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Abstract

Technological advancement in communication leading to 5G, motivates everyone to get connected to the internet 
including ‘Devices’, a technology named Web of Things (WoT). The community benefits from this large-scale 
network which allows monitoring and controlling of physical devices. But many times, it costs the security as 
MALicious softWARE (MalWare) developers try to invade the network, as for them, these devices are like a ‘backdoor’ 
providing them easy ‘entry’. To stop invaders from entering the network, identifying malware and its variants 
is of great significance for cyberspace. Traditional methods of malware detection like static and dynamic ones, 
detect the malware but lack against new techniques used by malware developers like obfuscation, polymorphism 
and encryption. A machine learning approach to detect malware, where the classifier is trained with handcrafted 
features, is not potent against these techniques and asks for efforts to put in for the feature engineering. The paper 
proposes a malware classification using a visualization methodology wherein the disassembled malware code is 
transformed into grey images. It presents the efficacy of Granulometry texture analysis technique for improving 
malware classification. Furthermore, a Semi Eager (SemiE) classifier, which is a combination of eager learning and 
lazy learning technique, is used to get robust classification of malware families. The outcome of the experiment is 
promising since the proposed technique requires less training time to learn the semantics of higher-level malicious 
behaviours. Identifying the malware (testing phase) is also done faster. A benchmark database like malimg and 
Microsoft Malware Classification challenge (BIG-2015) has been utilized to analyse the performance of the system. 
An overall average classification accuracy of 99.03 and 99.11% is achieved, respectively.
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I. Introduction

Malicious software is baleful to all the devices connected to an 
internet, irrespective of the platform i.e., windows on laptop 

or android in a mobile. Presently android applications are growing 
exponentially to the scale of approximately 5 million apps in Google 
play as of May 2021 surpassing 2.99 million in the year 20201. In 
parallel, malicious apps are also increasingly creating threats to mobile 
based financial transactions, taking control over mobile cameras, 
and misusing the same. According to the survey done by AV-TEST 
institute, there are approximately 1214.76 million malicious apps in 
the year 2021. Everyday AV-TEST registers approximately 350,000 new 

1  https://www.statista.com/statistics/266210/number-of-available-applications 
-in-the-google-play-store/

malicious apps and potentially unwanted applications2. To cope with 
the security threats various techniques for malware detection have 
been proposed by the researchers. It has been found that Machine 
Learning (ML) based detection technique is one of the efficient 
methods to opt for Malware Detection System (MDS). ML based MDS 
is comprehensive, detects malware accurately and less dependency 
on human experts which is normally required in traditional MD 
techniques. Thus, ML techniques are found to be more suitable for 
present scenarios where malicious software is increasing day by day.

Traditionally, the ML technique is feature vector based in which 
important characteristics of malware are extricated and used for 
identifying the same in a real time system. Static and dynamic are the 
two primary feature sources which describe malware characteristics. 

2  https://www.av-test.org/en/statistics/malware/
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Both the analysis techniques can be applied to various kinds of 
executable files like PE, ELF, DEX etc., of different processors and 
operating systems (OS) such as Microsoft Windows, Linux, Android, etc.

The Static Analysis (SA) of malware software is done without the 
code being executed [1]. In SA, features are extracted after unpacking 
the executable in advance. Examples of static features are, OPCODE 
(Operation CODE) frequency distribution, control or data flow graph, 
syntactic library call, byte-sequence n-grams, string signature etc. 
Static features can be extracted from an image, sound, native code, 
and byte code.

In Dynamic Analysis (DA) run time behavior of malware executable 
is monitored. Due to this code is executed by using controlled 
environments like sandbox, emulator, simulator, virtual machine, etc. 
Dynamic features are extracted from sensitive function calls, variable 
value tracking, code execution path, log records and other behavior of 
the code when the same is being executed. Normally, analysis of the 
code is done by different tools like Process monitor (.pmon), Capture 
Bat, poison IVY, etc. The report generated from the tool is extensive 
and in depth, requiring human interpretation. Automated analysis of 
the report can be achieved but with huge computational complexities. 
Therefore, it is time consuming [2].

SA is preferred due to reliable detection efficiency, full code 
coverage, unperceived by malware code and simplicity to generate 
generic fingerprint of the malware code. In MDS one can extract 
SA features which will be input to machine learning algorithms 
for training the system. But due to the introduction of Deep Neural 
Network (DNN) architecture, huge amounts of data, maybe a vector 
matrix or an image, can be given as an input for training the network. 
The next section discusses MDS approach based on an image.

A. Visual Analytic Technique to Solve Challenges in MDS
The malware executable is a binary file, and it can be represented 

as strings of ones and zeros. A string being an array of hexadecimal 
values can be reshaped in matrix form and can be viewed as a grayscale 
image. The technique is Visual Analytic Techniques (VAT) and thus, 
MD can be put into an image recognition problem. VAT is mostly used 
for documents where the files are huge and for image analysis where 
the data is massive. Therefore, the technique is suitable to be used for 
computer security, as malware attacks are almost always in thousands 
at any given time.

There are four motivational factors to select VAT. Firstly, the image 
classification techniques are mature and furthermore it is faster [3]. 
The second point deals with the mindset of a malware developer. They 
work hard to hide the code and simultaneously come up with variants of 
malware; normally they just utilize the old code. Meghna Dhalaria et al. 
[4] use a robust set of features from static and dynamic malware analysis 
for creating two datasets i.e., binary, and multiclass (family) classification 
datasets. In such conditions, for a single malware family, the deviation 
between two or more gray scale images will be very less which opens 
a huge number of algorithms based on Similarity Mining Machine 
Learning (SMML). Thirdly, neither disassembly nor code execution is 
required for classification based on visualization. Finally, VAT for MD 
does not require code analysis and it is resilient to obfuscation techniques 
like polymorphism, packing and section encryption. Samples of malware 
images are given in Fig. 4. From the images we can conclude that the 
texture of images of malware families is different. So, texture-based 
analysis will be a more suitable solution for MD. The next section 
describes a texture-based approach which is explored in this paper.

