
at the computation c0 + FF0(TT10, a0, (b0<<<9) + SS21 + W1

*. After δ1,0,
a0, b0 and c0 are recovered, we can simply recover d0 by computing d0
= δ1,0 - (a0⊕b0⊕c0) - SS20. Similarly, we can recover e0, f0, g0 and h0 with
TT20 and W1. Thus, the IV Hi can be recovered.

III. Attack on Real Traces

A. Experiment Setup and Data Set
The testing target is a software HMAC SM3 running on a 32-bit

microprocessor Infineon TC1782. The experiment setup consists of a
high-performance Digital Storage Oscilloscope (DSO), high-precision
XYZ stage and near-field high-bandwidth EM probe, as shown in Fig. 8.

EM traces are acquired when the HMAC SM3 is running. A single
measurement contains 50,000 points, representing the computation of
first hash.

- 117 -

Fig. 8. Experiment equipment and devices.

We collect two set of traces: Set A: 200,000 traces with input data
and the first hash IV Hi varying; Set B: 50,000 traces with variance
input data and fixed first hash IV Hi. Set A is used in the learning
phase, while Set B is used for the attack phase. In the training phase,
180,000 traces of Set A are used as training set while the rest 20,000
traces are used as validation set to choose the best network parameter.

B. Neural Network Structure
Fig. 9 shows the structure of the network. We only use one

convolutional layer with kernel size 3 and 32 convolutional filters. For
the pooling layer, we use set both the pooling size and the stride to 2.
The first fully connected layer has 1024 neuros while the second has
512 neuros. The input layer contains 5000 neuros while the output
layer contains 9 neuros, which stands for Hamming Weight 0 to
Hamming Weight 9.

Input CONV

32

POOL FC1 FC2 Ouput

Fig. 9. Structure of the Neural Network.

The network contains 82,450,569 parameters in total, as shown in
Fig. 10.

C. Experimental Result
We try to recover δ1,0 first. Instead of recover all 32-bits of δ1,0, we

recover δ1,0 byte by byte. With learning rate 0.0001, batch size 200, we
trained each model 10 epochs using Set A. The training result is shown
in Fig. 11. the blue line corresponds to the training set while the orange
line corresponds to the validation set. We can find that for every byte,
the loss increases and the accuracy decrease in the validation set after
several epochs. Thus, we save the network with best performance
instead of the network obtained when training is finished.

Layer (type) Output Shape Param #

Input (InputLayer) (None, 5000, 1) 0

block1_conv (Conv1D) (None, 5000, 32) 128

block1_pool (AveragePoolingl(None, 2500, 32) 0

flatten (Flatten) (None, 80000) 128

fc1 (Dense) (None, 1024) 81921024

fc2 (Dense) (None, 512) 524800

predictions (Dense)

Total params: 82, 450, 569
Trainable params: 82, 450, 569
Non-trainable params: 0

(None, 9) 4617

Fig. 10. Parameters and Structure of the Neural Network.

0.40

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0 2 4 6 8 10
ac

cu
ra

cy

epochs

train_acc
val_acc 185

180

175

170

165

160

155

150

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(a)

0.40

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0.24

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc 185

190

180

175

170

165

160

155

150

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(b)

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0.24

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc

185

180

175

170

165

160

155

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(c)
0.40

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc

185

190

180

175

170

165

160

155

150
0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(d)

Fig. 11. Training result of δ1,0: (a) Byte3 (b) Byte 2 (c) Byte 1 (d) Byte 0.

Artificial Intelligence and Sensor Informatics: Exploring Smart City and Construction Business Implications

- 118 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº4

-3

-2

-1

0

0 10000 20000 30000 40000 50000

1

2

3

4

real key

di
st

in
gu

is
he

r

number of traces

(a)

-3

-2

-1

0

0 10000 20000 30000 40000 50000

1

2

3

4

real key

di
st

in
gu

is
he

r

number of traces

(b)

0 10000 20000 30000 40000 50000

real key

di
st

in
gu

is
he

r

number of traces

-3

-4

-2

-1

0

1

2

3

4

(c)

-4

-2

0

0 10000 20000 30000 40000 50000

2

4
real key

di
st

in
gu

is
he

r

number of traces

(d)

Fig. 12. Attack result of δ1,0: (a) Byte 3 (b) Byte 2 (c) Byte 1 (d) Byte 0.

The attack results on Set B are shown in Fig. 12. The line in blue
indicates the expected value of different bytes. We can find that all
bytes in δ1,0 can be recovered with only several thousands of traces
in Set B.

With δ1,0 recovered, we can calculate TT10 for every trace according
to the corresponding W0

*. The EM traces leaks information related to
a0 when calculating a0⊕TT10. The training result is shown in Fig. 13.

