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Abstract

The performance of a solar photovoltaic (PV) panel is examined through determining its internal parameters 
based on single and double diode models. The environmental conditions such as temperature and the level of 
radiation also influence the output characteristics of solar panel. In this research work, the parameters of solar 
PV panel are identified for the first time, as far as the authors know, using hybrid particle swarm optimization 
(PSO) and grey wolf optimizer (WGO) based on experimental datasets of I-V curves. The main advantage of 
hybrid PSOGWO is combining the exploitation ability of the PSO with the exploration ability of the GWO. 
During the optimization process, the main target is minimizing the root mean square error (RMSE) between 
the original experimental data and the estimated data. Three different solar PV modules are considered to 
prove the superiority of the proposed strategy. Three different solar PV panels are used during the evaluation 
of the proposed strategy. A comparison of PSOGWO with other state-of-the-art methods is made. The obtained 
results confirmed that the least RMSE values are achieved using PSOGWO for all case studies compared with 
PSO and GWO optimizers. Almost a perfect agreement between the estimated data and experimental data set 
is achieved by PSOGWO.   
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I. Introduction

THE expanding need for power and the necessity to save the 
environment have led to an increased focus on renewable energy 

resources. Solar energy is addressed as a crucial and promising 
alternative, especially for the electrical power domain, regarding its 
merits in terms of availability and cleanliness. In this context, the 
prevailed tendency is to produce some strategies, aimed at ensuring 
the effectiveness of photovoltaic devices design. The production 
chain's effectiveness for electricity relies upon the reliability of solar 
cells (SCs). For obtaining the maximum output energy, it is mandatory 
to design accurately and with efficacy the photovoltaic (PV) module

Regarding this matter, a prerequisite is to produce a proper 
mathematical model and reliable patterning techniques enabling the 
simulation of the actual behavior of photovoltaic cells or modules. The 
single diode model (SDM) and the double diode model (DDM) have 
been considered as the widely employed mathematical models [1]. 
The PV modeling could prove crucial in achieving an appropriate and 

effective conception for the PV systems. To assess the efficiency of 
the PV models, the process of extracting the PV parameters becomes 
a hard task due to the non-linearity aspect of (I-V) characteristics. To 
overcome this issue, the estimation procedure of these variables for 
both SDM and DDM is addressed as a non-linear optimization problem 
under different operating constraints, aimed to adjust these decision 
variables. 

PV modeling strategies are classified according to either the 
available data (manufacturers, experimental measures) or the 
established method, thus obtaining an accurate PV model. In that 
regard, a variety of approaches are introduced in the literature aimed 
to extract optimal PV cells parameters of such complex design, and 
that provides a significantly improved accuracy. These approaches are 
commonly categorized into three groups: Analytical, numerical, and 
hybrid methods [2]. 

Concerning the traditional methods (analytical methods), the 
identification of PV parameters required elementary functions [3], 
taking into consideration some points of both (I-V) and (P-V) curves, 
which are identified as important. These methods have the advantage 
of being easy to be implemented and having a reduced computational 
cost. An impressive selection of points offers high-quality solutions. 
The main drawback of the analytical techniques is using few 
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assumptions that are made to reduce the number of the unknown 
parameters.  For this purpose, several deterministic and metaheuristics 
methods are examined, aimed to assess the efficacy of such PV devices.

The iterative approaches such as newton-raphson with likehood 
estimator [4], gauss-seidel [5] approaches were applied to solve the 
restrictions of analytical approaches. Deterministic methods are 
designed to estimate the parameters which govern the PV model, and 
they consist of the Levenberg-Marquardt method (LM) [6], Newton-
Raphson method [7] and Conductivity Method (CM) [8]. Furthermore, 
the solutions obtained via these approaches are in heavy dependence 
on the initial conditions of the unknown parameters and easily 
catch the local optimal solution. Such methods are not appropriate 
for parameter extraction of PV models under any environmental 
conditions. In deterministic method [9], the parameters have been 
estimated by considering a large number of actual measured data. 
These methods give a faster response, however, the results accuracy of 
these methods are yet to improve since deterministic methods follow 
gradient-based algorithms which will easily dive into the local optimal 
solution, having more restrictions. Additionally, the precision of these 
approaches is less as the initial solutions are far from the global best 
solutions [10].