B. Granulometry Based Texture Analysis of a Gray Scale 
Malware Image

Granularity is the random optical texture of an image. In an image, 
pixels are considered as ‘Grains’. Extracting spatial features such as 

shape and size from the image is more complex as compared to extracting 
textural features which does not require any type of segmentation. 
Researchers have proved that classification accuracy significantly 
increases if only textural information of an image is taken into 
consideration. Texture analysis methods are grey level co-occurrence 
matrix (GLCM), Markov random fields, Laplace filters, discrete wavelet 
transformation, fractal analysis and GRanulometric Analysis (GRA).

GRA is lesser known, but its significance was proved by Kupidura [5] 
and Skullmowska [6]. Morphological closing and opening operations 
as well as measuring the difference between successive images is the 
base of GRA. This characteristic permits the quantification of different 
size particles in an image [7]. Haas et al. [8] introduced this technique. 
Dougherty et al. [9] introduced methods of local analysis which allows 
assignment of texture values to individual pixels. This feature motivated 
researchers to use this technique for satellite image analysis. On the 
similar line we used GRA because in the gray scale malware image, 
each and every pixel is a malware code byte which is important for 
the malware family analysis. Thus, GRA provides pixel level analysis.

To the best of our knowledge GRA has not been used till date for 
analyzing malware images therefore motivating us to work on the 
same. In ML, feature extraction block and classifier block, both are of 
utmost importance. Therefore, after finalizing the textural feature for 
the proposed work the next part describes the classifier used for MDS.

C. Semi Eager (SemiE) Classifier
The task of the classifier is to accurately predict a malware family 

group of the malware input captured by the system. The learning 
process is the base of the classifier. Lazy and Eager learning are two 
types of techniques used in machine learning.

Conditional Random Field (CRF), Support Vector Machine (SVM) 
and Artificial Neural Network (ANN) are Eager Learning (EL) 
algorithms. The disadvantages of EL are as follows. The first is the 
high training time cost e.g., training time for SVM is O(n3), where n 
is the number of training instances. The second is the drifting and 
information loss, leading to over fitting or under fitting risk. The 
reason is that it computes global models after analyzing prediction 
query. Finally, there is impact of global distribution on full dataset 
instead of local behavior of unpredicted targets.

Lazy Learning (LL) or delayed learning is instance based where it 
memorizes present training examples and waits for the new instance 
to occur. Thus, in this method instead of estimating the entire instance 
space it estimates only the different and local instances. Locally Weighted 
Regression (LWR) and KNN calculate distance to each training example 
for predicting new instances, thus it follows LL approach. A. Zakai et al. 
[10] put forth that for the convergence of ML models, local behavior is 
important. LL can commit a plentiful set of hypotheses. The drawback 
of LL is, despite no training overhead, prediction time complexity is 
more i.e., O(n), where n is the number of training examples. The SemiE 
learning algorithm overcomes the disadvantages of both the training 
techniques without any compromise of the advantages.

This paper proposes a GRASP MDS architecture consisting of a 
SemiE learning network for accurate detection and classification of 
malware families making use of image-based approaches. A benchmark 
database from Kaggle and malimg is utilized to assess the performance 
of the system. Features will be extracted from the greyscale image of 
different malware families and will be trained using SemiE learning.

The primary contribution of the research work is as follows:

1. To provide critical overview of related work based on VAT (image-
based).

2. To introduce and extract texture-based feature i.e., GRanulometric 
Analysis (GRA).

3. To compute Similarity based statistical parameters.
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4. Consideration of prominent static features e.g., string signature, 
byte-sequence, N-grams, OPCODE.

5. To introduce and apply SemiE based classifier.

6. To integrate feature and classifier to present proposed GRASE 
model which combines texture-based analysis with SemiE 
classifier for MD.

The above specified combination i.e., granulometric analysis with 
SemiE classifier, to the best of our knowledge, has not been assessed 
by the researchers.

This part provides the structured organization of the paper. Section 
II describes related work to the paper topic as well as GRA techniques 
used by other researchers in different domains. It also introduces the 
SemiE classifier. The section also explores varieties of techniques 
proposed by researchers which will help in formulating the problem 
statement. In Section III GRASE, the model of the proposed work, has 
been presented. Feature vector formation of granulometry feature 
and SemiE classifier mathematical model is described in this section. 
Section IV provides details about the experimental setup. Section 
V elaborates experimental results. The system performance of the 
proposed model is presented in Section VI. The overall conclusion is 
presented in Section VII.

II. Related Work

This section discusses various features and classification methods 
investigated by researchers in image-based techniques. It also describes 
the use of GRA for varieties of applications.

A. Image Based Method
Key benefits of representing malware executable as a 2D image 

are as follows. Firstly, once the similarity space has been formed, the 
data dimension does not affect processing. Secondly, it forms equally 
important clusters and finally, for the clear visualization one can 
display the similar clusters adjacent to each other [11] - [13].

