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Abstract

Throughout history, maritime transportation has been preferred for international and intercontinental trade 
thanks to its lower cost than other transportation ways, which have a risk of ship accidents. To avoid these 
risks, underwater wireless sensor networks can be used as a robust and safe solution by monitoring maritime 
environment where energy resources are critical. Energy constraints must be solved to enable continuous data 
collection and communication for environmental monitoring and surveillance so they can last. Their energy 
limitations and battery replacement difficulties can be addressed with a path planning approach.This paper 
considers the energy-aware path planning problem with autonomous underwater vehicles by five commonly 
used approaches, namely, Ant Colony Optimization-based Approach, Particle Swarm Optimization-based 
Approach, Teaching Learning-based Optimization-based Approach, Genetic Algorithm-based Approach, Grey 
Wolf Optimizer-based Approach. Simulations show that the system converges faster and performs better with 
genetic algorithm than the others. This paper also considers the case where direct traveling paths between some 
node pairs should be avoided due to several reasons including underwater flows, too narrow places for travel, 
and other risks like changing temperature and pressure. To tackle this case, we propose a modified genetic 
algorithm, the Safety-Aware Genetic Algorithm-based Approach, that blocks the direct paths between those 
nodes. In this scenario, the Safety-Aware Genetic Algorithm-based approach provides just a 3% longer path 
than the Genetic Algorithm-based approach which is the best approach among all these approaches. This shows 
that the Safety-Aware Genetic Algorithm-based approach performs very robustly. With our proposed robust 
and energy-efficient path-planning algorithms, the data gathered by sensors can be collected very quickly with 
much less energy, which enables the monitoring system to respond faster for ship accidents. It also reduces total 
energy consumption of sensors by communicating them closely and so extends the network lifetime.
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I. Introduction

There has been a close relationship between maritime and trade 
throughout history. Therefore, the most important reason for this is 

that the majority of international trade and especially intercontinental 
transportation is carried out using maritime transportation [1]. The 
most important factor in this is that sea transport is 3.5 times cheaper 
than railways, 7 times cheaper than road transport, and 22 times 
cheaper than air transport. This cost advantage causes the importance 
and volume of maritime transportation to increase day by day [2]. 
According to data from the International Chamber of Shipping (ICS), 
90% of world trade is carried out by sea today [3]. For this reason, the 

report of the United Nations Conference on Trade and Development 
predicts that world maritime trade will grow at an annual growth rate 
of 3.8% between 2018 and 2023 [4]. The increase in world maritime 
trade causes intense maritime traffic and the inevitable result of this 
is the increase in the risk of maritime accidents. Historical data shows 
that these accidents generally occur on the busiest routes [5].

Increasing both the volume and value of the cargo transported over 
time further magnifies the damage caused by accidents in maritime 
transportation. It is not possible to define the cost of loss of life 
occurring during these accidents in monetary terms [6]. For example, 
the ship accident and the transportation blockage in the Suez Canal [7]–
[9] caused severe economic consequences in the global supply chains 
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like its impacts on the transportation costs of the Chinese fleet in the 
shipping network [10]. A case study [11] provides a scenario analysis 
explanation for observed outcomes in a retrospective analysis using 
constrained Suez Canal case material. The findings can be utilized to 
diagnose backward risk sources for accident investigation and estimate 
forward risk for restricted waterway accident prevention to prevent 
similar incidents like the Suez Canal blockage. If such risks can be 
observed and detected very quickly with low energy consumption and 
little system maintenance, then precautions can be taken earlier to 
avoid such accidents which may have devastating consequences.

The developments experienced in the industry in recent years are 
evident in many sectoral areas. These developments lead to major 
changes in conventional structures today, and in particular, they 
greatly change the way work is done and the functions of employees 
[12]. These changes significantly affect the activities of maritime 
enterprises and the management of ships, as in many sectors. As a 
result of these developments, it has become possible to obtain a lot 
of data that is of great importance for the management and safe 
navigation of ships traveling in international waters in recent years. 
In particular, data regarding sea conditions are among the primary 
elements of safe navigation. Marine data are not only related to 
the sea surface; today, seabed data are as important as above-water 
information. For this purpose, instantaneous collection of seabed 
movements and data on the sea floor and timely transmission to 
relevant maritime organizations is of great importance for safe 
sea navigation. In addition, these data are necessary for safe route 
planning of maritime businesses and navigational routes of ships. It is 
also extremely important to take precautions.

In recent years, the great opportunities provided in data 
transmission and communication systems, in addition to ship systems, 
have reached dimensions that easily allow monitoring of data on the 
seabed as well as the sea surface from long distances and intervening 
when necessary. Since the target of maritime communication is the 
communication between the units needed by the maritime vehicles, it 
can be defined as communication between ships and other ships, land 
units, and aircraft [13].

A. Motivation
The importance of underwater wireless sensor networks (UWSNs) 

[14] is evident in ocean data collection, resource exploration, and 
navigation due to rapid development. The concept of intelligent 
ocean underwater Internet of Things (IoT) has been proposed 
recently [15], with numerous applications. Various underwater sensor 
nodes feed environmental data to a data processing center. In harsh 
marine settings, these battery-operated nodes require expensive and 
complicated battery replacement. Energy efficiency is essential for 
improving UWSN performance and reliability due to limited energy 
and short lifetime [16].

By proposing a robust, energy-efficient AI-based metaheuristic 
algorithm for path planning in UWSN, the data gathered by sensors 
can be collected very quickly by consuming much less energy, which 
enables faster response of the monitoring system in case of any risks of 
ship accidents. It also reduces the total energy consumption of sensors 
by communicating them at a closer point. It so extends the network 
lifetime of UWSN, which monitors the underwater environment to 
avoid ship accidents.

In this paper, we consider a 3D energy-aware path planning problem 
with autonomous underwater vehicle that visits multiple sensor nodes. 
This paper also considers a case (broader than obstacle avoidance) 
where direct traveling paths between some node pairs should be 
avoided due to several reasons including obstacles, underwater flows, 
too narrow places for travel, and other risks like changing temperature 
and pressure.