For more accurate and reliable solutions, soft computing methods 
are introduced for this purpose, which are based on global optimization 
theory. Based on the literature, there are several metaheuristics 
algorithms which can be categorized into four groups: Evolutionary-
based algorithms; Swarm intelligence-based algorithms; Physics-based 
algorithms and Human-based algorithms. Researches highlighted the 
significance of these methods in parameter extraction of PV SCs such 
as Genetic algorithm (GA) [11], Artificial Bee Colony (ABC) [12] and 
other optimizers [13]-[19].

Some strategies suffer from shortcomings regarding: quality 
of solution (catching the local optimum) and convergence speed; 
computational execution time (execution time is often longer); 
performance under different environmental conditions. Recently, 
hybrid techniques were prevailed in addressing the PV parameter 
extraction issue. Distinct strategies or different optimization techniques 
are incorporated, thus forming a hybrid method. Various researchers 
are focused on the use of hybrid techniques to manage the limitations 
of the previous methods. For example, in [20], the authors introduced 
Levenberg–Marquardt algorithm combined with simulated annealing 
(LMSA) hybrid strategy, which is the result from a combination of LM 
and SA metaheuristic techniques. The hybrid strategy (EHA-NMS) 
[21] is based on the combination of the two swarm methods Eagle 
Strategy (ES), ABC and deterministic NMS (Nelder-Mead simplex) 
technique. 

Authors in [26] proposed a novel hybrid approach based on the 
Pattern Search method and the Firefly algorithm to extract the 
parameters of both SDM and DDM. To validate the effectiveness, this 
new approach was compared with other optimizations algorithms 
used for the parameters extraction process. The proposed strategy 
outperforms the considered studies techniques in terms of quality 
solution and accuracy. 

In that context, the particle swarm optimization method (PSO) is 
considered as the most widely spread metaheuristic (MH) technique 
due to its ease of implementation. Despite that, this technique suffers 
from some shortcomings such as the premature convergence and the 
catching of the local optimum. To avoid these drawbacks, several 
PSO variants are proposed such as the GA-PSO hybrid method [27], 
which is generated by the combination of the GA and PSO algorithms, 
seeking to identify the parameters of the single diode PV modules, this 
hybrid technique performs better than the classical GA metaheuristic. 
Another hybrid technique named Guaranteed Convergence Particle 

Swarm Optimization (GCPSO) was examined in [28]. The objective of 
this technique is to estimate the PV parameters of both SDM and DDM, 
under different functioning conditions. Consequently, the particle 
swarm stagnation and the premature convergence were evaded. Also, 
this strategy has exhibited better performance in terms of accuracy 
and computational time. 

In sum, the process of parameters’ estimation of PV modules has been 
proved as a hard challenge by several literature reviews. This problem 
is reformulated as an optimization problem with constraints, which 
can be managed effectively thanks to such advanced metaheuristics 
methods. Many researchers focus on how to invent new methods, 
which can estimate the unknown parameters of solar cells, with high 
accuracy as well as non-premature convergence of solutions. In this 
paper, the parameters of solar PV panel are identified for the first time, 
as far as the authors know, using hybrid particle swarm optimization 
(PSO) and grey wolf optimizer (WGO) based on experimental datasets 
of I-V curves. The chief benefit of hybrid PSOGWO is combining the 
exploitation ability of the PSO with the exploration ability of the 
GWO. Three different solar PV modules are considered to prove the 
superiority of the proposed strategy. Three different solar PV panels 
are used during the evaluation of the proposed strategy. A comparison 
of PSOGWO with other state-of-the-art methods is made.

II. Modelling of PV Panel

To achieve an effective design of PV systems, a lot of literature 
review works are looking to develop mathematical modeling of solar 
PV modules. The single diode model (SDM) is the most commonly 
used one due to the ease of implementation as well as the compromise 
reached between the accuracy and simplicity. However, to enhance the 
accuracy representation, the double diode model (DDM) appeared and 
is considered for uses, especially under low irradiation.

A. Single Diode Model
Fig. 1 depicts the electrical equivalent model of a single diode of PV 

cells. By applying Kirchhoff’s law, this model is expressed by Eq (1):

 (1)

Where 

Ipv and ID represent the photo-generated current and the diode 
current, respectively.

Rs and Rp indicate the series and shunt resistance.