Malware analysis using VAT with implementation of Self-
Organizing Map (SOM) algorithm was proposed by Yoo [14]. S. Foresti 
[15] demonstrated usage of VAT to represent information like time 
(‘when’), IP address (‘where’), Data (‘what’) and estimated distances to 
other hosts. The first effort in the direction of visualization technique 
to visualize binary files for malware detection was done in 2008 [16]. 
Quist et al. used Ether Hypervisor framework to track and visually 
represent overall program flow by performing DA [17]. They named 
the DA framework VERA. Brute Force attack on Secure Shell (SSH) 
was identified using the VAT by Shiravi et al. [18] and N. Diakopoulos 
et al. [19]. They represented details of User IDs, Internet Protocol (IP) 
addresses and various anomalies with the help of different colours. 
Thus, large network packets were displayed using VAT with which 
security analysts were able to identify the minuscule details with 
the help of zoom option. Trinius et al. [20] proposed a novel concept 
of Malware Instruction SeT (MIST) for monitoring malware. They 
proposed the use of CW Sandbox for collecting information regarding 
performed actions and API calls. They used VAT to represent distance 
matrices of the features for the five malwares.

Further improvement in malware detection was observed when 
researchers started presenting binary executable sections as grayscale 
images. These images were used to present detailed structure of 
malware and even capable of showing small changes in the code. L. 
Nataraj et al. [21] put forth that the texture of a grey scale malware 
image can be used to identify similar patterns of the binary code.

Conti et al. [22] presented ‘Byte view’ visualization where each 
byte corresponds to a ‘single’ pixel of an image. The idea is feasible 
as image pixel and code byte value has the same range i.e., 00 to FF 

hexadecimal corresponding to different levels of gray scale. So, if the 
base malware code sequence is the same then it will produce similar 
images. They also introduced ‘Dot Plot’ visualization for comparing 
two images. This presentation helps to identify the presence of similar 
byte sequences. L. Nataraj et al. [21] visually observed that malware 
grey scale images were distinct for the different malware families and 
there was similarity in images for single malware families. Therefore, 
they extracted image texture-based features (GIST) and used KNN 
classifiers to classify different malware families. They achieved good 
average accuracy along with increased speed of malware detection. On 
a similar line Kancherla et al. [23] used byte plot (image of executable) 
and achieved 95% accuracy using SVM classifier. Vasanet. al. [24] 
classified malware images using Convolutional Neural Network 
(CNN) and Narayan et. al. [25] used Deep Neural Network (DNN).

To detect Trojan, Tian et al. [26] proposed Function Length 
Frequency (FLF) algorithm. Variable Length Instruction Sequences 
(VLIS) with ML for malware detection was proposed by Zolkipli [27]. 
Static Analyzer for Vicious Executable (SAVE) and Disassembled 
Code (MEDiC) were the two models suggested by Shankarapani et 
al. [28] for malware detection. The techniques were robust to code 
obfuscation; thus, results were promising.

Kong et al. [29] used L1 regularized technique to select the best 
feature from the set of features like PE header, disassembly code and 
n-gram. They evaluated system performance by using varieties of 
classifiers like KNN, SVM, Naïve Bayes (NB) and decision tree. They 
also figured out that PE header features are more prominent in MD.

Santos et al. [30] worked specifically on OPCODE. They tried to 
relate each OPCODE and calculated OPCODE sequence frequency. 
They used the same four classifiers used by Kong [29] to evaluate 
system performance.

Based on the work done by Trinius [20], shaid et al., [98] proposed 
DA based MDS by observing behavior of malware. They collected 
behavioral patterns for the operating system resources and API call 
sequences; and presented the same using color map. They found 
similarities between these color images using statistical methods. But 
collecting behavioral patterns is time consuming. K. han et al. [31] 
proposed hybrid MDS which extracts API calls and OPCODE sequences 
only. Image matrices were prepared from OPCODE sequences and 
further given to the classifier for the training purpose. Execution 
traces were extracted dynamically to avoid binary transformation 
strategies. However, the method was good for the small-scale MD.

For large-scale malware detection, researchers focused on similarity. 
According to [32]-[33] similarity should be calculated between all 
the pairs of points based on Euclidean distance. Maximum similarity 
corresponds to minimum distance. Normally, similarity patterns can be 
checked using 2D VAT like projection and semantic orientation [34]-
[36]. Windows PE binary file was converted to grayscale image by Han 
et al. [20]. They calculated entropy of each and every row of an image 
using the Entropy Graph Generator (EGG). MD was performed based 
on similarity of the present file with the original binary file. Arefkhaniet 
et al. [37] proposed an image processing technique i.e., Local Sensitive 
Hashing for classifying similar malware images having high probability. 
Grey scale image was prepared by disassembling binary executable into 
OPCODE sequences [38]. They first reduced dimensionality using PCA 
and then used KNN to classify the malware images.

S. Rezaei [39] used similarity measurements by comparing 
OPCODE strings of malware files and tried to reduce detection 
time. Colored based VAT for analyzing malware attack chronology 
was used by Venkatraman [40], Zhang [41] and Wylie Shanks [42]. 
Successful system connection was demonstrated by them. J. Zhang 
et al. [9] extracted local texture features of grayscale image as well 
as OPCODE instructions of disassembly file, to train Random Forest 
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(RF) classification model. Shiqui et al. [43] extracted two features i.e., 
texture of malicious code and the frequency of instructions in the 
code. These features were used to train SoftMax classifiers and stacked 
auto encoders. Liu et al. [44] proposed enhancement of information 
density of malware images, where the ‘.text” section of malware code 
is visualized. To improve accuracy Wuechner et al. [45] proposed MDS 
based on data compression mining on the data flow graph.

The overall extract from the above discussion is that the malware 
grey scale image analysis is not affected by code obfuscation, therefore 
opted by many researchers. In addition to that, texture is an important 
parameter for the grey scale image which can be used to find out 
similarity between malware images.

