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Abstract

Computer Vision's applications and their use cases in the medical field have grown vastly in the past decade. 
The algorithms involved in these critical applications have helped doctors and surgeons perform procedures 
on patients more precisely with minimal side effects. However, obtaining medical data for developing large-
scale generalizable and intelligent algorithms is challenging in the real world as multiple socio-economic, 
administrative, and demographic factors impact it. Furthermore, training machine learning algorithms with 
a small amount of data can lead to less accuracy and performance bias, resulting in incorrect diagnosis and 
treatment, which can cause severe side effects or even casualties. Generative Adversarial Networks (GAN) 
have recently proven to be an effective data synthesis and augmentation technique for training deep 
learning-based image classifiers. This research proposes a novel approach that uses a Style-based Generative 
Adversarial Network for conditional synthesis and auxiliary classification of Brain Tumors by pre-training. 
The Discriminator of the pre-trained GAN is fine-tuned with extensive data augmentation techniques to 
improve the classification accuracy when the training data is small. The proposed method was validated with 
an open-source MRI dataset which consists of three types of tumors - Glioma, Meningioma, and Pituitary. The 
proposed system achieved 99.51% test accuracy, 99.52% precision score, and 99.50% recall score, significantly 
higher than other approaches. Since the framework can be made adaptive using transfer learning, this method 
also benefits new and small datasets of similar distributions.
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I. Introduction

THE healthcare industry has evolved tremendously because of 
the growing demands and population. It has become highly 

challenging for doctors to meet the velocity and volume of patients 
requiring diagnosis and treatments. The numerous realtime advances 
in Computer Vision and Artificial Intelligence in the medical field 
have been a game-changer in how fast and accurate most medical 
procedures are carried out. This has made doctors save time and 
establish treatments for patients early [1], [2]. While most of the 

algorithms in hand are not perfect, they are still helpful in real-time 
for gathering inferences at various stages of diagnoses and treatments. 

Classification of Brain Tumors has been a difficult task. It is one of the 
most crucial steps and required information in diagnosis, presurgical 
planning, and treatment. While radiologists accurately identify and 
annotate these tumors for further steps, it is highly impossible for them 
to do the same at a large scale. Identifying the brain tumors and their 
type also depends on several scan parameters like the scan’s modality, 
isotropy, magnetic field strength, and other acquisition parameters [3], 
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[4]. The scan acquisition also depends upon several socio-economic 
and demographic factors. Hospitals in a highly developed country 
may have 7 Tesla Magnetic Resonance Imaging machines. In contrast, 
countries with a not-so-similar economy and infrastructure may have 
only 1.5 Tesla Magnetic Resonance Imaging machines. These fields 
can vastly impact the manual and automated process of scan analysis 
during the diagnosis and planning of the treatment. 

The recent development of several deep learning architectures like 
convolutional neural networks and transformers has helped solve 
and automate processes in several critical domains like healthcare, 
autonomous driving, and cybersecurity. Hence, deep learning can 
play a massive role in classifying brain tumors. The algorithms are 
also multi-disciplinary, enabling people to solve problems or invent 
in any field. However, the performance of these algorithms can be 
easily biased or degraded when it is not trained correctly with massive 
datasets using the appropriate methods. Obtaining medical datasets is 
challenging due to numerous legal procedures and factors like patient 
consent and the prevalence of disorder or disease. Geography also 
plays a vital role since people from different locations have different 
physical and mental attributes. This can cause the deep learning-
based solutions can have less accuracy or bias based on the mentioned 
factors, leading to improper diagnosis and treatment that can result 
in side effects or even death. Several existing solutions have high 
false positive and negative rates for the same reasons. Furthermore, 
high accuracy or almost 100 % accuracy is expected in the healthcare 
industry since the algorithm’s results are going to be used on patients 
for different purposes. 

The groundbreaking invention of Generative Adversarial Networks 
(GAN) by Goodfellow et al. [5] has led to many creative applications 
and usage of image synthesis. GANs have also been popularly used 
as a data augmentation method that can improve the performance 
of image classifiers by oversampling. In this study, a framework 
that uses a Conditional Style-based Generative Adversarial Network 
with auxiliary classification [6], [7], [8], [9], [10] for pre-training the 
GAN and fine-tuning the Discriminator to improve the performance 
of auxiliary classification with extensive augmentation methods has 
been proposed. Fig. 5 displays a simplified architecture diagram of the 
system, giving an overview of how the proposed method works in 
real-time.