A current supply Ipv is linked to a parallel diode D with (I-V) 
characteristic curve, which is defined by Shockley in the following 
formula as:

 (2)

The ideality factor of such diode is denoted by n1, selected according 
to the sort of semi-conductor material and the fabrication design.

Vt represents the thermal voltage, which expresses as follows [29]:

 (3) 

K is the Boltzmann constant and it is equal to 1.35*10-23.

T indicates the PV cell temperature, expressed in kelvin.

Ns and q represent the number of PV cell which are connected in 
series and the charge of electron (1.6* 10-19).

The model shown in Fig. 1 is characterized by five variables 
expressed as follows (Ipv, Io1, n1, Rs, Rp), that can be identified by analytic 
or numerical method.
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Fig. 1. Equivalent circuit of single diode model (SDM).

B. Double Diode Model
The electrical equivalent model of a double diode is similar to that 

of the single diode, adding the fact of having two diodes connected in 
parallel to the current generator. This sort of model is able to simulate 
the behavior of PV modules under different irradiation conditions 
[15]. To achieve more accuracy, DDM is highly useful even if the 
number of unknown parameters would be increased. Fig. 2 illustrates 
the equivalent circuit model of the double diode. 

Similarly, the generated current is obtained by applying Kirchhoff’s 
law, and it is described as follows:

 (4)

Where n1 and n2 represent the ideality factor of diode D1 and diode 
D2, respectively.

The diffusion and saturation current values are indicated by Io1 and Io2.
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Fig. 2. Equivalent circuit of double diode model (DDM).

To ensure an efficient modeling of DDM, these parameters (Ipv, Io1, 
Io2, n1, n2, Rs, Rp) shall be determined.

III. Problem Formulation

To build an accurate PV mathematical model, the (I-V) characteristic 
of PV cells is needed. The non-linear aspect of this equation conducts 
to a non-linear mathematical model, governed by several unknown 
variables. Therefore, the estimation process of these parameters α= 
(Ipv, Io1, n1, Rs, Rp) for the SDM and α= (Ipv, Io1, Io2, n1, n2, Rs, Rp) for the 
DDM, is reformulated as a non-linear optimization problem.

To effectively resolve such a hard optimization problem, several 
optimization algorithms were investigated. 

The performance requirements in terms of accuracy identification 
should be achieved through an appropriate design of an objective 
function that shall be minimized. The implementation cost function is 
described by Eq (6), which  adopts the root mean square error criteria.

The difference equation between the detected current Idet and 
the predicted current Ipre, which can be quantified trough several 
performance indexes, is defined as follows: 

 (5)

The appropriate cost function can be provided as: 

 (6)

Where N is the set of empirical detected points (Ii, Vi). 

The predicted current value is obtained by means of Eq. (1) and Eq. 
(4) of the SDM and DDM, as a measure of the detected voltage (Vdet) 
and the estimated variables, respectively.

IV. Hybrid Particle Swarm Optimization and Grey Wolf 
Optimizer

A. Standard Particle Swarm Optimization Algorithm
Particle swarm optimization (PSO) is a metaheuristic algorithm, 

which is initially developed by Kennedy and Eberhart [30]. PSO was 
motivated by social behavior flocks’ birds, which serves as a set of 
design variables. 

The PSO technique uses np particles, randomly distributed in the 
research space initially considered, to find an optimal solution. Each 
particle, representing a candidate solution, is characterized by a 
position and velocity.

The next position of the particle  is obtained from the current 
position  as well as from the new calculated velocity . 

In fact, the next velocity of each agent  is computed as a 
function of its current velocity , the current position , the distance 
to the best personal particle’s performance at iteration t, pbesti and the 
distance to the best particle in the particle’s neighborhood at iteration 
t, gbest.

 (7)   

 (8)

Where W is the inertia factor used to control the influence of 
particle’s velocity on its next move, in order to maintain a balance 
between the exploration and exploitation of the search space.

C1 and C2 are the cognitive and the social coefficient respectively.

rand1 and rand2 are two random variables distributed according to a 
uniform distribution law in the interval [0 1].

The first part of Eq (7) provides the exploration capability of the 
PSO algorithm.

The second part of Eq (7) moves the particle towards the best 
position ever achieved by himself, and the third part of Eq (7) moves 
the particle according to the best position achieved by all the particles 
in the population. 