The next section provides related work done in Granulometry 
analysis and shows that the technique is versatile to image processing.

B. Granulometry Analysis 
GRA concept was introduced in section I.B. This technique 

covers spatial as well as spectral characteristics of the malware grey 
scale image. GRA accuracy for classifying satellite images has been 
demonstrated by Kupidura et al. [5]. Basic GRA technique is based on 
morphological opening and closing. Extension of basic GRA is with a 
Multiple Structuring Element (MSE). Basic GRA and GRA with MSE 
have slightly different properties. So, it can give different results. GRA 
is also used to find the distribution of object sizes of an image [46]. We 
are proposing extraction of black patches from the grey scale image 
using successive closings by reconstruction.

GRA profiles (morphological profiles) can be used for image 
classification [47]. Thus, the technique is useful for malware family 
identification. Our main objective is to analyze the retrospective 
changes of the malware grey images for the family.

Average grain radius = 125.9297 micron

(a) Colour map of GRA (Kaggle dataset) (b) Grain size frequency plot (Kaggle dataset)

(c) Malimg dataset - Adialer.C malware GRA [48] (d) Malimg dataset - Dontovo. A malware GRA [48]

Equivalent Grain Radius (micron)

R
el

at
iv

e 
Fr

eq
ue

nc
y

100
0

0.05

0.1

0.15

0.2

0.25

0.3

200 300 400

100
1000.4

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
1.8

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

20
X-coordinate (Âμm) 

X-coordinate (Âμm) 

G
ra

in
 s

iz
e,

 d
 -0

.5
 (Â

μm
-0

.5
)

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

G
ra

in
 s

iz
e,

 d
 -0

.5
 (Â

μm
-0

.5
)

G
ra

in
 s

iz
e,

 d
 -0

.5
 (Â

μm
-0

.5
)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

G
ra

in
 s

iz
e,

 d
 -0

.5
 (Â

μm
-0

.5
)

Y-
co

or
di

na
te

 (Â
μm

)

Y-
co

or
di

na
te

 (Â
μm

)

Grain size, d -0.5 (Âμm-0.5)

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

Grain size, d -0.5 (Âμm-0.5)

30 40

10

0

20

30

40

50

20

10

0

Fig. 1. GRA output for Kaggle Malware Family.
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As GRA technique is relatively unknown, we are presenting two 
advantages of the system. The first advantage is multi-scality which is 
more suitable for malware detection. In this, we can obtain information 
about the texture grains of different sizes because of the possibility 
of successive application of increasing size of morphological opening 
and closing operations. Secondly, it is resistant to edge effects. In a 
typical texture analysis process, these edges have low texture, but still, 
it will provide high value of texture. This is due to the fact that those 
methods are based on spatial frequency analysis and imagery edges 
have high spatial frequency, resulting in high texture.

But as GRA is not based on this principle, it analyses value and 
number of the removed image elements, resulting in normal texture 
value of the edges in an image. Thus, the GRA seems to be more 
suitable for the MDS. Fig. 1 depicts granulometry output for one 
malware family from the Kaggle dataset and two malware families 
from the Malimg dataset. It shows a colour map for the different grain 
sizes. It also represents the relative frequency of different grain sizes 
present in an image. The grain size is measured using a point-sampled 
intercept length method. Related information is elaborated in section 
– III.A The next section introduces the main block of ML i.e., classifier.

C. Classifier
This section covers the classifier used by researchers for malware 

detection. Feature extractions and classification techniques are two 
basic blocks of MDS. API calls, system calls, n-gram and OPCODE are 
features that are still being used extensively in MDS. Work carried on 
by researchers implementing any approach is unique and makes use of 
different types of bytes and features related to hex. In addition to that 
we are also introducing a GRA feature. Thus, feature vectors extracted 
from the malware grey scale image have to be trained using the SemiE 
network. After training the SemiE model, system performance is 
evaluated by applying real time malware data. The next part elaborates 
upon the selection of SemiE.

The role of the classifier is crucial as it lays the groundwork for 
precision and accuracy. A research problem must cover the core subject 
matter and at the same time it must lead to hitherto undiscovered 
knowledge. This goal entails not only an extensive literature survey, 
but also mandates interpreting the surveyed information accurately 
to attain an appropriate research path. To make it more feasible to 
extract the requisite data, we have included graphical presentations 
(Refer Fig. 2).

The learning process is either Eager learning or Lazy learning 
(instance based). Key extract from the survey is both the techniques 
are at par. But the advancement in the Neural Network (NN) technique 
led to Deep Neural Network (DNN), which has opened up different 
segments altogether. But the major drawback of DNN is that the 
network is data hungry. This was the motivational factor where we 
thought of combining the advantages of lazy and eager and introduced 
Semi Eager learning. SemiE will reduce testing and training time, 
which is needed for malware detection methods, as it has to run in 
real time even as it detects malware in the fastest ways possible. 
This motivates us to choose the SemiE method with considerably 
low computational overhead and yet this technique has not yet been 
investigated for detection of malware. The next section elaborates the 
proposed model of GRASE.

III. Proposed Model: GRASE- GRanulometry Analysis 
With Semi Eager Classifier to Detect Malware

Fig. 3 shows the architecture of the GRASE model. The first step 
is to provide input to the model which is a malware file. There are 
three basic analysis techniques like SA, DA and hybrid, explored by 
researchers.  While the SA method is the choice of many researchers, 
the hybrid technique is not so popular with them. 

In step two, Malware Binary File (MBF) is read and features are 
extracted. The first feature set is SA based which has HEX dump-based 
features and disassembled file features. These features are common 
and must be used for malware prediction, therefore the same has been 
just specified and focus is given on the proposed technique. 