The proposed system uses an open-source dataset compiled by J. 
Cheng et al. [11] that comprises T1-weighted Magnetic Resonance 
Images with a magnetic field strength of 1.5 Tesla of many patients 
with three types of tumors: Glioma, Meningioma, and Pituitary. By 
training the proposed framework with extensive augmentation 
techniques during preprocessing, the system achieved a test accuracy 
of 99.51% and several other crucial validation metrics using the fine-
tuned auxiliary classifying Discriminator of the pre-trained GAN. This 
method is advantageous when the availability of datasets is limited 
and can be fine-tuned using transfer learning for other datasets with 
similar distributions like scans from 3 Tesla or & Tesla machines. 

This research article has been split into the following sections based 
on the experimental investigations:

1. The related research work that motivated the development and 
implementation of the proposed method.

2. Analysis of the dataset and the augmentation techniques was used 
as preprocessing for training the given framework.

3. A detailed description of the proposed architecture and its working 
with the training and validation strategies, hyperparameter 
settings, and optimization techniques that were followed.

4. The various evaluation metrics that were used to evaluate the 
model with the obtained results.

5. Discussion of the proposed system’s results, advantages, and 
limitations.

II. Related Works

For this study, a deep analysis of the related research works and 
state-of-the-art methods for brain tumor classification was conducted, 
which helped in developing a novel and improved method for 
classifying brain tumors. Xiao et al. [12] proposed a method presenting 
the brain tumor classification with Dual Suppression Encoding and 
Factorized Bilinear Encoding with ResNet50 to differentiate minor 
features extracted from various MRI images belonging to different 
types of brain tumors. This achieved an excellent performance of 
98.02% in classifying the exact features of brain tumors. While the 
feature engineering and the convolutional neural network architecture 
are amazing, the accuracy is comparatively lesser than some other 
methods. 

Yerukalareddy et al. [6] introduced an intriguing method based on 
deep learning to classify brain tumors on MRI scans by pre-training 
MSGGAN to classify tumor types using the auxiliary block of the 
Discriminator. This approach obtained an accuracy of 98.57%, proving 
to be better than other methods. Our system uses a similar pre-training 
technique with significant changes in the neural network architecture, 
data preprocessing, and optimization strategies. Diaz-Pednas et al. [13] 
presented a multiscale approach using convolutional neural networks 
that used images at different resolutions and stages to learn feature 
representations to perform the classification.  It was 97.3% successful 
in classifying meningioma, glioma, and pituitary types of tumors. 
Mohan Karnati et al. [14] presented a multi-scale deep convolutional 
neural network for detecting COVID-19 from X-rays with an accuracy 
>99%. This research works highlight the dynamicity and adaptability 
of neural networks to learn from any form of data.

Kumar R.L. et al. [15] have introduced a model that uses ResNet50 
and global average pooling and acquired 97.08% and 97.48% efficient 
performance with and without data augmentation, respectively. 
While ResNet50 uses global average pooling by default, the authors 
have implemented a transfer learning-based approach to train the 
architecture to classify three types of brain tumors. Inspired by 
this approach, our framework was benchmarked with and without 
augmentation. Singh R. et al. [16] developed a Gabor-modulated 
convolutional filter-based tumor classification in the brain to classify 
Low-grade and High-grade Glioma. However, the number of network 
parameters is high, and it can only classify within the same tumor 
type. Likewise, Abd El Kader et al. [17] have derived a differential 
deep-CNN model to classify low-grade and high-grade glioma from 
brain MR images with an accuracy of 99.25%.

Kang et al. [18] presented a brain tumor classification method 
with an ensemble of features (DenseNet-169) using pre-trained 
convolutional neural networks, extracting the features of the tumor 
from MRI images using learned representations. They have achieved 
an accuracy of 93.72 % by using the CNN for feature extraction and 
Quasi-Support Vector Machine for classification. Alshayeji et al. [19] 
proposed an automatic classification of brain tumors by integrating 
two CNN structures and Bayesian optimization, resulting in higher 
performance with 97.37% correctness. Arbane et al. [20] used CNN 
architectures such as ResNet, Xception, and MobilNet-V2 based on 
transfer learning. They have compared these methods and concluded 
that MobilNet-V2 gave the best accuracy of 98.24% and an F1-score of 
98.42%. Ayesha et al. [21] have invented a deep learning and improved 
particle swarm optimization-based algorithm to classify brain tumors 
using multiple MRI modalities with an accuracy of 99.9 %. Amjad 
Rehman et al. [22] proposed a 3D Convolutional Neural Network 
to extract brain tumors and employed a correlation-based feature 
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selection to create a classification algorithm that achieved >92% on 
BraTS datasets. These research works helped in assessing the possible 
biases and challenges associated in training our algorithm.