Further, the PSO method is initialized by an initializing population 
of particles whose velocities are computed using Eq (7). The process 
update of particles’ positions is defined as Eq (8). Finally, PSO will be 
stopped by achieving an end criterion.

B. Grey Wolf Optimizer
Motivated by grey wolves, the metaheuristic  GWO  imitates the 

hunting process and the leadership hierarchy of grey wolves [31]. 
Grey wolves exist at the highest level of the food chain and regarded as 
predators. To make sure that the hunting mechanism performs, greys 
wolves opt to live within the pack. 
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The mathematical model of the hunting mechanism of GWO 
consists of a leader wolf (α group), which represents the best fittest 
solution and a group of followers (β, δ and γ groups) that are trying 
to offer the best location of prey via hunting procedure.

In fact, each hunting mechanism consists of two main components 
parts: tracking and catching the prey, then encircling and attacking the 
prey until the stop of its moving act. 

Over the hunting process, preys have been encircled by the grey 
wolves. The following equations developed in [31] simulate the 
encircling’s behavior: 

 (9)

 (10)

Where t presents the current iteration, Xp and X indicate the 
position of prey and the location of grey wolves, respectively.  

A and C indicate the coefficients vectors, which are computed as 
follows: 

 (11)

 (12)   

r1 and r2  are random numbers, selected within the interval [0 1].

The component “a” shall be decreased in a linear manner starting 
from 2 to 0, over the different iterations.

To discover the prey’s location, alpha wolves seek to lead the 
grey wolves, the other wolves’ groups are needed to ensure that this 
procedure runs perfectly.     

By using this GWO metaheuristic, the best solution is guaranteed 
by the alpha wolves, beta and delta wolves reported the second and 
third-best solutions.

The process update of grey wolves’ position reported in [35] is 
presented as:

 (13)

For each iteration, the best three wolves are represented by Xα, Xβ, 
and Xδ: 

 (14)

In fact, the updated position of the prey is provided by the mean 
of three values of positions assessed as the best solutions, which is 
defined as follows:

 (15)

Attacking prey is considered as the last stage of the GWO method. 
The condition that guarantees this process is formulated as follows: 
enough closing to the prey, when the prey achieves an adequate close 
for values less than 1, grey wolves found themselves in an attack 
position of preys. This algorithm has the advantage to avoid the 
wolves getting catch the local minimum when the GWO approach 
stopped by achieving an end criterion.

C. The Hybrid PSOGWO Algorithm
The significantly referred variant of PSO is denoted PSOGWO. The 

fundamental principle of this hybridization method is to integrate the 
capability of social thinking (gbest) for PSO with the local search ability 
of GWO.

The hybrid PSOGWO method has been examined without making 
changes in the basics operations of the Standard PSO and GWO 
techniques. In this context, the PSO algorithm is considered as the most 
used MH technique due to its simplicity and ease of implementation. 
However, when the PSO algorithm is subjected to some constraints, 
this technique suffers from shortcomings such as catching the local 
minimum. In this regard, to avoid this drawback, GWO is proposed 
to reduce the chance of trapping on the local minimum. In addition, 
this technique has the advantage of preserving a balance between the 
exploitation and exploration mechanisms over the optimizing process. 
The different steps of the hybrid PSOGWO method are illustrated in 
Fig. 3. PSO algorithm ensures that particles are directed to random 
positions with a small chance to prevent the local minimum. These 
directions may have present risks lead to move closer to the local 
minimum instead of the global minimum. Due to its exploration ability, 
the GWO algorithm is considered to avoid these risks by replacing 
these particles by the other ones having improved positions by the 
run of the GWO algorithm. Since the GWO technique is still used as 
a complement to the PSO technique, the time execution is extended. 
However, the successful results and the additional time required are 
taken into account, and the extended execution time can be considered 
as acceptable depending on the nature of the optimization problem 
that shall be resolved.

V. Results and Discussion

To prove the validity of the proposed PSOGWO approach, 
it is applied to determine the parameters of different solar PV 
equivalent circuit models, including the SDM and DDM. Three 
different experimental datasets are adopted. For the first case, an 
experimental standard dataset of a Photowatt-PWP 201.  It contains 
36 polycrystalline silicon cells and operated at 45˚C and 1000 W/m2 
[32]. A four solar cell of STE4/100 is used for the second case study. 
These data are taken from [33]. The test has been performed at 22 
°C under irradiance of 900 W/m2. For the third experimental dataset, 
these data are extracted using FSM solar PV module at a temperature 
of 30 °C. The number of measured voltage and current points is 21. 
The experimental test rig is shown in Fig. 4. More details about the 
monitoring system used for recording the experimental dataset can be 
found [34]. Table I highlights the different specifications of PV panels 
that are considered in this research. 