B. Our Contributions
Our main contributions can be summarized as follows:

• This work provides a comparative study of the five commonly 
used metaheuristic-based approaches (Ant Colony Optimization-
based Approach, Particle Swarm Optimization-based Approach, 
Teaching Learning Based Optimization-based Algorithm, 
Genetic Algorithm-based Approach, Grey Wolf Optimizer-based 
Approach) for 3D path planning problem by an AUV for data 
collection problems in UWSN.

• We also consider the traveling limitations between some of the 
sensor pairs such as obstacles between sensors, pressure, water 
flows, and changing temperature.

• We propose a modified version of the genetic algorithm, Safety-
Aware Genetic Algorithm (SAGA)-based Approach, under the 
traveling limitations through the links between some sensor 
pairs by modifying the distance-based cost matrix for the path 
planning problem.

C. Organization
The rest of this paper is organized as follows. Section II provides 

related literature. Section III provides the system model and defines 
the problem. Section IV tackles the 3D path planning problem as a 
traveling salesman problem and proposes several algorithms: Ant 
Colony Optimization-based Approach, Particle Swarm Optimization-
based Approach, Teaching Learning Based Optimization-based 
Algorithm, Genetic Algorithm-based Approach, Grey Wolf Optimizer-
based Approach. In Section V, we propose a novel approach, Safety-
Aware Genetic Algorithm-based Approach, by considering the 
problem with some limitations between some of the sensor pairs. In 
Section VI, we evaluate performances of the proposed algorithms. 
Section VII concludes the paper and provides future directions.

II. Related Work

This section considers the related literature for the path planning 
problem in UWSN.

There have been numerous attempts to resolve this problem. First, a 
significant portion of the energy used by UWSNs is usually attributed 
to data transmission. The collected sensor data is aggregated and 
reduced using data compression and optimization algorithms to reduce 
transmission data and energy consumption [17]. Second, the energy 
efficiency of UWSNs can also be increased with the use of smart node 
placement and routing strategies. Based on the uneven distance and 
energy expenditure between sensor nodes, optimal deployment and 
routing techniques can decrease energy consumption and increase 
network lifetime.

However, even with these methods, changing the battery is still 
necessary when it runs out. Thus, to charge underwater sensors, energy 
transfer technologies accomplish long-term monitoring and data 
transmission while avoiding the difficulty of regular battery replacement. 
DeMauro et al. [18] created a rechargeable lithium-ion battery module 
specifically for underwater applications to combat high water pressure 
and short circuit. Autonomous underwater vehicles (AUVs) are required 
to help with charging due to the limited transmission distance of energy, 
and route planning for AUVs is required.

An AUV is a self-propelled submersible that can be used for 
moderate tasks without human intervention. Underwater resource 
research, underwater environmental monitoring, and marine safety 
have all made extensive use of the AUV, which is regarded as an 
affordable and secure tool for seabed inquiry, search, identification, 
and rescue [19], [20]. The difficulty of losing data from its successive 
nodes arises from the AUV’s limited power carrying capacity, which 
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also limits its charging area. This makes it challenging to guarantee 
the AUV’s practicality in cases for larger detecting region, particularly 
in marine conditions.

A plan to create magnetically charged cars for wireless rechargeable 
sensor networks (WRSNs) was put forth [21]. UWSNs are often used in 
a three-dimensional framework, in contrast to ground-based wireless 
rechargeable sensor networks, and their transmission power increases 
significantly with underwater distance.

Communication protocol design can conserve energy due to battery 
limits. Lee et al. compared energy-efficient UWSN MAC techniques 
depending on network topology [22]. A work [23] examines energy-
efficient and dependable UWSN MAC and routing techniques. 
Another work [24] creates a packet-sending mechanism to eliminate 
redundancy and increase channel quality. A hybrid-coding-aware 
routing system for underwater acoustic sensor networks (UASNs) by 
Su et al. [25] reduces transmission overhead and ensures reliability.

Underwater sensor networks benefit from clustering’s energy 
efficiency, data aggregation, resource management, and lifespan [26]. 
It divides the network into clusters, each with a cluster head (CH) that 
aggregates and relays information from individual nodes, eliminating 
redundant transfers [27]. This saves energy and bandwidth in 
underwater areas with restricted communication resources [28].

Sun et al. [29] developed a clustering-based communication protocol 
that lowered sensor node energy usage. A topology management 
approach for underwater sonar detection networks (USDNs) by Jin 
et al. can improve coverage performance and extend network lifetime 
with guaranteed coverage and connection [30]. A work [31] developed 
a virtual force-based distributed node deployment strategy to improve 
UWSN network coverage. Another work [32] builds a network 
topology control model including underwater aspects like robustness, 
energy consumption balance, and topology to extend UWSN lifetime 
and optimize data delivery.

Data collection, charging, and more are conceivable with autonomous 
underwater vehicles. AUVs gather data. AUVs with sensors can gather 
data on geology underwater, water conditions, marine life. A work [33] 
tested AUV-assisted communication, where the AUV collects energy-
saving data as a mobile node. Another work [34] suggested using AUVs 
to collect data and plan pathways with K-means [35].

Underwater networking and communication require AUVs. 
Stationary or mobile sensors can provide data to a central station 
or other AUVs. Smooth communication and real-time underwater 
operation monitoring and control are possible. A field-deployable 
three-phase wireless charging system by Kan et al. [36] charges AUVs 
quickly, efficiently, and conveniently. To speed up AUV battery life, 
Ramos et al. [37] used dynamic system theory for navigation in 0–100 
m ocean depths.

Autonomous docking and battery charging AUVs are being developed. 
This lets them run for long periods without human assistance. AUV 
batteries and sensor nodes charge when docked. Avoiding retrieval and 
recharge makes them more independent and efficient.