We recover a0 byte by byte as well. The result is shown in Fig. 14.
The line in blue indicate the expected value of different a0 bytes. We
can find from the result that we need to use almost all traces in Set B
to recover all the four bytes of a0. Unlike the result of δ1,0, the correct
candidates of a0 are not very distinguishable from other candidates.
The result of δ1,0 seems more distinguishable than that of a0, the reason

may be that the process that leaks information about a0 is a XOR
operation while the leakage about δ1,0 is an ADD operation.

0.36

0.34

0.32

0.30

0.28

0.26

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc

185

190

180

175

170

165

160

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(a)

0.34

0.32

0.30

0.28

0.26

0.24

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc

185

190

180

175

170

165

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(b)
0.030

0.025

0.020

0.015

0.010

0.005

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc 5.7

5.6

5.5

5.4

5.3

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(c)

0.025

0.020

0.015

0.010

0.005

0 2 4 6 8 10

ac
cu

ra
cy

epochs

train_acc
val_acc 5.7

5.6

5.5

5.4

5.3

0 2 4 6 8 10

lo
ss

epochs

train_loss
val_loss

(d)

Fig. 13. Training result of a0: (a) Byte 3 (b) Byte 2 (c) Byte 1 (d) Byte 0.

0 10000 20000 30000 40000 50000

real key

di
st

in
gu

is
he

r

number of traces

-3

-2

-1

0

1

2

3

(a)

- 119 -

real key

di
st

in
gu

is
he

r

number of traces

-3

-4

-2

-1

0

1

2

3

4

0 10000 20000 30000 40000 50000

(b)

0 10000 20000 30000 40000 50000

real key

di
st

in
gu

is
he

r

number of traces

-4

-2

0

2

4

6

8

(c)

0 10000 20000 30000 40000 50000

real key

di
st

in
gu

is
he

r

number of traces

-2.5

0

2.5

5.0

7.5

10.0

12.5

(d)

Fig. 14. Attack result of a0: (a) Byte 3 (b) Byte 2 (c) Byte 1 (d) Byte 0.

We can repeat the attack on all the other parameters using the same
set of data by changing the target label to recover b0, c0, δ2,0, e0, f0 and
g0. Then, d0 and h0 can be calculated simply.

IV. Conclusion and Future Work

In this paper, we demonstrate a Deep Learning-based Side Channel
Attack on HMAC SM3 algorithm. In order to recover the key used in
HMAC SM3, the attacker should recover two IVs: Hi and Ho. In this
paper, we only focus on recovering Hi since the method of recovering
the two IVs are the same. We try to recover δ1,0, δ2,0, a0, b0, c0, d0, e0, f0, g0
and h0 to recover Hi. The experiment result shows that we can recover
the IV with 50,000 traces. In addition, we can find that when we focus
on an add operation, the attack result is much better than focusing on
a XOR operation. Thus, we need more traces to recover parameters
when focusing on XOR operations. Although the correct candidate for
XOR operation is not quite distinguishable from other candidates, we
can recover the correct candidate. This situation may be solved if more
traces are added to the attacking set.

In this paper, we focus on a software implementation of HMAC
SM3 without any countermeasures. In future work, we can try several
different HMAC implementations: (a) hardware implementation
without countermeasures; (b) software implementation with some
countermeasures; (c) hardware implementation with countermeasures.
By doing experiments on different implementations, we can check

whether deep learning works well on both unprotected and protected
situations. In addition, we can try to figure out the difference of the
structure of the network when attacking a hardware implementation
and a software implementation.

Acknowledgment

This work was supported by Electric Power Research Institute
from China Southern Power Grid in Guangzhou, China under project
“Security analysis research on smart meter in power grid system”.

References

[1] Kocher P, Jaffe J, Jun B. “Differential power analysis, advances in
cryptology”-CRYPTO’99, Proc.19th Annual International Cryptology
Conf, pp. 388-397, 1999.

[2] Gandolfi K, Mourtel C, Olivier F. “Electromagnetic analysis: Concrete
results”, International workshop on cryptographic hardware and
embedded systems. Springer, Berlin, Heidelberg, pp. 251-261, 2001.

[3] Brouchier J, Kean T, Marsh C, et al. “Temperature attacks.” IEEE Security
& Privacy, vol. 7, no. 2, pp. 79-82, 2009.

[4] Thompson, J.N. “Insect Diversity and the Trophic Structure of
Communities”. In: Ecological Entomology. New York. pp. 165-178, 1994.

[5] Robyns, Pieter, Peter Quax, and Wim Lamotte. “Improving CEMA using
correlation optimization.”, 2018.

[6] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet
classification with deep convolutional neural networks.” Advances in
neural information processing systems, 2012.

[7] Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition.” arXiv preprint arXiv: pp.
1409-1556, 2014.