A. Results of 1st Dataset
Based on the experimental dataset on Photowatt-PWP 201 PV 

module, the proposed strategy of PSOGWO is used to determine the 
optimal parameters of the cell for both SDM and DDM. Table II shows 
the maximum and minimum boundaries of each unknown parameter 
and optimal values of SDM and DDM parameters of Photowatt-PWP 
201 PV module using PSOGWO, ALO-LW [32], PS [35] and GA [36]. 

For SDM, the minimum value of RMSE is achieved by PSOGWO 
strategy. The values of RMSE are 3.06E-03, 1.43E-02, 1.18E-02, and 6.84E-
03 respectively for PSOGWO, ALO-LW, PS, and GA. The coefficient of 
determination is 0.999952 using PSOGWO. This confirms that there 
is an almost perfect agreement between the estimated datasets and 
the experimental data. Fig. 5(a) and (b) show the experimental dataset 
versus the estimated respectively for both SDM and DDM. For the 
DDM, the RMSE and MAE are 2.87E-03 and 2.33E-03, respectively. 

The absolute error against measured PV module voltage for both 
SDM and DDM using different strategies is shown in Fig. 6. For SDM, 
the maximum values for the absolute error are 0.0125, 0.0066, and 
0.006 respectively for GA, PS, and PSOGWO. Whereas the maximum 
absolute error for DDM is 0.0056 using the proposed strategy. This also 
confirms the superiority of PSOGWO compared with other methods.
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International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 150 -

P
V

 m
od

ul
e 

cu
rr

en
t 

(A
)

PV module voltage (V)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Experimental
PSOGWO

18

a) SDM

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Experimental
PSOGWO

18
PV module voltage (V)

P
V

 m
od

ul
e 

cu
rr

en
t 

(I
)

b) DDM
Fig. 5. The experimental dataset versus the estimated for Photowatt-PWP 201 
PV module.

TABLE I. Specifications of Photowatt-PWP 201, STE4/100 and FSM

Parameter
Model of solar PV panel

Photowatt PWP 201 STE4/100 FSM
Number of samples 26 18 21
Test Temperature, C 45 22 30
Test radiation, W/m2 1000 900 na

Short circuit current, A 1.0315 26.4E-3 1.105
Open circuit voltage, V 16.79 2.0 19.02

Current @ MPP, A 12.4929 27.7E-3 0.917
voltage @ MPP, V 0.9255 1.6 14.00
Number of cells 36 4 35

Fig. 7 shows the variation cost function during parameter estimation 
of Photowatt PWP 201 PV panel using PSOGWO strategy for both 
SDM and DDM. For both models, approximately 1000 iterations are 
required to catch the best solution. The best solution values are 3.06E-
03 and 2.87E-03 for SDM and DDM, respectively. 

The results of the whiteness test for Photowatt PWP 201 PV panel 
using PSOGWO strategy are shown in Fig. 8. The main target of this 
test is to ensure that the selected model parameters describe the 
experimental dataset. It is calculated using the residual autocorrelation 
function (RACF) at different time lags. Considering Fig. 8, the RCAF 
values range from -1 to +1.
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Fig. 6. Absolute error against measured PV module voltage for both SDM and 
DDM Photowatt-PWP 201 PV module using different strategies.
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Fig. 7. The variation of cost function during parameter estimation of Photowatt 
PWP 201 PV panel using PSOGWO strategy.

B. Results of 2nd Dataset
Based on the experimental dataset on STE4/100 PV solar module PV 

module, the proposed strategy of PSOGWO is used to determine the 
optimal parameters of the cell for both SDM and DDM. The number 
of I-V points is 22. Table III shows the maximum and minimum 
boundaries of each unknown parameter and optimal values of SDM 
parameters of STE4/100 PV solar module using PSOGWO, GWO, and 
ACT [33]. 