Energy efficiency is improved via AUV path design. To save 
electricity and increase network lifetime, Cheng et al. worldwide design 
the AUV’s path, avoid underwater obstacles, and analyze its energy 
consumption model using kinematic and dynamical models [38]. 
Kumar et al. [39] propose a hybrid subsea AUV exploration method 
that greatly reduces their range. The work [40] sectors the exploring 
region into numerous smaller sections with data-receiving points. 
Path planning saves AUV energy while collecting data. A rechargeable 
UWSN path planning method [41] increases network lifetime.

To solve UWSN energy shortages and battery replacement 
difficulties, the work [42] proposes a path planning and energy-
saving technique for charging underwater sensor nodes using AUVs. 

A genetic algorithm determines the optimal AUV path, while many 
AUVs charging the sensor network nodes maximize network size and 
transmission reliability. The outcomes of the simulation demonstrate 
that the AUV path planning scheme converges more quickly than 
conventional algorithms and increases the lifetime of UWSNs while 
energy balancing following node density and network size. In high-
density networks, the proposed path planning technique lowers the 
energy consumption of exploratory AUVs by 15% per AUV.

A work [43] considers a path planning problem of unmanned aerial 
vehicle (UAV) from one point to another point by avoiding obstacles 
between them and it presents a comparative study of genetic algorithm, 
simulated annealing, grey wolf optimizer, and an improved version 
of grey wolf optimizer algorithm. However, it tackles a problem like 
the shortest path problem while our paper considers a problem like a 
traveling salesman problem (TSP).

Another research [44] tackles a path planning problem of AUV 
from one point to another point by considering ocean currents. It 
tackles the problem for both cases without obstacles between them 
and with obstacles between them. It presents a comparative study 
of A* [45], rapidly exploring random tree (RRT) [46], [47], genetic 
algorithm, particle swarm optimization, and an improved version of 
particle swarm optimization algorithm. However, it tackles a problem 
like the shortest path problem in an ocean environment with ocean 
currents while our paper considers a problem like a TSP.

A study [48] considers a motion planning problem of an autonomous 
ground vehicle from one point to another point by avoiding obstacles 
between them and it presents a comparative study of the probabilistic 
roadmap (PRM) [49], RRT, and the proposed algorithm, Optimistic 
Motion Planning using Recursive Sub-Sampling. The investigated 
problem is a 2D motion planning problem which differs from our TSP-
type path planning problem.

Another work [50] proposes a new optimal path planning 
method for long-term autonomous underwater vehicle operations 
in areas where ocean currents change over time. These currents may 
surpass the AUV’s top speed and momentarily reveal obstructions. 
Paths require both geographical and temporal characterisation, in 
contrast to the majority of other path design methodologies. This 
method allows for a trade-off between mission duration and energy 
requirements by utilising ocean currents to limit energy usage and 
achieve mission objectives. By using a parallel swarm search, the 
proposed method reduces the susceptibility to large local minima on 
the complex cost surface. The efficiency of the optimisation strategies 
is evaluated computationally and empirically using the Starbug AUV 
on a validated ocean model of Brisbane’s Moreton Bay.

In another research [51], the genetic algorithm, grey wolf optimizer 
algorithm and nearest neighbour algorithm have been applied to 
solve this problem. It is shown that the nearest neighbour algorithm 
shows much quicker (nearly 30 times quicker) performance than the 
genetic algorithm and grey wolf optimizer algorithmn. On the other 
hand, the genetic algorithm exhibits better performance than the 
nearest neighbour algorithm while grey wolf optimizer algorithm 
demonstrates the worst performance among all them.

This present paper considers a 3D energy-aware path planning 
problem with autonomous underwater vehicle that visits multiple 
nodes. Then, it applies the five most commonly used metaheuristic-
based approaches, namely, Ant Colony Optimization-based Approach, 
Particle Swarm Optimization-based Approach, Teaching Learning-based 
Optimization-based Approach, Genetic Algorithm-based Approach, 
Grey Wolf Optimizer-based Approach. This paper also considers a case 
(broader than obstacle avoidance) where direct traveling paths between 
some node pairs should be avoided due to several reasons including 
obstacles, underwater flows, too narrow places for the travel, and other 
risks like changing temperature and pressure.
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Table I provides a brief comparison of the energy-aware path 
planning approaches in the closely related literature.

TABLE I. Brief Comparison of the Energy-aware Path Planning 
Approaches

Included Features Underwater 3D
Multiple 
Point visit

Obstacle 
Avoidance

Ding et al. [43] no no no yes

Zeng et al. [44] yes no no yes

Kenye et al. [48] no no no yes

Witt et al. [50] no no no no

Gul et al. [51] yes yes yes no

This work yes yes yes yes

III. System Model and Problem Definition

This paper considers the energy-aware path planning problem with 
an AUV to visit sensors underwater. This section presents a motivating 
scenario and formulates the problem based on this motivation. First, 
we consider the system model of the UWSN. Then, we define the 
energy-aware path planning problem more precisely.

A. System Model
The network model is shown in Fig. 1. Every sensor node is 

connected to an underwater acoustics link, which transmits data to 
SINK nodes. Starting at a charge station (CS), the magnetic resonance 
coupling AUV charges each sensor node before making its way back to 
the CS for a charge and rest. It functions as a mobile sink to gather data. 

AUV

Sink (Ship)

S1 S2

S3

S4

S5S10

S11

S12
S6

S7

S8

S9

S13

S14

S15

Fig. 1. The system model of the UWSN where the AUV collects data from all 
the fifteen sensors (N1, N2, ..., N15) which monitor the sea for anomaly/risk 
detection to avoid ship accidents. After aggregating all the gathered data, this 
is sent to the data sink which collects all the data to evaluate them.

One important problem in UWSNs is the energy consumption 
balance of underwater sensors. In several studies [34, 35, 36], AUVs 
have been used to collect underwater data to solve the problem of 
unequal energy use. The AUV moves and visits each sensor node by a 
predefined plan to balance each node’s energy consumption.

B. Problem Definition
The energy-aware path planning problem via AUV can be 

categorized as a traveling salesman problem (TSP) [52]–[54]. The two 
main methods for resolving the TSP are the intelligent evolutionary 

algorithm and the classical search algorithm. Examples of the former 
include the greedy algorithm, the artificial potential field technique, 
and the quick progress algorithm. The latter includes methods like the 
ant colony algorithm, particle swarm optimization approach, teaching 
learning-based optimization algorithm, grey wolf optimizer algorithm, 
and genetic algorithm.