Deepak S. et al. [23] adopted an approach of CNN with a support 
vector machine and attained a classification exactness of 95.82%. The 
system seems novel, but it is underperforming compared to other 
state-of-the-art methods. To classify the tumor, Singh R. et al. [24] 
have used a wavelet transform technique, which is fed to a kernel-
based support vector machine. This algorithm yielded an accuracy of 
98.87%, better than the deep neural-network approach. Ghassemi et 
al. [7] have used the GAN technique with a deep neural network pre-
training process, resulting in high accuracies of 93.01% and 95.6% on 
the introduced and random splits, respectively, while classifying the 
meningioma, glioma, and pituitary tumors. The approach proposed in 
our study uses some motivations from this research work, and a robust 
framework was built like this.  

Badza et al. [25] presented a new Convolutional Neural Network 
algorithm using a 10-fold cross-validation approach on the brain tumor 
databases. It produced 96.56% accuracy and claimed to have a decent 
generalization capability and execution speed. Deepak S. et al. [8] have 
used multi-scale gradient GAN to synthesize images of meningioma 
tumors. This approach has produced results close to the source 
dataset [26] but only for the Meningioma tumor type. Nonetheless, 
this method justifies the benefits of Generative Adversarial Networks 
in training image classifiers by using synthesized images for 
oversampling. Rehman A. et al. [27] have compared Convolutional 
Neural Network architectures like  AlexNet, GoogLeNet, and VGGNet 
to extract distinguishable features and patterns from MRI images 
to obtain 98.69% accuracy using the VGG16 network. A. Seal et al. 
[28] proposed two probabilistic models using Logistic Regression 
(LR), Linear Discriminant Analysis (LDA) and a predictive model 
using Multilayer Perceptron (MLP) with a Fuzzy C-Means clustering 
algorithm for feature extraction of lesions in the human liver to predict 
whether a person has cancer in their liver or not. The MLP model 
achieved the lowest accuracy of 94.4 % when compared to the other 
models. This methodology would help extend the study’s proposed 
method to accommodate for benign and malignant classification of 
the tumor in the future.

Our proposed method has used a similar approach to Oeldorf 
et al. [9], who have leveraged Conditional Style-based Generative 

Adversarial Networks to synthesize logos images. This is highly 
beneficial for synthesizing images based on desired class or condition 
and can be adapted to any appropriate dataset. Oeldorf et al. [9]’s 
paper was based on the Style-based Generative Adversarial Network 
proposed by Karras T. et al. [29], [30] from NVIDIA, improving the 
quality of the synthesized image using progressive growing of GANs, 
adaptive instance normalization, and style mixing using latent vectors. 
Karnewar et al. [31] have introduced a Multi-Scale Gradient Generative 
Adversarial Network for synthesizing high-resolution images, which 
uses images at different resolutions/scales at various stages to learn and 
synthesize images using unsupervised learning. Karnewar and team 
[32] have also improved their approach by generating synchronized 
multi-scale images using concatenation operation, limiting forced 
mixing regulation.

Sajjad M. et al. [30] have presented a Multi-Grade approach using 
a Deep Convolutional Neural Network, improving the correctness up 
to 94.58% using data augmentation and deep learning. This is useful in 
classifying the tumor grades, and the classification of tumor types of 
their method is sub-optimal. Seetha J. et al. [33] proposed an automated 
tumor detection mechanism using Convolutional Neural Networks 
with small kernels. Their approach attained an accuracy of 97.5% 
with minimum complication. Balasooriya M. et al. [34] developed a 
sophisticated deep learning method using CNN, performing with 
improved accuracy of 99.68%. Afshar P. et al. [35] have proposed to 
equip CapsNet incorporating raw and surrounding brain tissues, 
producing 90.89% accuracy. J. Cheng et al. [11] from Southern Medical 
University, Guangzhou, China open-sourced a brain tumor dataset 
containing T1- weighted contrast-enhanced images containing three 
types of tumors: glioma, meningioma, and pituitary. This dataset was 
used to train and benchmark the performance of the proposed method. 
Jun-Yan Zhu et al. [26] have proposed an approach for translating an 
image from a source domain to a target domain, and quantitative 
comparisons were demonstrated.