The HEX dump-based features are n-gram, Meta-data (MD1), 
entropy [92] [93], Haralick and Local Binary Pattern (LBP) features. 
The disassembled file features are Meta-Data (MD2), symbol (SYM) 
[94], Register (REG) [97], Operation Code (OPCODE) [53], [95]-[96], 
DP and Section (SEC). Miscellaneous (MISC) feature should be done 
manually with the identification of keywords from the disassembled 
code. The Interactive Disassembler (IDA) tool can also be utilized 
for this purpose. Types of features that are extracted are number 
of imported DLLs, identifying strings viz. hkey_local_machine (it 
specifies access to specific paths of Windows registry), number of 
blocks in PE, etc. Hence, it is dependent on how experienced the MD 
software development engineer is.

Malware Detection

Classification of Malware Data

Lazy Learning Eager Learning

Decision Tree
[42], [49], [50], [51], [52], [53], [54], [55], [56]

Random Forest 
[57], [58], [59], [45], [50], [60], [51], [61]

Logistic Model Tree 
[62], [63], [64], [65]

KNN [66], [67], [57], [68], [54], [55], [69]

K-Means Clustering [70]

K-Medoids [71]

Bayesian Network [72], [74]

Gradient Boosting Decision Tree [63], [73]

Naive Bayes [63],[45], [50], [54], [56],[16]

Lazy Learning  

Clustering with locality sensitive hashing  

 [75], [76], [77]

Clustering with Distance and Similarity 
Metrics Euclidean [67], [50]

Hamming/cosine distances [67], [78]

Jaccard similarities [78]

Density-based Spatial Clustering of 
Applications with Noise [79]

Hierarchical Clustering [67], [80], [81]

Self-Organizing Maps [82]

Bayes classifier [45], [53]

Eager Learning

Rule-based

[83], [84], [85], [51], [86], [26], [16]

Prototype-based Classification [81]

Multilayer Perceptron Neural Network [68]

SVM

[57], [84], [58], [87], [67], [63], [45], [50], [60], [51], 
[68], [74], [88], [54], [56]

ANN [102], [73]

Learning with Local and Global Consistency is 
used in [89]

While Belief Propagation [66], [90], [76]

Multiple Kernel Learning [91]

Fig. 2. Classifier based Literature Survey.



Regular Issue

- 125 -

Very few malware programs make use of the packing technique 
and hence they do not use API calls.  Instead, they contain a few 
OPCODEs. Generally, such programs use assembler related directives 
like Define Byte (db), Define Word (dw) and Define Double Word (dd). 
This feature plays a significant role in the classification of the varieties 
of malware families.

In step three, to extract GRanulometry features as well as Image 
Similarity based Statistical Parameter (ISSP), MBF is represented as a 
grayscale image. ISSP based features are Normalized Cross correlation 
(NCC), Average difference (AD), Maximum difference (MaxD), 
Singular Structural Similarity Index Module (SSIM), Laplacian Mean 
Square Error (LMSE), MSE and PSNR. 

Sections III.A, III.B, III.C and III.D describe the proposed model 
shown in Fig. 3. 

Malware file - InputStep 1

Read Malware binary file dataStep 2

Step 3

Step 4

Step 5

Step 6

Feature extraction

MD Image MISC

DP Entropy Symbol SEC

HEX
features

Disassembled
file features

Im
ages

Granulometry
feature

Feature Integration - Fine tune dimension

SemiEager classifier

Classified Output

Image Similarity based
Statistical Parameter (ISSP)

Training data
set (learning)

Trained
library

Fig. 3. Architecture Diagram: GRASE Model.

A. GRanulometry Analysis (GRA)
Step four is to generate granulometric profiles for each image 

pixel. GRA is based on the sequence of morphological opening and 
closing operations which are applied to gray scale image using set 
of known size and shape called the Structuring Element (SE). SE size 
is based on the pattern or a structure one would like to extract from 
the image. SE is normally a disk of size λ. In the process of closing by 
reconstruction, using SE will erase the dark spots of size less than λ 
during dilation process. Erased dark spots will not be recovered with 
multiple reconstructions, resulting in extraction of image structure 
having different sizes. Equation (1) represents granulometry density 
which describes the size of the image structures. 

 (1)

where, ∅λ (I) = Closing by reconstruction,  λ −  Radius of disk (integer 
value).

The operations are performed pixel wise. Granulometry profile 
may be written as 

where, n = Granulometrylevels. This parameter is configurable.

GRA is used to measure the difference between two images by 
measuring the quantity of particles having different sizes by calculating 
Volume Weighted Average Grain Size (VWAGS). Refer Equation (2).

 (2)

Where, VI is total image size, Vj is the volume of grains corresponding to 
the grain size Gj.

VWAGS will always be larger than the average grain size as per Eq. 

(1). It has been observed that VWAGS is able to capture the influence 
of grain size distribution [48]. 

Researches have used this technique to analyse satellite images. As 
in satellite images each pixel (granule) is important, on similar lines 
in malware image analysis each pixel carries important information 
of malware property. GRA can also be based on Multiple Structure 
Element (MSE). There are two main advantages of GRA. Firstly, 
it has a property of multi-scalability. Due to a greater number of 
morphological operations the information obtained will have texture 
grains of varieties of sizes. 

Secondly, the analysis is resistant to edge effect. Edge effect is 
observed in fairly all texture analysis techniques where edges of the 
object normally have low texture, but it will get high value. This effect 
is observed as texture analysis methods are based on spatial frequency 
analysis and normally edges have a high spatial frequency, exhibiting 
high texture. GRA is not based on this fundamental as analysis is based 
on value and number of removed image elements and therefore edges 
are not displayed as areas of high texture. This property will help 
analyze malware images more accurately.