The most prominent NP-hard optimization problem is the TSP [53], 
[54]. TSP finds a route for a salesman that starts from home, visits 
a collection of locations, and returns to the original place with the 
minimum trip distance with each city visited once [56].

In a TSP problem with m sensor nodes, let cij denote the node 
distance from node i to node j. Let xij denote a binary variable that 
takes the value of 1 if node j is visited just after node i. Otherwise, 
it takes the value of 0. In this case, the energy-aware path planning 
problem can be considered as an NP-hard TSP as follows [55]:

Problem 1. Minimizing the following cost function:

 (1)

where

IV. Proposed Energy-Aware Path Planning (EAPP) 
Approaches

In this section, we tackle the energy-aware path planning problem 
of AUV which includes the distance between each pair of sensor nodes.

We present the following algorithms by tackling the EAPP problem 
as a TSP problem: Ant Colony Optimization-based Approach, Particle 
Swarm Optimization-based Approach, Teaching Learning based 
Optimization-based Algorithm, Genetic Algorithm-based Approach, 
Grey Wolf Optimizer-based Approach.

A. Ant Colony Optimization (ACO)-Based Approach
ACO has many inherent limitations, despite its strong performance 

in discrete problem solutions. Despite having great stability, it has 
several disadvantages when working with large amounts of data in 
terms of convergence speed and results in correctness [59].

We tackle the EAPP problem as a TSP and propose a 3D path 
planning solution based on the ACO [57], [58].

B. Particle Swarm Optimization (PSO) Algorithm-Based 
Approach

PSO has been popular with researchers for its ability to hybridize, 
specialize, and exhibit novel emergent behaviors in various application 
areas. PSO’s main benefit is tweaking fewer parameters. PSO finds 
the optimal particle interaction solution but converges slowly to the 
global optimum in high-dimensional search space. It performs poorly 
on large, complex datasets. PSO rarely finds the global optimum 
solution in multidimensional situations. Local optima traps and 
particle velocity variations confine trials to a sub-plain of the search 
hyper-plain [62], [63].

We tackle the EAPP problem as a TSP and propose a 3D path 
planning solution based on the PSO [60], [61].
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C. Teaching Learning Based Optimization (TLBO)-Based 
Algorithm

TLBO solves large global optimum optimization problems with a 
sophisticated metaheuristic method. Several TLBO variations have 
been proposed to improve local optima avoidance and convergence 
speed [65].

We tackle the EAPP problem as a TSP and propose a 3D path 
planning solution based on the TLBO-based Algorithm [64].

D. Grey Wolf Optimizer (GWO)-Based Approach
GWO is easier to implement than PSO and GA. On the other hand, it 

has the drawbacks of poor convergence speed, low solution precision, 
and local optimum tendency.

We tackle the EAPP problem as a TSP and propose a 3D path 
planning solution based on the GWO algorithm [66].

E. Genetic Algorithm (GA)-Based Approach
We tackle the EAPP problem as a TSP and propose a 3D path 

planning solution based on the Genetic Algorithm [67],[68].

The basic principle of genetic algorithms is to solve complex 
optimization problems by imitating biological evolution. The first steps 
in applying a genetic algorithm to tackle TSP issues are identifying 
the individuals of the TSP solution and initializing the population. 
Every member of the population is rated according to a fitness 
function, and the most fit individuals are selected for genetic processes 
including selection, crossover, and mutation. The genetic algorithm’s 
termination criterion is the maximum number of iterations selected. 
Furthermore, the individual fitness for this work is the total route size 
or the total AUV energy consumption. By summing up the distances 
of all the sensing nodes, equation (2) may be utilized to determine the 
fitness of each individual in this circumstance.

 (2)

where N denotes the number of nodes; (𝑥𝑙, 𝑦𝑙, 𝑧𝑙) denotes the 3D 
position of node 𝑙.

V. Safety-Aware Genetic Algorithm (SAGA)-Based 
Approach

In this section, we consider the energy-aware path planning 
problem by also considering the limitations that emerge between some 
of the sensor pairs. The obstacles between sensors can block direct 
traveling from one sensor to the other. Changing pressure, water flows 
and changing temperature can be other reasons for the AUV not prefer 
to travel from one sensor to the other sensor directly. In this case, the 
AUV will visit some other sensor/s between those two sensors.

We propose a modified version of the genetic algorithm, the Safety-
Aware Genetic Algorithm (SAGA)-based Approach, for the 3D path 
planning problem with small obstacles that emerge between some of 
the sensor pairs.

In the SAGA approach, we do not modify the standard GA itself; 
however, we transform the distance cost matrix by replacing the cost 
of the unavailable path between some nodes with a very large number 
of M to avoid preferring those paths during path planning.

Fig. 2 shows the flow diagram of SAGA, which exhibits its difference 
from GA.

Before applying the genetic algorithm, the distance cost matrix 
obtained for n nodes can be written as

 (3)

Due to several reasons including underwater flows, too narrow 
places for the UAV’s travel, and other risks like changing temperature 
and pressure, direct traveling paths between some node pairs should be 
avoided in some cases. In such cases, if we consider blockage between 
node (𝑛 − 1) and node 𝑛  such that traveling from node (𝑛 − 1) to node 
𝑛  is not possible, then their distance can be modified as 𝑑(𝑛 − 1) 𝑛  = ∞.

By replacing all 𝑑(𝑛 − 1) 𝑛  entries (𝑑12, 𝑑23, ..., 𝑑(𝑛 − 1) 𝑛 ) with ∞ such that 
𝑑(𝑛 − 1) 𝑛  = ∞, the modified distance cost matrix 𝐷mod obtained before 
applying the genetic algorithm for 𝑛  nodes can be written as

 (4)

Giving a very large number M instead of ∞ can be more practical for 
the implementation. M can be chosen as the square of the maximum 
distance between two nodes in the matrix.