Goodfellow et al. [36] have designed a new way to synthesize non-
linear probability distributions by using two neural network models 
that learn adversarially to improve each other;s performance with 
different goals called Generative Adversarial Networks. Kaiming et 
al. [28] presented a residual learning network called ResNet that uses 
skip connections at different convolutional blocks to improve feature 
learning and classification performance. Most of the related work and 

TABLE I. Summary of Related Work

Authors Method Accuracy Description Limitations

Xiao et al. [12]

Dual Suppression 
Encoding and 

Factorized Bilinear 
Encoding

98.02%
A complex and robust feature extraction 

technique yielding good accuracy
The approach produced results very similar to 

other methods, and accuracy is sub-optimal

Yerukalareddy 
et al. [[6]

MSG-GAN pre-
training and fine-

tuning discriminator
98.57%

Advanced implicit feature learning by 
using GAN pre-training and fine-tuning the 

discriminator with augmented data

Generator and Discriminator requires up-sampled 
and down-sampled images at multiple stages to 

produce good results. 

Diaz-Pednas et 
al. [13]

Multi-scale 
Convolutional Neural 

Networks
97.3%

Residual-like operation using source images 
at different resolutions at multiple stages to 

improve feature extraction

Requires sub-sampled images at multiple stages to 
produce good results.

Kumar R.L. et 
al.[15]

ResNet50
97.08%, 
97.48%

Transfer learning with ResNet50 
architecture on augmented and non-

augmented data

ResNet50’s pre-trained weights are of ImageNet 
dataset which does not have learned features from 

MRI scans thus having decent results.

Singh R. et al. 
[24]

Wavelet-based 
transformation with a 
kernel-based Support 

Vector Machine

93.72%
A different feature extraction technique 
based on image processing having good 

results using SVM.

Convolutional Neural Networks have proven to 
be better at learning kernels dynamically but the 

proposed SVM has achieved sub-par results. 

Ghassemi et 
al. [7]

ACGAN based 
pre-training and 

fine-tuning of the 
discriminator

95.6%
Advanced implicit feature learning by 

using GAN pre-training and fine-tuning the 
discriminator with data of different splits.

The GAN architecture is based on DCGAN which 
upon training can be unstable and can cause 

mode-collapse with limited samples.
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work done so far was using Convolutional Neural Networks using the 
figshare dataset provided by J. Cheng [11]. Despite multiple similar 
approaches with different training and hyper-parameter optimization-
based strategies, most of the works’ accuracies are not up to the mark. 
The GAN pre-training-based approaches [6], [7] have achieved almost 
perfect classification results without using the images synthesized 
for oversampling and training different network architectures. The 
literature survey of related works has been summarized in Table I.

These research works helped in developing a sophisticated system 
that can classify three types of tumors using an auxiliary classifying 
style-based generative adversarial network. While most of the 
related works have used deep learning-based approaches, the usage 
of different architectures, datasets, hyperparameters, preprocessing, 
and training strategies have led to models with variable biases and 
high false positive/negative rates in different cases. In Section III, 
the research methodology has been explained in detail, giving an 
overview of the dataset, preprocessing techniques, and proposed 
system implementation. The results obtained from the conducted 
experiments were validated using different strategies and evaluation 
metrics, which have been discussed in Section IV. The advantages, 
limitations, and analysis against several state-of-the-art methods have 
been briefly discussed in Section V. Finally, the proposed research and 
the future works to overcome the drawbacks of the proposed method 
have been summarized in Section VI.

III. Methodology 

The proposed method uses an Auxiliary Conditional Style-based 
Generative Adversarial Network for pre-training and usage of the 
pre-trained Discriminator of the GAN by fine-tuning for classifying 
Glioma, Meningioma, and Pituitary tumors from a given MR Image. 
The experiments were conducted on a system with Ubuntu OS with 54 
GB RAM and eight 16 GB NVIDIA V100 graphic processing units for 
faster training using distributed computing. Python was used to develop 
experiments with the help of libraries like PyTorch, NumPy, Matplotlib, 
Seaborn, Pandas, and Scikit-Learn. The methodology and experiments 
performed on the dataset, preprocessing steps, and neural network 

architectures have been explained in detail in the following sub-sections. 

A. Dataset
The system was trained and benchmarked using a dataset open-

sourced on Figshare in 2017 by J. Cheng et al. [11] containing T1-
weighted Magnetic Resonance Images of Glioma, Meningioma, and 
Pituitary tumors. There are 3064 contrast-enhanced images presented 
as 2D MRI scans from 233 patients. The images appear to be of 1.5 
Tesla Magnetic Field Strength and are of 512x512 resolution in coronal, 
axial, and sagittal views, as seen in Fig. 1. However, the number of 
images across all three modalities is low and can lead to a biased 
or less accurate classification rate upon training deep learning or 
machine learning algorithms. Table II describes the dataset in detail 
with supplemental information.