B. ISSP
Step five focuses on the similarity between two images.  A 

comparison of malware images from the ‘x’ family with themselves 
and the rest of the families is undertaken, and a similarity parameter 
matrix is computed based on this. There are two input images, 
namely, Reference image (RI) and Input image (II). If RI is from the 
‘x’ family then II represents the rest of the images from the ‘x’ family 
and the images from the other families.  During the entire process of 
computing the similarity parameters, RI will remain constant. Since 
the number of images for every family is in the thousands their mean 
value will be computed [2].

The NCC method is utilized fortemplate matching. This is a 
procedure utilized for finding incidences of a pattern or object within 
an image. Eq.  (3), is used to calculate NCC.

 (3)

where, 

AD provides the average [2] of change regarding the input image 
and the reference image. AD can be represented as follows:

 (4)

MaxD provides the maximum of the error signal (i.e., the difference 
between the processed and reference image). MaxD is defined as 
follows:

 (5)

SSIM is based on three factors [2], namely,luminance, contrast, and 
structure in order to be more in line with the workings of the human 
visual system. It is a perceptual metric that quantifies image quality 
degradation.  This parameter is chosen as the malware developer 
alters the old code and comes up with the modified code. The modified 
code can be deemed to be the ‘Noise’ element in an image. SSIM is 
defined as follows:

 (6)

where l = luminance, c = contrast, s = structure

The Laplacian error map [2] shows spatial error distribution across 
an image. The overall image quality is given by LMSE as follows:

 (7)
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where L((m,  n)) is the Laplacian operator

NAE measures [2] the numerical variance between the RI and II . 
Additionally, the results that are closer to zero indicate that the image 
is highly similar to the original image and the results close to the value 
one mean that the quality of the image is very poor. NAE is calculated 
as follows: 

 (8)

MSE and PSNR are used to compare the quality of image compression 
[2]. MSE represents the cumulative squared error between the RI and 
II , whereas the PSNR represents a measure of the peak error. The lower 
the value of the MSE, the lower the error.

 (9)

 (10)

Once the ISSP has been computed, one more feature vector is 
generated which will be utilized to train the classifier.

To compute various statistical parameters, to begin with, all the 
malware families were segregated into different folders for the Kaggle 
dataset. There are 9 malware families in the Kaggle dataset so 9 folders 
were created. Grey images were produced after processing malware 
files. These images will be used to compute ISSP parameters. Malimg 
dataset is already organized and has grey scale images so it is ready 
to act as an input to the following algorithm. Table I presents the 
algorithm.

C. SemiE Classification Module
Finally step six corresponds to a SemiE classifier, whose 

mathematical model is explained here. In the training process, SemiE 
stores only the Centre Point for each class. SemiE training time 
complexity is O(n), where n is the number of training instances. O(k) 
is the prediction complexity of space and time, where k represents the 
number of categories.

1. SemiE algorithm

Let’s say, X = Input space. 

It has set of n dimension vector, X ⊂ Rn.

Y = Output space.

It has set of class labels {c1,  c2, … … …,  ck},  where ci ∈ Z 
P(X, Y) = Joint probability distribution over X and Y

Assume that, Feature vector x ∈ X and corresponding label y ∈ Y. 

T{(x1,  y1) ,  (x2,  y2) ,  … … … …,  (xN,  yN) }, is the training data set, 

where xi and yi are instances of X and Y, respectively

PS = Partition of set T = {(PS1)  ∪ (PS2)  ∪ … … … … ∪(PSk) }, 

Where .

Learning algorithms learns these two probabilities, namely 
Conditional Probability Distribution and Prior Probability. 

 (11)

The algorithm, while predicting input xi will provide the output 
class label based on maximum posterior probability. 

As the denominator part is independent of cj , it is constant, 
resulting in 

 (13)

TABLE I. Statistical Parameter Computation

Input Folder structure is as follows.
Main folder – contains sub folders equal to number of malware 
families (i = 9 for this case)

 - Sub-folders (9 malware families)           
 - Each sub-folder has different number of images j

RI = Reference image
II = Input image

i = Number of malware families in main directory (folder)
j = Number of malware variants (images) of specific malware  
       family in a subfolder

// Initialize empty array
Parameter Array = {∅}
for (β =  0 ; β < i ; β ++)
// Load reference image – first image of malware family
RI = β[ 0 ]
for// select malware families one by one
        (k =  0 ; k < i ; k ++)
// Get number of images present of a specific malware family
     j = size (ksub−folder)
for (localcnt =  0; localcnt < j; localcnt ++)
// Load Input image from malware family
Ii = (k)[localcnt] 
// calculate SSIM
SSIM(Ri,  Ii)= [l(Ri,  Ii)

α . c(Ri,  Ii)
β . s(Ri,  Ii)

γ]
where l = luminance, c = contrast, s = structure
// Calculate MSE

// calculate PSNR

// calculate Normalized Cross-Correlation (NK)

// calculate Normalized Absolute-Error (NAE)

// calculate Maximum difference

// calculate Laplacian Mean Square Error (LMSE)

where L((m,  n)) is Laplacian operator
// Store all the values in an array
end
// Take average of an array an obtain single value
Parameter array(k)= [ mean (SSIM); mean (MSE); mean(PSNR); 
mean(NCC); mean(NAE);
mean (MaxD); mean (LMSE)]
end
end
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2. Parameter Estimation

The Maximum Likelihood Estimation technique is used to estimate 
the parameters, therefore the indicator function and prior probability, 
both that may be computed as, 

 (14)

j = 1, 2, … …, k,   N = number of samples in trianing set

Posterior probability is calculated using Central Limit theorem. In 
this theorem whenever a number of samples N crosses a threshold 
limit TH, then the input element xi in the data set T generally follows a 
normal distribution having mean μ and variance σ2.