By replacing all ∞ with M such that 𝑑(𝑛 − 1) 𝑛 = M, the practically 
modified distance cost matrix  obtained before applying genetic 
algorithm for 𝑛  nodes can be written as

 (5)

By considering the practically modified distance cost matrix  
 instead of the distance cost matrix D, we apply the 3D genetic 

algorithm, which brings safety-awareness about each link between 
node 𝑖 and node 𝑖 + 1. Hence, we propose the SAGA-based Approach, 
for the 3D energy-aware path planning problem.

To sum up the implementation of SAGA, we applied the GA in 
the 3D path planning problem with the difference that we modified 
the distance cost matrix before applying the GA, which brings safety 
awareness to GA and converts it into SAGA.

Distance Cost
Matrix

Genetic
Algorithm

Genetic
Algorithm

Applying directly
genetic algorithm to the

distance cost matrix

Applying genetic algorithm to the
practically modified distance cost matrix

Replacing infinity entries with a
large number value of M
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Fig. 2. The flow charts of GA (left one) and SAGA (right one), which exhibits 
the difference of SAGA from GA.
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VI. Numerical Results

In this section, we evaluate the performance of the algorithms for 
the 3D energy-aware path planning problem of AUV which includes 
the distance between each pair of sensor nodes. For the simulations, 
we formed a 500 m × 500 m × 500 m space by locating sensor nodes 
randomly (The related works choose similar range of dimension 
length and distances).

In the first subsection, we consider a scenario with an AUV and 50 
nodes by considering no limits in links that block traveling directly 
between some node pairs. In the second subsection, we consider 
a scenario with an AUV and 100 nodes by considering no limits in 
links that block traveling directly between some node pairs. In the last 
subsection, we consider two separate scenarios with an AUV and 50 
nodes and with an AUV and 100 nodes by considering limits in some 
links that block traveling directly between some node pairs.

A. 50-Node Scenario
In this subsection, we will consider a scenario with 50 nodes and a 

single AUV. Fig. 3 illustrates the locations of the 50 nodes in the 500 m 
× 500 m × 500 m space.

Locations of the 50 nodes are given as { (440, 20, 472), (500, 57, 325), 
(283, 289, 65), (292, 309, 106), (55, 147, 388), (452, 20, 45), (236, 381, 178), 
(423, 9, 16), (157, 461, 36), (75, 28, 450), (141, 72, 153), (290, 354, 346), 
(2, 213, 111), (146, 175, 125), (156, 207, 283), (447,261, 360), (106, 139, 
228),(448, 482, 170),(426, 110, 221), (487, 279, 21), (257,240, 184), (323, 
160, 225), (139, 20, 384), (294, 106, 400), (412, 353, 409), (437, 60, 12), 
(239, 5, 27), (256, 270, 219), (317, 388, 242), (207, 297, 388), (167,154, 441), 
(148, 463, 94), (185, 103, 278), (270, 445, 26), (346, 261, 303), (387,232, 
380), (397, 414, 211),(29, 368, 61), (150, 118, 369), (205, 65, 489), (116,350, 
124), (223, 359, 458),(458, 201, 137), (13, 98, 242), (338, 186, 18), (58, 445, 
314), (428, 152, 166),(212, 156, 281), (208, 330, 93),(100, 333, 420) }

Coordinates of Cities
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400400

300

300

200

200200
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100

100

0

0 0

600

Fig. 3. The coordinates of the sensor nodes to be visited by the AUV.

By considering different subsets of these parameters, we evaluate 
the performance of the following algorithms by tackling the EAPP 
problem as a TSP problem: Ant Colony Optimization (ACO)-based 
Approach, Particle Swarm Optimization (PSO)-based Approach, 
Teaching Learning Based Optimization (TLBO)-based Algorithm, 
Genetic Algorithm (GA)-based Approach, Grey Wolf Optimizer 
(GWO)-based Approach.

In the following subsubsections, we present the solutions achieved 
by ACO-based Approach, PSO-based Approach, TLBO-based 
Algorithm, GA-based Approach, and GWO-based Approach as a result 
of 1000 iterations.

1. ACO-Based Approach
In this subsubsection, we present an ACO-based solution for the 

3D TSP problem.

Fig. 4 exhibits ACO’s achieved path planning solution in 1000 
iterations for visiting the 50 nodes in Fig. 3.
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Fig. 4. The achieved path planning solution for visiting the 100 nodes by AUV 
with ACO in 1000 iterations.

2. PSO-Based Approach
In this subsubsection, we present a PSO-based solution for the 3D 

TSP problem.

Fig. 5 exhibits the PSO’s achieved path planning solution in 1000 
iterations for visiting the 50 nodes in Fig. 3.
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Fig. 5. The achieved path planning solution for visiting the 100 nodes by AUV 
with PSO in 1000 iterations.

3. TLBO-Based Algorithm
In this subsubsection, we present a TLBO-based solution for the 3D 

TSP problem.

Fig. 6 exhibits the TLBO’s achieved path planning solution in 1000 
iterations for visiting the 50 nodes in Fig. 3.

4. GWO-Based Approach
In this subsubsection, we present a GWO-based solution for the 3D 

TSP problem.

Fig. 7 exhibits the GWO’s achieved path planning solution in 1000 
iterations for visiting the 50 nodes in Fig. 3.
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Fig. 6. The achieved path planning solution for visiting the 100 nodes by AUV 
with TLBO in 1000 iterations.
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Fig. 7. The achieved path planning solution for visiting the 100 nodes by AUV 
with GWO in 1000 iterations.

5. GA-Based Approach
In this subsubsection, we present a GA-based solution for the 3D 

TSP problem.

Fig. 8 exhibits the GA’s achieved path planning solution in 1000 
iterations for visiting the 50 nodes in Fig. 3.
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Fig. 8. The achieved path planning solution for visiting the 100 nodes by AUV 
with GA in 1000 iterations.

6. Comparison and Discussion
Considering the general trend, the GA-based Approach shows 

better performance than the ACO-based Approach, PSO-based 
Approach, TLBO-based Approach, and GWO-based Approach.