B. Preprocessing & Preparation
The dataset was downloaded from figshare as uploaded by J. Cheng 

et al. [11]. The MR Image slices were extracted from big data file 
format (.h5) and saved as png images under the corresponding folder 
as their class name, denoting the type of brain tumor. Convolutional 
neural networks perform better when the resolution of the image is 

TABLE II. T1-Weighted Brain Tumor MRI Dataset Details

Type of Brain 
Tumor Number of Patients Number of MR 

Image slices View/Orientation Ground Truths

Axial View Coronal View Sagittal View Tumor Labels Tumor Masks
Glioma 89 1426     

Meningioma 82 708     
Pituitary 62 930     

Total 233 3064
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higher. However, most MR Images are obtained in 256x256 resolution 
as most scanners have 256 as their frequency and Field-of-View 
(FOV) parameters since it takes less time for acquiring a T1-weighted 
MRI. MR Image scanners are also susceptible to noise during scan 
acquisition, and the noise produced is mostly Gaussian or non-linear. 
A matrix is randomly sampled from Gaussian distribution as described 
by (1) and (2) and is added to the input image to introduce noise in the 
source MR Image. 

 (1)

 (2)

Histogram equalization was performed on the data to standardize 
the distribution and equalize intensity values, removing any bias 
fields. Finally, angular augmentations were performed on the image to 
get resultant images in 45, 90, 120, 150, 180, 270, 300, 330 degrees. Even 
though the scans in the real world would be in -90 to 90, -180 to 180 
degrees in axial, coronal, and sagittal views, this type of augmentation 
would help the model learn the kind of tumors at different places and 
orientations. The labels were then one-hot encoded to create sparse 
tensors representing the tumor type. Fig. 2 depicts the dataset’s sample 
distribution pre and post data augmentation.

These were the augmentation techniques performed for 
preprocessing the MR Images in general. However, two types of 
preprocessing with different augmentation techniques were performed 
for training the GAN and then fine-tuning the Discriminator of the 
pre-trained GAN:

1. Strategy 1: The augmentation technique used for training the GAN 
is resizing the input image to 256x256 resolution, applying random 
center cropping, random translation of the image towards left or 
right randomly, and histogram equalization. This augmentation 
resulted in 3064 images with some source images randomly 
cropped and translated.

2. Strategy 2: The augmentation techniques followed for fine-tuning 
the discriminator model were resizing the input image to 256x256 
resolution, applying random center cropping, random Gaussian 
noise, histogram equalization, and angular augmentation. This 
augmentation resulted in 27576 images that contained source 
images, and the augmentation applied images.

The preprocessing can be done on the fly based on any given batch 
size using PyTorch Datasets and DataLoaders to save memory and 
GPU usage. A stratified 5-fold cross-validation was performed on 
the dataset, which splits the given dataset into five random subsets 
while preserving the ratio of the number of samples per class in each 
subset where the algorithm is trained by combining four of the subsets 
and evaluating it against the remaining set in all permutations and 
combinations. These approaches were used for pre-training the GAN 
and fine-tuning the Discriminator using corresponding augmentation 
methods.

C. Algorithm
The suggested method is based on a conditional Style-based 

Generative Adversarial Network with an auxiliary classification block 
that performs the tumor classification. It comprises two significant 
portions: pre-training the GAN and fine-tuning the pre-trained 
discriminator network with heavy data augmentation. The style-based 
generator is a modified architecture proposed by Karras T. et al.  [10] 
with conditional input support to help the generator learn and produce 
distributions based on specified input classes like the method proposed 

by Oeldorf et al. [9]. The generator of the GAN uses convolutional 
blocks of decreasing filter size (256 -> 128 -> 64 -> 32) with a 3x3 kernel 
followed by adaptive instance normalization and leaky relu activation 
with bilinear upsampling. The Discriminator of the GAN is a simple 
convolutional neural network comprising of convolutional layers with 
growing filter size (16 -> 32 -> 64 -> 128 -> 256) followed by leaky relu 
(4) and max-pooling, with two final output layers: adversarial fully-
connected layer (5) for image legitimacy prediction and an auxiliary 
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fully-connected layer for tumor classification. The hyperparameters 
for the convolutional blocks in both Generator and Discriminator 
are set to grow progressively as suggested by Karras T. et al. [37] to 
have better learning fidelity. Furthermore, the convolutional layers’ 
filter size can grow from 16 to 1024, for a target image resolution of 
1024x1024. A detailed architecture diagram of the described generator 
and discriminator neural networks is displayed in Fig. 3 and Fig. 4.