The minimum value of RMSE is achieved by PSOGWO strategy. The 
values of RMSE are 3.0574E-4, 6.0221E-4, and 3.33925E-4, respectively, 
for PSOGWO, GWO, and ACT method. The best coefficient of 
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determination is 0.99828. It is achieved by using PSOGWO. This 
confirms that there is an almost perfect agreement between the 
estimated datasets and the experimental data. Fig. 9 shows the 
experimental dataset versus the estimated respectively for SDM. 

The absolute error against measured PV module voltage for SDM 
using different strategies is shown in Fig. 9. As shown in Fig. 10, the 

maximum values for the absolute error are 7.15E-04, 1.50E-03, and 
1.00E-03, respectively for PSOGWO, GWO, and ACT method. This 
confirms the superiority of PSOGWO compared with GWO and ACT 
method. The variation cost function during parameter estimation of 
STE4/100 PV panel using PSOGWO and GWO strategies for SDM 
is illustrated in Fig. 11. The best solution values are 3.0574E-4 and 
6.0221E-4, respectively, for PSOGWO and GWO strategies.
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Fig. 8. RCAF results of SDM and DDM for Photowatt-PWP 201 PV module using SFS strategy.

TABLE II. Boundaries and Optimal Values of SDM and DDM Parameters of Photowatt-PWP 201 PV Module

Parameter
Boundary     Optimal parameters (SDM)                                                     DDM

Min. Max. PSOGWO ALO-LW [32] PS [35] GA[36] PSOGWO

Isc (A) 0.0 1.5 1.0328 1.03354 1.0313 1.0441 1.0343

Io1 (A) 1.0e-9 1.0e-3 5.736e-06 4.53123E-6 3.1756E-6 3.4360E-6 9.2835e-07

Io2 (A) 1.0e-9 1.0e-3 Na na na na 3.4626e-07

a1 0.0 3.0 1.4074 49.8068 48.2889 48.5862 1.2237

a2 0.0 3.0 Na na na na 1.7401

Rs (Ω) 0.0 5.0 1.1257 1.1246 1.2053 1.1968 1.3398

Rsh (Ω) 0.0 2000 868.165 415.529 714.286 55.55 535.667

RMSE 3.06E-03 1.43E-02 1.18E-02 6.84E-03 2.87E-03

MAE 2.42E-03 1.69E-01 2.27E-03 6.14E-03 2.33E-03

R2 0.999952 na na na 0.999957

TABLE III. Boundaries and Optimal Values of SDM Parameters of STE4/100 PV Solar Module

Boundary Optimal parameters  

parameter Min. Max. PSOGWO GWO ACT [33]

Isc (A) 0.0 1.0 26.419E-3 26.1449E-3 0.024.64E-3

Io1 (A) 1.0E-10 1.0E-5 9.4392E-09 1.00e-08 1.29814E-8

a1 0.0 2.0 1.3369 1.58663 1.0304

Rs (Ω) 0.0 5.0 0.7322 0.001 2.5568

Rsh (Ω) 0.0 5000 2488.087 4900 2184.82

RMSE 3.0574E-4 6.0221E-4 3.33925E-4

MAE 2.13123E-04 3.9455E-4 1.98027E-4

R2 0.99828 0.993328 0.99800
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Fig. 9. The experimental dataset versus the estimated for STE4/100 PV panel.
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Fig. 10. Absolute error against measured PV module voltage of SDM for 
STP4/100 PV panel using different strategies.
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Fig. 11. The variation cost function during parameter estimation of STP4/100 
PV panel using PSOGWO and GWO strategies.

The results of the whiteness test for STE4/100 PV panel using both 
PSOGWO and GWO strategies are shown in Fig. 12. It is very clear 
that the RCAF values range from -1 to +1 for both strategies.

C. Results of 3rd Dataset
Based on the experimental dataset on FSM solar module, the 

proposed strategy of PSOGWO is used to determine the optimal 
parameters of the cell for both SDM and DDM. Table IV shows the 
maximum and minimum boundaries of each unknown parameter and 
optimal values of SDM and DDM parameters of FSM PV solar module 
using PSOGWO and GWO strategies.
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Fig. 12. RCAF results for STE4/100 PV panel using PSOGWO and GWO strategies.