Fig. 9 shows the total traveled distance by AUV with different 
algorithms (the ACO-based Approach, PSO-based Approach, TLBO-
based Approach, GWO-based Approach, and GA-based Approach) for 
visiting the 50 nodes, which are located initially as given in Fig. 3.
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Fig. 9. The achieved path lengths for visiting the 100 nodes by all the algorithms 
(the ACO-based Approach, PSO-based Approach, TLBO-based Approach, 
GWO-based Approach, and GA-based Approach) in 1000 iterations.

From Fig. 9, we can make the following observations on the 
performance of the algorithms for the 50-node scenario. The ACO-
based approach achieves better in less number of iterations such that its 
performance becomes worse with the increasing number of iterations 
after achieving its minimum. Although the PSO-based approach 
achieves better with an increasing number of iterations, it achieves 
better than just the ACO-based approach for 1000 iterations. Although 
the GWO-based approach converges faster than TLBO-based approach, 
both achieve almost the same performance for 1000 iterations, which 
is considerably better than the ACO-based approach and PSO-based 
approach. The GA-based approach not only achieves much better 
than all of ACO-based Approach, PSO-based Approach, TLBO-based 
Approach, GWO-based Approach but also converges faster than PSO-
based Approach, TLBO-based Approach, GWO-based Approach (Only 
ACO-based approach converges to minimum very fast.)

From Table II, we can make the following observations. At the 
beginning (in the first iteration), all the algorithms except the GA-
based approach have similar performance with at most 2.5% difference 
(366 m difference between ACO-based approach and GWO-based 
approach) while the GA-based approach achieves 4.0% difference better 
than ACO-based approach. In iteration 100, the TLBO-based approach 
achieves the worst performance while the GA-based approach 
achieves considerably better than the other approaches (3534 m, 
namely, 30.4% less than the ACO-based approach which is the second 
best). In iteration 300, the ACO-based approach achieves the worst 
performance while the GA-based approach achieves considerably 
better than the other approaches (4418 m, namely, 39.7% less than 
the GWO-based approach which is the second best). In addition, PSO 
and TLBO-based approaches achieve closely to each other in iteration 
300. In iteration 600, the ACO-based approach achieves the worst 
performance while the GA-based approach achieves considerably 
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better than the other approaches (3666 m, namely, 36.7% less than the 
GWO-based approach which is the second best). In addition, GWO and 
TLBO-based approaches achieve very closely to each other in iteration 
600 (just 0.73% difference). In iteration 1000, the ACO-based approach 
achieves the worst performance while the GA-based approach 
achieves considerably better than the other approaches (2610 m, 
namely, 29.5% less than the GWO-based approach which is the second 
best). In addition, GWO and TLBO-based approaches achieve very 
closely to each other in iteration 1000 (just 0.77% difference), which is 
much better than the ACO-based approach and PSO-based approach.

B. 100-Node Scenario
In this subsection, we will consider a scenario with 100 nodes and 

a single AUV. Fig. 10 illustrates the locations of the 100 nodes in the  
500 m × 500 m × 500 m space.

Locations of the 100 nodes are given as { (408, 82, 323), (453, 398, 
190), (64, 156, 406), (457, 265, 267), (317, 83, 176), (49, 301, 470), (140, 
132, 438), (274, 328, 276), (479, 345, 312), (483, 375, 294), (79, 226, 104), 
(486, 42, 151), (479, 115, 236), (243, 457, 116), (401, 77, 423), (71, 413, 98), 
(211, 270, 113), (458, 499, 86), (397, 40, 114), (480, 222, 218), (328, 54, 
156), (18, 481, 462), (425, 3, 216), (467, 388, 93), (340, 409, 453), (379, 435, 
490), (372, 43, 220), (197, 200, 56), (328, 130, 130), (86, 401, 205), (354, 
216, 298), (16, 456, 132), (139, 91, 302), (24, 132, 356), (49, 73, 111), (412, 
69, 59), (348, 435, 149), (159, 290, 160), (476, 275, 213), (18, 73, 254), (220, 
427, 43), (191, 312, 132), (383, 176, 401), (398, 257, 15), (94, 201, 465), 
(245, 38, 366), (223, 120, 245), (324, 62, 290), (355, 92, 119), (378, 120, 
230), (139, 209, 482), (340, 25, 274), (328, 452, 261), (82, 473, 116), (60, 
246, 245), (250, 245, 313), (480 169, 340), (171, 451, 198), (293, 185, 184), 
(112, 56, 494), (376, 391, 19), (128, 195, 443), (253, 121, 457), (350, 202, 
399), (446, 49, 50), (480, 66, 131), (274, 472, 168), (70, 479, 340), (75, 288, 
69), (129, 30, 361), (421, 118, 54), (128, 177, 327), (408, 411, 248), (122, 8, 
390), (465, 22, 358), (175, 85, 452), (99, 325, 446), (126, 366, 168), (309, 
324, 350), (237, 226, 99), (176, 274, 16), (416, 149, 373), (293, 373, 251), 
(275, 95, 240), (459, 344, 453), (143, 92, 305), (379, 185, 309), (377, 313, 

430), (191, 391, 403), (284, 41, 289), (38, 465, 92), (27, 388, 120), (266, 244, 
444), (390, 218, 15), (468, 224, 245), (65, 154, 84), (285, 255, 490), (235, 
256, 357), (6, 409, 251), (169, 398, 236)}.

By considering different subsets of these parameters, we evaluate 
the performance of the following algorithms by tackling the EAPP 
problem as a TSP problem: Ant Colony Optimization (ACO)-based 
Approach, Particle Swarm Optimization (PSO)-based Approach, 
Teaching Learning Based Optimization (TLBO)-based Algorithm, 
Genetic Algorithm (GA)-based Approach, Grey Wolf Optimizer 
(GWO)-based Approach.

In the following subsubsections, we present the solutions achieved 
by ACO-based Approach, PSO-based Approach, TLBO-based 
Algorithm, GA-based Approach, and GWO-based Approach as a result 
of 1000 iterations.