The process of the Generative Adversarial Network can be formulated 
as (3). Unlike Yerukulareddy et al. [6], the proposed generator uses a 
concatenated noise vector containing class representations and the 
latent vector as an input instead of classwise embedding, represented in 
Fig. 3. This makes the input latent vectors less sparse and leads to better 
feature identification and learning since the input has class details with 
a random distribution to generate the images.

 (3)

 (4)

  (5)

The concatenated input latent vectors are passed through a fully 
connected network, called the mapping network, which maps styles or 
feature representations to the synthesis network for conditional image 
generation. The progressive growth or upsampling of the images 
combined with the mapping network, adaptive instance normalization 
(6) [38], and latent vectors with random and class representations helps 
the generator to learn classwise features adversarially with feedback 
received from the Discriminator regarding the image legitimacy and 
correctness of the tumor image generated.

 (6)

The Discriminator has two objectives: the adversarial fully 
connected block predicts image legitimacy, and the auxiliary 
fully connected block predicts tumor type. The discriminator is a 
progressively growing convolutional neural network with a two-way 
output channel, as seen in Fig. 4. The adversarial fully connected block 
is activated with a sigmoid (7) to output probability-like values within 
the range of 0 to 1. Softmax (8) was used to activate the auxiliary 
fully connected block to output a vector of 3 probability-like values 
representing the type of tumor where the index with maximum 
probability can be mapped to the tumor’s name. 

  (7)

  (8)

Binary Cross-entropy (9) is used as the loss function for the 
adversarial outputs, and categorical cross-entropy (10) is used as the 
loss function for the auxiliary outputs. These two losses are averaged 
and used for backpropagation with gradient penalty, similar to 
WGAN-GP [39]. The GAN’s discriminator loss and the combined loss 
function with gradient penalty are represented by (11) and (12).

  (9)

  (10)

 (11)

  (12)

Pre-training of the GAN was done with a latent size of 512 for 1000 
epochs with a batch size of 128 at a learning rate of 0.005 using the 
first augmentation strategy mentioned in section 3.2. Once the GAN 
is trained, the pre-trained Discriminator’s weights were frozen for all 
the layers except the auxiliary classification layer. This Discriminator 
was then fine-tuned with a batch size of 64 at a learning rate of 1e-4 
with the second augmentation strategy given under section 3.2 and 
without any augmentation using categorical cross-entropy (10) as loss 
function. Later, Adam optimizer [40] for optimization while training 
the GAN and fine-tuning the pre-trained discriminator network. Table 
3 presents the optimization parameters for training the GAN and fine-
tuning the Discriminator.

The entire system’s architecture in a real time setting can be 
seen in Fig. 5. In the upcoming sections, the evaluation metrics used 
for evaluating the proposed classifier and the achieved results are 
discussed, with a comparison of it against the other existing state-of-
the-art methods.
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1 - Meningioma

2 - Pituitary

0 - Glioma
1 - Meningioma

2 - Pituitary

Predicted Class ID
denoting type
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whether the generated
image ir synthesized

or real

Discriminator Block

Medical Diagnosis

Combined Loss

Optimizer

Optimization using
Gradiente Descent

Classification Block

Raw T1-weighted
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MR Images

Back Propagation

Back Propagation
0 - Real
1 - Fake

Forward Propagation
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Generator for Image Synthesis

Synthesized Image
based on input class

Discriminator with and
auxiliary classification block

Style-based Generator

Discriminator

Fig. 5. System Architecture Diagram.
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TABLE III. Parameters Used for Optimizing the Network During Pre-
Training and Fine-Tuning

Hyper-
parameters GAN Pre-training Discriminator Fine-tuning

Optimizer Adam Adam

Loss Function Combined Loss (9) Categorical Crossentropy (7)

Latent Size 512 -

Epochs 1000 10

Batch Size 128 64

Augmentation 
Strategy

Strategy 1 given in 
section 3.2

Resizing images to 256x256, no 
augmentation strategy

Strategy 2 given in section 3.2

Learning Rate 0.005 1e-4

IV. Results

The benchmarking experiments were done using the Discriminator 
network of the pre-trained GAN framework on the test samples of 
5-fold cross-validation sets with and without augmentation, as 
mentioned in section III.B. A brief description of the evaluation 
metrics used is discussed in section IV.I, and the obtained results using 
the experimental setup are displayed in section IV.II. 

A. Evaluation Metrics
The following evaluation metrics have been used for analyzing 

the results of the proposed method to understand the algorithm’s 
performance and limitations:

As seen in Table IV, the confusion matrix has been used to understand 
the model’s classification performance and derive other metrics that 
can give insights into bias and limitations of the algorithm in place. 