[8] Szegedy, Christian, et al. “Going deeper with convolutions.” Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015.

[9] He, Kaiming, et al. “Deep residual learning for image recognition.”
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016.

[10] Bartkewitz T, Lemke-Rust K. “Efficient template attacks based on
probabilistic multi-class support vector machines”, International
Conference on Smart Card Research and Advanced Applications.
Springer, Berlin, Heidelberg, pp. 263-276, 2015.

[11] Heuser A, Zohner M. “Intelligent machine homicide”, International
Workshop on Constructive Side-Channel Analysis and Secure Design.
Springer, Berlin, Heidelberg, pp. 249-264, 2012.

[12] Prouff, Emmanuel, et al. “Study of Deep Learning Techniques for
Side-Channel Analysis and Introduction to ASCAD Database.” IACR
Cryptology ePrint Archive, vol. 53, 2018.

[13] Martinasek, Zdenek, and Vaclav Zeman. “Innovative method of the
power analysis.” Radio engineering, vol. 22.2, pp. 586-594, 2013.

[14] Maghrebi, Houssem, Thibault Portigliatti, a nd Emmanuel Prouff.
“Breaking cryptographic implementations using deep learning
techniques.” International Conference on Security, Privacy, and Applied
Cryptography Engineering. Springer, Cham, 2016.

[15] Cagli, Eleonora, Cécile Dumas, and Emmanuel Prouff. “Convolutional
neural networks with data augmentation against jitter-based
countermeasures.” International Conference on Cryptographic Hardware
and Embedded Systems. Springer, Cham, 2017.

[16] Picek, Stjepan, et al. “The curse of class imbalance and conflicting metrics
with machine learning for side-channel evaluations.” IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2018.

[17] Robyns, Pieter, Peter Quax, and Wim Lamotte. “Improving CEMA
using correlation optimization.” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2019, no. 1, pp. 1-24, 2018. Doi:
10.13154/tches.v2019.i1.1-24

[18] China’s Office of Security Commercial Code Administration:
Specification of SM3 Cryptographic Hash Function, http://www.oscca.
gov.cn/UpFile/20101222141857786. Pdf, 2010.

[19] Turner, James M. “The keyed-hash message authentication code
(HMAC).” Federal Information Processing Standards Publication, vol.

Artificial Intelligence and Sensor Informatics: Exploring Smart City and Construction Business Implications

- 120 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº4

198-1, 2008.
[20] Chari S, Rao J R, Rohatgi P. “Template attacks”, International Workshop

on Cryptographic Hardware and Embedded Systems. Springer, Berlin,
Heidelberg, pp. 13-28, 2002.

[21] O’Shea K, Nash R. “An introduction to convolutional neural networks”,
arXiv preprint arXiv:1511.08458, 2015.

[22] Kocher P C. “Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems”, Annual International Cryptology Conference.
Springer, Berlin, Heidelberg, pp. 104-113, 1996.

[23] Mayer-Sommer R. “Smartly analyzing the simplicity and the power
of simple power analysis on smartcards”, International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, Berlin,
Heidelberg, pp. 78-92, 2002.

[24] Brier E, Clavier C, Olivier F. “Correlation power analysis with a leakage
model”, International workshop on cryptographic hardware and
embedded systems. Springer, Berlin, Heidelberg, pp. 16-29, 2004.

Suying Wang

Suying Wang (1991-), She received her B.S. degree in
Zhejiang University in 2014, and M.S. degree in Royal
institute of Technology in 2016. She currently works at
Open Security Research, Inc. Her main research interests
include Side Channel Analysis and Deep Learning-based
Side Channel Analysis. Email: suying.wang@osr-tech.com

Yong Xiao

Yong Xiao was born in Jingzhou, Hunan, China, in 1978.
He received the Ph.D. degree from Wuhan University. He is
currently a Senior Engineer. His research interests include
intelligent electric power technology and measurement
automation technology.

Shiqi Li

Shiqi Li (1985-), He received the B.S. and M.S. degrees
in Electrical Engineering from Katholieke Universiteit
Leuven, Belgium in 2007 and 2009 respectively. His main
research interests include Side Channel Analysis, Fault
Injection and Cache timing analysis on TEE systems.
He currently works as a senior security researcher in the
Security Laboratory from Open Security Research, Inc. in

Shenzhen, China. Email: shiqi.li@osr-tech.com

Xin Jin

Xin Jin, He received the Master degree from the North
China Electric Power University (NCEPU), Bao Ding,
China, in 2011. He is currently a senior engineer of the
China Southern Power Grid Research Institute and serves
as the director of the Intelligent Measurement and New
Technology Laboratory. His main research areas are power
line carrier communication and wireless communication

technology. Email: jinxin1@csg.cn