1. ACO-Based Approach
In this subsubsection, we present an ACO-based solution for the 

3D TSP problem.

Fig. 11 exhibits ACO’s achieved path planning solution in 1000 
iterations for visiting the 100 nodes in Fig. 10.
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Fig. 11. The achieved path planning solution for visiting the 100 nodes by AUV 
with ACO in 1000 iterations.

2. PSO-Based Approach
In this subsubsection, we present a PSO-based solution for the 3D 

TSP problem.

Fig.12 exhibits the PSO’s achieved path planning solution in 1000 
iterations for visiting the 100 nodes in Fig. 10.

3. TLBO-Based Algorithm
In this subsubsection, we present a TLBO-based solution for the 3D 

TSP problem.

Fig. 13 exhibits the TLBO’s achieved path planning solution in 1000 
iterations for visiting the 100 nodes in Fig. 10.

TABLE II. Total Distance for Visiting the 50 Nodes By the Algorithms (the ACO-Based Approach, PSO-Based Approach, TLBO-Based Approach, 
GWO-Based Approach, and GA-Based Approach) With Respect to Iteration Number (Note That Iteration 1 Is Considered as the Beginning 

Instead of Iteration 0)

Iteration 1 100 200 300 400 500 600 700 800 900 1000
ACO 14468 11628 12683 13214 12748 12130 13177 12652 12936 12981 12502

PSO 14787 12150 12019 12019 11851 11802 11802 11439 11439 11439 11439

TLBO 14603 13103 13012 12421 11153 10729 10069 9533 8963 8906 8906

GWO 14834 11874 11254 11130 10669 10186 9996 9251 8977 8837 8837

GA 13889 8094 7374 6712 6420 6330 6330 6314 6279 6271 6227
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Fig. 10. The coordinates of the 100 sensor nodes to be visited by the AUV.
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Fig. 12. The achieved path planning solution for visiting the 100 nodes by AUV 
with PSO in 1000 iterations.
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Fig. 13. The achieved path planning solution for visiting the 100 nodes by AUV 
with TLBO in 1000 iterations.

4. GWO-Based Approach
In this subsubsection, we present a GWO-based solution for the 3D 

TSP problem.

Fig. 14 exhibits the GWO’s achieved path planning solution in 1000 
iterations for visiting the 100 nodes in Fig. 10.
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Fig. 14. The achieved path planning solution for visiting the 100 nodes by AUV 
with GWO in 1000 iterations.

5. GA-Based Approach
In this subsubsection, we present a GA-based solution for the 3D 

TSP problem. Fig. 15 exhibits the GA’s achieved path planning solution 
in 1000 iterations for visiting the 100 nodes in Fig. 10.
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Fig. 15. The achieved path planning solution for visiting the 100 nodes by AUV 
with GA in 1000 iterations.

6. Comparison and Discussion
Considering the general trend, the GA-based Approach shows 

better performance than the ACO-based Approach, PSO-based 
Approach, TLBO-based Approach, and GWO-based Approach.

Fig. 16 shows total traveled distance by AUV with different 
algorithms (ACO-based Approach, PSO-based Approach, TLBO-
based Approach, GWO-based Approach, and GA-based Approach) for 
visiting the 100 nodes, which are located as given in Fig. 10.
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Fig. 16. The achieved path lengths for visiting the 100 nodes by all the 
algorithms (the ACO-based Approach, PSO-based Approach, TLBO-based 
Approach, GWO-based Approach, and GA-based Approach) in 1000 iterations.

From Fig. 16, we can make the following observations on the 
performance of the algorithms for the 100-node scenario. Although 
the PSO-based approach achieves better with an increasing number 
of iterations, it achieves worse than all the other approaches for 1000 
iterations. The ACO-based approach achieves better in less number of 
iterations such that its performance becomes worse with the increasing 
number of iterations after achieving its minimum. The GWO-based 
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approach converges almost as fast as the TLBO-based approach in the 
first 600 iterations while it converges to its minimum faster than the 
TLBO-based approach. The TLBO-based approach achieves almost the 
same as the ACO-based approach whereas the GWO-based approach 
achieves considerably better than all of the TLBO-based approach, 
the ACO-based approach and PSO-based approach. The GA-based 
approach not only achieves much better than all of the ACO-based 
Approach, PSO-based Approach, TLBO-based Approach, GWO-based 
Approach but also converges faster than PSO-based Approach, TLBO-
based Approach, GWO-based Approach (Only ACO-based approach 
converges to its minimum very fast.) Considering all these, increasing 
the number of nodes from 50 to 100 nodes makes a considerable 
difference in some of these algorithms, especially the PSO-based 
approach and TLBO-approach.

From Table III, we can make the following observations. At the 
beginning (in the first iteration), all of the algorithms except the GA-
based approach have similar performance with at most 2.5% difference 
(366 m difference between ACO-based approach and GWO-based 
approach) while the GA-based approach achieves 4.0% difference better 
than ACO-based approach. In iteration 100, the TLBO-based approach 
achieves the worst performance while the GA-based approach 
achieves considerably better than the other approaches (3534 m, 
namely, 30.4% less than the ACO-based approach which is the second 
best). In iteration 300, the ACO-based approach achieves the worst 
performance while the GA-based approach achieves considerably 
better than the other approaches (4418 m, namely, 39.7% less than 
the GWO-based approach which is the second best). In addition, PSO 
and TLBO-based approaches achieve closely to each other in iteration 
300. In iteration 600, the ACO-based approach achieves the worst 
performance while the GA-based approach achieves considerably 
better than the other approaches (3666 m, namely, 36.7% less than the 
GWO-based approach which is the second best). In addition, GWO and 
TLBO-based approaches achieve very closely to each other in iteration 
600 (just 0.73% difference). In iteration 1000, the ACO-based approach 
achieves the worst performance while the GA-based approach 
achieves considerably better than the other approaches (2610 m, 
namely, 29.5% less than the GWO-based approach which is the second 
best). In addition, GWO and TLBO-based approaches achieve very 
closely to each other in iteration 1000 (just 0.77%difference), which is 
much better than the ACO-based approach and PSO-based approach.