Thus, if |PSj| is greater than TH (let TH =  30), then following the 
Central limit theorem xi will have normal distribution with variance 
σ2 and centred around μj. 

∴ conditional probability distribution is given by,

 (15)

By substituting Eq. (14) to Eq. (12), we get

 (16)

After discarding cj independent term and constant values from the 
Eq. (15), we get, 

 (17)

 (18)

 (19)

 (20)

 (21)

Condition – 1: If all the classes are having the same prior 
probabilities, then Eq. (21) can be written as

 (22)

where μj = jth class centre 

Classification of instance xi, is based on the class centers of every 
class, 

Let, , then.

 (23)

Table II presents pseudo code of SemiE algorithm.

Significant properties of SemiE classifier are listed as follows. It 
performs incremental learning leading to training time complexity - 
O(n) and prediction time complexity - O(k). If the special case where 
the data point xi is ready for classification but has equal distance from 
all the class labels is given, then the next level of decision making 
is done which is based on frequency. A regularization term will be 
assigned to the class label having the highest frequency.

TABLE II. SemiE Classifier Pseudo Code

Training Phase

Mean calculation,                                                                     (24)

Variance calculation, 

                                                                                       (25)

for j = 1 to N
     for i = 1 to k 

                                                                                (26)

    

                                              (27)
     end
end

Testing Phase

Instance xi is to be classified

                                                                         (28)

IV. Experimental Setup

The system performance is analyzed on a benchmark database from 
Kaggle3 as well as the ‘malimg’ dataset4. Detailed information about 
both databases is given in Table III and Table IV. The major difference 
between these two datasets is that in ‘malimg’ set directly grey scale 
images were given, so, for the Kaggle dataset one additional coding 
function is required to convert malware files to grey scale image.

TABLE III. Kaggle and Malimg Datasets Basic Information

Header Kaggle dataset Malimg dataset
Download Microsoft malware 

classification challenge 
from Kaggle

Vision research Lab

ID Twenty-character 
hash value for unique 
identification of file

Thirty-two-character 
hash value for unique 
identification of file

Number of 
malware 
families / Size

9 / 0.5 Tera byte 
uncompressed

25 / 1.09 GB 
uncompressed, in image 
form

RAW data HEX representation of the 
file’s binary content

HEX representation of 
the file’s binary content

Class Integer representing 
malware family 

Integer representing 
malware family 

Metadata 
manifest

Log of various metadata 
information e.g. Function 
calls, Strings etc. extracted 
from the binary using IDA 
disassembler tool.

------------

V. Results 

This section presents the results achieved throughout the process 
of malware analysis. Initially the Kaggle dataset malware files were 
converted to grey scale images, as shown in Fig. 4. It has been clearly 
noted that the image for each of the families is unique. ‘malimg’ dataset 
images are not shown as it is readily available from the website.

3  https://www.kaggle.com/c/malware-classification/
4  https://paperswithcode.com/dataset/malimg

https://www.kaggle.com/c/malware-classification/
https://paperswithcode.com/dataset/malimg
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Fig. 4.  Malware images of different malware families from the Kaggle dataset.

The next step was to extract the ISSP feature set from the grey 
scale images (refer section III.C). Suppose in the dataset, there are  MF 
number of malware families For Kaggle dataset set MF is 9 and for Malimg 
dataset it is 25. There are S number of samples per malware family. For 
ISSP computation we require two images namely ‘Reference Image (RI) ' 
and ‘Input image (II) ',  RI will remain constant through the iteration 
and II will change. Initially, RI will be selected from the 1st malware 
family, and 1st image in the folder. Remaining all the images from 1st 
malware families and all the images of the remaining malware families 
will be now ‘II’. RI and II will be used to compute the ISSP parameters. 
Computed ISSP parameters per II will be stored in respective array say 

for example PSNR_array, NK_array and so on, with respect to malware 
family. After iterating through all the images of any one family, the 
mean value of an array will be computed. Hence, for every family 
there will be just one single mean value. The mean value matrix will 
be plotted. The same is illustrated in Fig. 5. Since the ‘malimg’ dataset 
is massive and has a large number of malware families we present the 
result of this dataset.

Fig. 5(1) shows the MD value. It is 225 for the first family of malware, 
but for the rest of the families the value is 255. Therefore, there is high 
structural similarity with self-family, but with other families a higher 
MD value reflects slower similarity. We can decide a threshold of 145 
to 250 for differentiating between malware families. SSIM, PSNR, MSE, 
NK and NAE plots are on a similar line to MD i.e., clear bifurcation 
between self-family and other families, but the threshold values 
will be different. However, for the AD parameter for the self-family 
value is near to ‘0’ and for other malware families it is either a high 
positive or high negative value (refer Fig. 5(7)), so AD demands for the 
hysteresis-based threshold. SC parameter value reflects overlap i.e., 
defining proper threshold is difficult, so we discarded this parameter 
for the training purpose (refer Fig. 5(8)). The remaining parameters 
can be used to train the SemiE classifier. The grain size selected for 
GRA analysis is 5,7,10 and 13 with MSE.

VI. Performance Evaluation 

This section presents a confusion matrix and compares the results 
obtained from the proposed work with the state-of-the art methods. 