TABLE IV. Typical Confusion Matrix

Positive Negative
Positive True Positive False Negative
Negative False Positive True Negative

The correctness of the model can be defined by accuracy, which 
tells how right the model has done the classification.

 (13)

The ratio of true positives to the sum of true positives and false 
positives is precision. The ratio of true positives and the sum of true 
positives and false negatives are known as recall. The balance between 
these scores is known as the F1 score. These scores help us understand 
the true classification rate of the classifier in depth.

 (14)

 (15)

 (16)

The rate of true positives against false negatives is described by a 
Receiver Operating Characteristic (ROC) Curve, which can tell how 
well a classifier is good at producing true positives. A classification 
algorithm performs better when its ROC Area Under the Curve (AUC) 
score is higher.

 (17)

 (18)

 (19)

B. Model Evaluation
The discriminator network of the pre-trained GAN was fine-tuned 

on the 5-fold cross-validation sets with and without augmentations 
using different seed values for sampling and internal shuffling. The 
predictions were converted to sparse tensors containing one at indices 
with maximum confidence/probability values in the output tensor that 
denote the type of tumor using the argmax operation (20). 

 (20)

Tables V and VI display the model’s performance data on the 
mentioned test sets with accuracy, precision, recall, and F1 scores as 
evaluation metrics. 

TABLE V. Fine-tuned Discriminator’s Performance on Non-augmented 
Test Sets of All the Five Folds

Fold/Evaluation 
Metrics

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Fold 1 99.80 99.68 99.42 99.55

Fold 2 99.83 99.88 99.76 99.82

Fold 3 99.45 99.56 99.40 99.48

Fold 4 98.98 99.03 98.88 98.95

Fold 5 99.63 99.72 99.54 99.63

Mean 99.53 99.57 99.40 99.48

Table VI shows that the fine-tuned model obtained a whopping 
accuracy of 99.83% on the test set of non-augmented Fold 2 and 99.51% 
accuracy on the test set of augmented Fold 3. The mean accuracy of 
the model on non-augmented and augmented sets is around 99.53% 
and 99.21%. The results of the fine-tuned discriminator network of 
pre-trained GAN on the test sets of the best-performing fold with and 
without augmentations are highlighted in Tables V and VI.

TABLE VI. Fine-tuned Discriminator’s Performance on Augmented 
Test Sets of All the Five Folds

Fold/Evaluation 
Metrics

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Fold 1 98.78 98.49 98.56 98.52

Fold 2 99.1 98.95 99.02 98.98

Fold 3 99.51 99.52 99.50 99.51

Fold 4 99.42 99.44 98.39 98.91

Fold 5 99.27 99.26 99.23 99.24

Mean 99.216 99.13 98.94 99.03

Fig. 6 and Fig. 7 are the confusion matrix and Receiver Operating 
Characteristic Curve for all the classes, obtained using the second 
subset of non-augmented 5-fold stratified cross-validation set. Only 
one image was misclassified in the test set, and the ROC-AUC scores 
are higher, suggesting that the model is great at classifying between 
the three types of tumors. Fig. 8 displays  the classwise ROC curves 
with their corresponding AUC scores.
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Confusion Matrix for the Fold 2 Test Set (without augmentation)
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Fig. 6. Confusion Matrix for the non-augmented test set (Fold 2).

Receiver Operating Characteristic for Fold 2 Test Set (without augmentation)
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Fig. 7. Receiver Operating Characteristic (ROC) curve for the non-
augmented test set (Fold 2).

The confusion matrix and Receiver Operating Characteristic Curve 
for all classes are shown in Fig. 9 and Fig. 10, obtained using the third 
fold’s test set of the augmented 5-fold stratified cross-validation set. 
Out of the 5514 images in the test set, there were only 27 that were 
incorrectly classified. The model’s ROC-AUC scores are also high, 
indicating that the model is very good at classifying the three types 
of tumors. The classwise ROC curves with their corresponding AUC 
scores are shown in Fig. 11.

Confusion Matrix for the Fold 3 Test Set (with augmentation)
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Fig. 9.  Confusion Matrix for the augmented test set (Fold 3).

Receiver Operating Characteristic for Fold 3 Test Set (with augmentation)
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Fig. 10. Receiver Operating Characteristic (ROC) curve for the augmented test 
set (Fold 3).

V. Discussion

This section evaluates the model’s performance against some 
state-of-the-art brain tumor classification methods. The neural 
network architectures of the other methodologies were implemented 
to compare the results with the proposed method. The experimental 
investigations showed that the fine-tuned discriminator network has 
over 99.5% in successfully classifying the three tumor types. Table 
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Fig. 8. Classwise ROC curves with AUC values for the non-augmented test set.
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VII displays some of the evaluation metrics obtained by the proposed 
method against other existing methods.