C. Safety-Awareness in 50-Node Scenario and 100-Node Scenario
In this subsection, we evaluate the performance of the Safety-Aware 

Genetic Algorithm (SAGA)-based solution for the 3D TSP problem 
under the limitation where visiting node 𝑖 just after node 𝑖 −  1 has an 
extreme distance cost so impossible to visit.

1. Safety-Aware Genetic Algorithm (SAGA)-Based Approach
In this subsubsection, we observe the Safety-Aware Genetic 

Algorithm (SAGA)-based solution for the 3D TSP problem. Fig. 17 
exhibits the SAGA’s achieved path planning solution in 1000 iterations 
for visiting the 50 nodes in Fig. 3.
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Fig. 17. The achieved path planning solution for visiting the 50 nodes by AUV 
with SAGA in 1000 iterations under limitations.

Fig. 18 exhibits the SAGA’s achieved path planning solution in 1000 
iterations for visiting the 100 nodes in Fig. 10.
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Fig. 18. The achieved path planning solution for visiting the 100 nodes by AUV 
with SAGA in 1000 iterations under limitations.

2. Comparison and Discussion
Considering the general trend, the GA-based Approach shows 

better performance than SAGA-based Approach. Fig. 19 shows the 
total traveled distance by AUV with GA-based Approach and SAGA-
based Approach under the 50-node scenario in Fig. 3 and the 100-node 
scenario in Fig. 10.

From Fig. 19, we can make the following observations on the 
performance of the GA-based Approach and SAGA-based Approach 
under the 50-node scenario and the 100-node scenario. Under the 50-
node scenario, the GA-based Approach and SAGA-based Approach 
achieve almost the same performance with just a slight difference. 

TABLE III. Total Distance for Visiting the 100 Nodes By the Algorithms (ACO-Based Approach, PSO-Based Approach, TLBO-Based Approach, 
GWO-Based Approach, and GA-Based Approach) With Respect to Iteration Number (Note That Iteration 1 Is Considered as the Beginning 

Instead of Iteration 0)

Iteration 1 100 200 300 400 500 600 700 800 900 1000
ACO 27446 20564 21526 26213 24262 24379 13177 12652 12936 12981 12502

PSO 30230 28808 28808 28120 28120 28120 27323 27323 27323 27323 27323

TLBO 29366 27864 26917 26649 26649 25264 25264 25264 25264 25264 24448

GWO 30418 27525 27525 27525 27525 27525 27525 24432 21589 19529 17794

GA 30549 19471 16861 14455 13182 12676 12120 11848 11351 11159 10803



Special Issue on Deep Learning Techniques for Semantic Web  in Web of Things (WoT) and Internet of Everything (IoE)

- 25 -

Similarly, under the 100-node scenario, the GA-based Approach and 
SAGA-based Approach achieve almost the same performance with 
just a slight difference.
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Fig. 19. Total distance for visiting the nodes by the GA-based Approach and 
the SAGA-based Approach under 50-node scenario and 100-node scenario in 
1000 iterations.

From Table IV, we can make the following observations. Under the 
50-node scenario, the GA-based Approach and SAGA-based Approach 
achieve almost the same performance with just a slight difference. 
In iteration 1000, the difference between the GA-based approach 
and the SAGA-based approach becomes very subtle (177 m, namely, 
2.76% less than the SAGA-based approach). Similarly, under the 100-
node scenario, the GA-based Approach and SAGA-based Approach 
achieve almost the same performance with just a slight difference. Just 
between iterations 100 and 400, the difference increases. However, 
after iteration 500, the difference decreases again. In iteration 1000, 
the difference between the GA-based approach and the SAGA-based 
approach becomes very subtle (193 m, namely, 1.76% less than the 
SAGA-based approach).

In iteration 1000, the difference between the GA-based approach 
and the SAGA-based approach becomes very subtle (193 m, namely, 
1.76% less than the SAGA-based approach).

VII.   Conclusions

Because there is a growing need for ocean exploration these 
days, research is focusing on longer range and greater exploration 
ranges. In this research, we present an efficient path-planning 
approach using an autonomous underwater vehicle with limited 
battery power for charging the underwater wireless sensor network 
(UWSN) and theoretically analyze its total energy usage. Due to the 
limited energy supply of the UWSN, we tackle the problem from the 
charging perspective. Several AUVs are a good approach to charge the 
UWSN to extend the exploration network. Furthermore, the charging 

efficiency and the range of exploration can be significantly increased 
by selecting suitable dive sites and designing a path that considers the 
node’s location and data flow.

Data collection problems with autonomous underwater vehicles 
(AUV) can be handled by the following AI-based algorithms; Ant 
Colony Optimization-based Approach, Particle Swarm Optimization-
based Approach, Teaching Learning-based Optimization-based 
Algorithm, Genetic Algorithm-based Approach, Grey Wolf Optimizer-
based Approach. Simulations demonstrate that the AUV route 
planning system finds a better solution and converges more quickly 
than previous algorithms by using a genetic algorithm-based approach.

Different from the related literature, this work also considers the 
scenario where it is better not to use direct travel paths between 
specific pairs of nodes because of several reasons, such as flows below 
the surface, places too small for UAV movement, and extra hazards 
like electromagnetic waves. We propose a modified genetic algorithm-
based approach, the Safety-Aware Genetic Algorithm (SAGA)-based 
Approach that introduces a very high cost for using the direct paths 
linking those nodes to tackle this more difficult scenario; thus, these 
direct paths will not be preferred during the path planning. In this 
scenario, the SAGA-based approach provides just a 3%longer path 
than the path provided by the GA-based approach. This shows that 
the SAGA-based approach performs very robustly for scenarios where 
it is better not to use direct travel paths between specific pairs of nodes 
for several reasons.

In the future, we can consider more complicated scenarios where 
the distance cost matrix can be defined instead of considering direct 
blockage in the links between the nodes through which direct traveling 
is very challenging because of the several reasons.
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