TABLE IV. Boundaries and Optimal Values of SDM and DDM Parameters of FSM PV Module Using PSOGWO and GWO Strategies

Parameter
Boundary Optimal parameters

Min. Max. SDM DDM
PSOGWO GWO PSOGWO GWO

Isc (A) 0 2 1.1132 1.1315 1.11027 1.12253
Io1 (A) 1.0E-8 1.0E-3 1.012E-04 1.819E-04 5.40E-09 1.07E-06
Io2 (A) 1.0E-8 1.0E-3 na na 1.02E-04 1.081E-03

a1 0.0 3.0 2.232 2.275 1.8583 2.9803
a2 0.0 3.0 na na 2.23125 2.9917

Rs (Ω) 0.0 5.0 1.3357 2.211 1.36741 0.9787
Rsh (Ω) 0.0 5000 1430.439 4980.36 3918.684 4907.89
RMSE 9.14E-03 2.99E-02 8.97E-03 2.52E-02
MAE 7.63E-03 2.12E-02 7.38E-03 1.95E-02

R2 0.9991 0.9901 0.9991 0.9929



Regular Issue

- 153 -

The minimum value of RMSE is achieved by PSOGWO strategy. 
For SDM, the values of RMSE are 7.63E-03 and 2.12E-02, respectively, 
for PSOGWO and GWO. Whereas, for DDM, the values of RMSE are 
7.38E-03 and 1.95E-02 respectively for PSOGWO and GWO. The best 
coefficient of determination is 0.9991. It is achieved by using PSOGWO 
for both SDM and DDM. This confirms that there is an almost perfect 
agreement between the estimated datasets and the experimental 
data. Fig. 13 shows the experimental dataset versus the estimated, 
respectively, for both SDM and DDM. 

The absolute error against measured PV module voltage for both 
SDM and DDM using PSOGWO and GWO strategies is shown in 
Fig. 14. For the SDM, the maximum values for the absolute error are 

0.0162 and 0.1035, respectively, for PSOGWO and GWO. Whereas 
for the DDM, the maximum values for the absolute error are 0.0168 
and 0.0764, respectively, for PSOGWO and GWO. This confirms the 
superiority of PSOGWO compared with GWO. 

The variation of cost function during parameter estimation of FSM 
PV panel using PSOGWO and GWO strategies for both SDM and 
DDM is illustrated in Fig. 15. For the SDM, the best solution values are 
9.14E-03 and 2.99E-02 respectively for PSOGWO and GWO strategies. 
Whereas for DDM as shown in Fig. 15(b), the best solution values are 
8.97E-03 and 2.52E-02, respectively, for PSOGWO and GWO strategies. 
This confirms the superiority of PSOGWO compared with GWO for 
both SDM and DDM.
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Fig. 14. Absolute error against measured PV module voltage for both SDM and DDM for FSM PV module using PSOGWO and GWO strategies.
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C
os

t 
fu

nc
ti

on
 (R

M
SE

)

0.01

0.02

0.03

0.06
0.05

0.04

0.07
0.08

PSOGWOSDM
GWO

PSOGWO
GWO

C
os

t 
fu

nc
ti

on
 (R

M
SE

)

Iteration

10-2

10-1

0

DDM

100 200 300 400 500 600 700 800
Iteration

200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 15. The variation cost function during parameter estimation of FSM PV module using SFS strategy.



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 154 -

The results of the whiteness test for STE4/100 PV panel using both 
PSOGWO and GWO strategies are shown in Fig. 16. It is very clear 
that the RCAF values range from -1 to +1 for both strategies.

VI. Conclusion

Application of a hybrid particle swarm optimization (PSO) and grey 
wolf optimizer (WGO) in determining the optimal internal parameters 
of single-diode and double-diode models of a solar photovoltaic panel 
is presented for the first time in this paper, as far as the author know. 
Based on the experimental datasets of voltage-current curves, these 
internal parameters are determined. Three different PV panels are 
used to validate the propped strategy. The root mean square error, 
mean absolute error, and coefficient of determination are used as 
benchmark criteria for the comparison with other methods. For 
example, with the first dataset, in the case of SDM, the minimum 
value of RMSE is achieved by PSOGWO strategy. The values of 
RMSE are 3.06E-03, 1.43E-02, 1.18E-02, and 6.84E-03 respectively for 
PSOGWO, ALO-LW, PS, and GA. The coefficient of determination is 
0.999952 using PSOGWO. This confirms that there is an almost perfect 
agreement between the estimated datasets and the experimental data. 
For all considered cases, the obtained results confirmed the superiority 
of PSOGWO compared with other methods.
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