TABLE IV. Kaggle and Malimg Datasets Description

Kaggle dataset Malimg dataset

Malware 
Family Malware category Sample 

size Malware Family Malware category Sample 
size Malware Family Malware category Sample 

size
Gatak Backdoor 1013 Allaple.L Worm 1591 Alueron.gen! J Trojan 198

Obfuscator. ACY obfuscated malware 1228 Allaple.A Worm 2949 Malex.gen! J Trojan 136

Kelihos_ver1 Backdoor 398 Yuner.A Worm 800 Lolyda.AT PWS 159

Tracur TrojanDownloader 751 Lolyda.AA 1 PWS 213 Adialer.C Dialer 125

Simda Backdoor 42 Lolyda.AA 2 PWS 184 Wintrim.BX Trojan Downloader 97

Vundo Trojan 475 Lolyda.AA 3 PWS 123 Dialplatform.B Dialer 177

Kelihos_ver3 Backdoor 2942 C2Lop.P Trojan 146 Dontovo.A Trojan Downloader 162

Lollipop Adware 2478 C2Lop.gen! G Trojan 200 Obfuscator.AD Trojan Downloader 142

RAmnit Worm 1541 Instantaccess Dialer 431 Agent.FYI Backdoor 116

Swizzor.gen! I Trojan Downloader 132 Autorun.K Worm: AutoIT 106

Swizzor.gen! E Trojan Downloader 128 Rbot! gen Backdoor 158

VB.AT Worm 408 Skintrim.N Trojan 80

Fakerean Rogue 381

TABLE V. Confusion Matrix

Malware
Malware Detection %

Ramnit Lollipop Kelihos_ver3 Vundo Simda Tracur Kelihos_ver1 Obfuscator. ACY Gatak
RAmnit 99.61 0.00 0.06 0.06 0.00 0.06 0.06 0.06 0.06
Lollipop 0.04 99.80 0.00 0.12 0.00 0.00 0.00 0.00 0.04
Kelihos_ver3 0.03 0.00 99.90 0.00 0.00 0.00 0.00 0.07 0.00
Vundo 0.00 0.21 0.21 99.37 0.21 0.00 0.00 0.00 0.00
Simda 0.00 0.00 0.00 0.00 95.24 2.38 2.38 0.00 0.00
Tracur 0.00 0.00 0.00 0.00 0.00 99.73 0.13 0.13 0.00
Kelihos_ver1 0.00 0.25 0.25 0.00 0.25 0.00 99.24 0.00 0.00
Obfuscator.ACY 0.08 0.08 0.08 0.08 0.00 0.00 0.08 99.43 0.16
Gatak 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.20 99.70
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The proposed method was validated with the Big 2015 Kaggle and 
Malimg datasets and therefore results are compared with those research 
techniques that also have been validated with the same datasets.

Accuracy is a significant performance parameter for the MD 
system. It specifies accurate classification of malware. Accuracy is 
computed on the basis of the following equation:

Table V shows the confusion matrix of the proposed MDS using 
Kaggle dataset.

Graphical plots of confusion matrix are illustrated in  
Fig. 6 and Fig. 7.

A. State of the Art Comparison
As SemiE classifiers are not used by other researchers, we compared 

the results with learning algorithm presented by researchers. Table VI 
shows a comparative of the performance of the proposed and other 
methods.

Malimg and BIG 2015 datasets are the datasets commonly used by 
researchers. It has been observed that researchers work on either of 
the datasets, but this paper explores both the datasets. This makes the 
proposed work more robust.

CNN technique is also common in researchers. This technique is 
the basis for deep learning. Few researchers used variants of CNN i.e. 
DenseNet, ResNet-50 etc. Minimum accuracy of 98.23% to maximum 
99.3% is achieved for malimg dataset. The proposed technique provides 
99.03% accuracy. BIG2015 dataset is from Kaggle. Minimum 96.9% and 
maximum 99.73% accuracy achieved for the BIG2015 dataset. The 
proposed work provides 99.11% accuracy. Thus, the proposed provides 
minimum 99% accuracy for both the dataset.

malimg dataset confusion matrix
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Fig. 7. Confusion Matrix Plot – Malimg data set.
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VII. Conclusion 

Malware is a common attack on the internet. Developers of 
malware detection systems are continuously contending with cyber-
attackers. For maintaining persistent pressure on cyber attackers, 
MDS developers should work out new strategies which can capture 
malware without any loss to the user and quarantine the same. 

In this paper we have described a GRASE model which combines 
malware visualization, texture based GRanulometry (GRA) feature and 
Semi eager based classifier to classify malware images into different 
malware family classes.

System performance was evaluated using malimg and BIG-2015 
Kaggle dataset. ‘malimg’ dataset is in the form of grayscale image, 
but BIG-2015 dataset required to be converted to gray scale images 
from the byte code of malware program. Each pixel in the gray scale 
malware image represents a code byte. Therefore, we applied a GRA 
technique where Granules’ or pixels are the important input to 
compute features. 

With GRA additional features like n-gram, MD1, MD2, entropy, 
OPCODE, Register, symbols, data define, and Sections were used for 
generating feature vectors. This kind of learning approach is more 
suited to MDS because both, real time learning can be implemented 
with less time, and also testing or generating output in the form of 
malware detection is desideratum. 

SemiE classifier with image-based visualization of feature vector 
resulted in an enhanced performance for classifying nine classes of 
malware and offered an overall accuracy of 99.11% with the Kaggle 
dataset and 99.03 % accuracy was achieved with the malimg dataset 
(refer table VI).

Future scope for the proposed technique will focus on a diverse set 
of datasets to verify robustness of an algorithm. Presently a footprint 
of malware is available, but the objective of malware detection is 
customer security which should not be compromised. So, the task is to 
test a model if it can be used for predicting the new malware.
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