From Table VII, it can be said that the proposed method has 
achieved the best metrics. The pre-training mechanism with minimal 
augmentation methods, as mentioned in section 3.2, used while 
training the conditional style-based GAN with auxiliary classification 
helps the discriminator network learn even the most minor features 
to identify it is real or fake as well as the type of tumor. This also 
increases the generator’s performance adversarial to synthesize 
images of tumors. The framework learns to synthesize images and 
predict image legitimacy and the type of tumor simultaneously while 
training it for auxiliary classification and image generation. When the 
pre-trained Discriminator is fine-tuned, all the convolutional layers 
are frozen, and only the auxiliary classification block is trained to 
improve the classification performance with extensive augmentation. 
This makes the fully connected layer use the learned features from the 
convolutional blocks that act as feature extractors and adapt to the 
target output classes with features learned during the pre-training for 
image generation and legitimacy prediction. This also indicates that 
the model is adaptive and highly beneficial in transfer learning to apply 
it for datasets of similar distribution like brain MRI or other MRI scans 
from 3 Tesla machines or 7 Tesla machines. The entire architecture 
can be retrained on any dataset since deep learning algorithms are 
naturally adaptive to multifaceted applications.

TABLE VII. Comparison of the Proposed Method Against Existing 
Approaches

Method Accuracy (%) Precision (%) Recall (%)

Proposed Method - with the 
augmented test set

99.51 99.52 99.50

Proposed Method - with the 
raw test set

99.83 99.88 99.76

Synergy Factorized Bilinear 
Network with a Dual 
Suppression [12]

97.96 97.43 97.67

MSG-GAN Pre-trained model 
[6]

98.62 98.65 98.71

Multiscale Convolutional 
Neural Network [13]

97.30 97.42 97.35

ResNet50 with angular 
augmentation [15]

97.49 97.51 97.54

AC-GAN Pre-trained model [7] 95.60 95.29 95.10

Since the model is pre-trained and fine-tuned on a T1-weighted MRI 
dataset, it would not perform well for other scan modalities like T2, 
Flair, Contrast, and functional MRI and scans with different magnetic 
field strengths. Likewise, the model has not been experimented with 
other hyperparameters for a different target image resolution (example: 

1024x1024, 512x512). However, the framework can be retrained or 
fine-tuned using an appropriate dataset to improve its performance 
for other scans or data distributions using transfer learning. The 
style-based generator synthesizes good images, sometimes producing 
subpar results. This kind of framework trains datasets with implicit 
oversampling and improves the classifier’s performance. However, the 
image synthesis of brain tumors may not have any real-world usage 
apart from using them for oversampling while training deep learning 
models. Also, the generated images have to be clinically validated by 
radiologists to know how accurately the GAN can synthesize images 
of the tumors and how useful it is for doctors. Fig. 12 and Fig. 13 show 
some of the generated images that were good and those that were bad. 

Fig. 12. Generated samples by the GAN.

Fig. 13. Badly generated samples by the GAN.

VI. Conclusion 

The proposed approach for the multi-class classification of brain 
tumors uses pre-training on an auxiliary classifying Style-based 
Generative Adversarial Network [9, 29, 10] to classify Glioma, 
Meningioma, and Pituitary tumor types using T1-weighted MR Images. 
The framework has two major processes: pre-training the conditional 
style-based GAN and fine-tuning the pre-trained Discriminator with 
extensive data augmentation to improve the classification performance. 
Pre-training the GAN with different augmentation strategies helps 
the algorithm learn feature representations from the data in a semi-
supervised approach while also enabling the Discriminator to predict 
the legitimacy of the image and type of tumor present in the images. 
The method has achieved an accuracy of 99.51% on the augmented 
test set 99.83% on the raw test set, which is comparatively better than 
the other proposed approaches. The system is also sound when the 
availability of data is less. However, the model must be trained with data 
from multiple distributions containing different modalities and from 
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Fig. 11. Classwise ROC curves with AUC values for the augmented test set. 
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machines of different magnetic field strengths like 1.5 Tesla, 3 Tesla and 
7 Tesla machines to achieve better generalizability and classification 
performance, which can be done using transfer learning. To overcome 
these disadvantages, we plan to introduce few-shot learning or self-
supervised architectures with adversarial pre-training and augmentation 
on a diverse multi-modal dataset to achieve the highest possible 
performance, fairness, and robustness for classifying brain tumors as 
well as classifying whether the tumor is benign or malignant [28].
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