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Abstract

Over the past decade, excessive groundwater extraction has been the leading cause of land subsidence in 
Taiwan's Chuoshui River Alluvial Fan (CRAF) area. To effectively manage and monitor groundwater resources, 
assessing the effects of varying seasonal groundwater extraction on groundwater levels is necessary. This 
study focuses on the CRAF in Taiwan. We applied three artificial intelligence techniques for three predictive 
models: multiple linear regression (MLR), support vector regression (SVR), and Long Short-Term Memory 
Networks (LSTM). Each prediction model evaluated the extraction rate, considering temporal and spatial 
correlations. The study aimed to predict groundwater level variations by comparing the results of different 
models. This study used groundwater level and extraction data from the CRAF area in Taiwan. The dataset we 
constructed was the input variable for predicting groundwater level variations. The experimental results show 
that the LSTM method is the most suitable and stable deep learning model for predicting groundwater level 
variations in the CRAF, Taiwan, followed by the SVR method and finally the MLR method. Additionally, when 
considering different distances and depths of pumping data at groundwater level monitoring stations, it was 
found that the Guosheng and Hexing groundwater level monitoring stations are best predicted using pumping 
data within a distance of 20 kilometers and a depth of 20 meters.
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I. Introduction

GROUNDWATER is the most important freshwater resource, 
and is widely used for industrial, commercial and agricultural 

purposes. The Chuoshui River Alluvial Fan (CRAF) is an important 
agricultural and industrial area that uses a significant amount of 
groundwater resources. However, excessive groundwater use can 
lead to serious environmental problems, including changes in river 
flow, land subsidence, and seawater intrusion [1]-[2]. In order to 
manage groundwater resources sustainably, and to detect the changes 
in groundwater levels, the interaction between pumping rate and 
groundwater level is studied at different temporal and spatial scales [2]. 
The pumping rate of the wells can be calculated using a numerical model 
and the relationship between electricity consumption and pumping 
rate. A time-series analysis was used to establish a time-dependent 
groundwater level processing model, and artificial intelligence was 
applied to predict groundwater level variations and analyze how much 

groundwater extraction would lead to irreversible land subsidence [3]. 
In this study, the calculated pumping rate ws used in conjunction with 
the time-dependent groundwater level processing model to establish a 
groundwater extraction prediction mechanism to achieve the goal of 
predicting and warning about groundwater level changes. 

The establishment of groundwater resource management requires 
a better understanding and monitoring of the relationship between 
groundwater level fluctuations and the spatial distribution of land 
subsidence [4]-[5]. During the data processing, analysis, and modeling, 
groundwater sensors were used to collect real-time groundwater level 
data over a long period of time. However, abnormal conditions of 
groundwater sensors, measurement failures, network connectivity 
problems, human errors, and other factors can lead to abnormal data at 
monitoring stations, resulting in data errors or loss [6]. Previous studies 
have utilized time series techniques to analyze the spatio-temporal 
distribution of groundwater level data and systematically clean and 
impute missing values. Time series techniques can quantify the 
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autoregressive characteristics of the data as well as the corresponding 
variabilities associated with short-term fluctuations [7]. In the field of 
time series techniques, this study utilized the recursive seasonal-trend 
decomposition method to analyze the trend variations of groundwater 
levels in the Chuoshui River area. In addition, the Bayesian maximum 
entropy method was applied to impute the uncertain groundwater 
level data to ensure the integrity of the groundwater level dataset. 
Artificial intelligence techniques can efficiently compute non-linear 
data and use optimal algorithmic functions to model and analyze 
the groundwater environment. Prediction of groundwater level 
fluctuations is a critical aspect of ensuring effective groundwater 
management and availability in the future [8]-[12].

The dataset used in this study consists of groundwater level and 
extraction data from the CRAF area in Taiwan. The aim was to assess 
the occurrence of groundwater level decline in the CRAF area, and to 
analyze the relationship between groundwater extraction and the level 
of decline to determine groundwater use. We then used regression 
techniques to predict the trend changes in groundwater levels in the 
absence of extraction [11], [13]. This approach involves establishing 
a spatio-temporal data-driven framework that analyzes the temporal 
nature of the groundwater level dataset to obtain spatiotemporal 
characteristics of groundwater use in the CRAF area. The extracted 
spatio-temporal characteristics were then incorporated into the 
groundwater level prediction model together with the extraction data 
[12]-[13]. We compared three artificial intelligence techniques in our 
prediction methods: multiple linear regression (MLR), support vector 
regression (SVR), and Long Short-Term Memory Networks (LSTM) [7] 
[14], [15]. Each predictive model can be used to validate the effectiveness 
of these techniques and compare the accuracy of groundwater level 
predictions. The research question was to explore suitable predictive 
models to forecast the trend of groundwater level variations from 
2020 to 2021. From the results of the predictive assessment, the 
strengths and weaknesses of each predictive model were identified 
and a suitable pumping dataset was found for predicting groundwater 
level variations. The generation of an appropriate pumping dataset 
was based on the location and depth of the groundwater monitoring 
station as a central zone, collecting data from nearby pumping wells.

The remainder of the paper is organized as follows: Section 
II explains the related works. Section III explains the research 
methodology. Section IV gives an overview of the experimental 
results, and Section V presents the conclusions.

II. Related Works

A. Linear Regression Applied to Groundwater Level Prediction
The study of groundwater levels begins with data collection and 

observation through sensors installed at groundwater monitoring 
stations [16]. Under the influence of specific ecological and climatic 
processes, the normal fluctuations in groundwater levels show 
stability, resulting in regular patterns of rise and fall. This results in 
time series data with a continuous distribution [17]-[18]. Groundwater 
level data exhibit linear correlations, and previous studies have 
utilized linear models to achieve the best possible fit and use of such 
data. The principle behind this is to use the method of least squares 
to model the relationship between one or more independent variables 
and a dependent variable in regression analysis [19]-[20]. Due to their 
suitability for handling regression problems with continuous data, 
linear regression models have been widely used in previous research 
for statistical analysis and prediction of groundwater data [21]-[23]. 
In the study by Yan et al., a linear regression model was developed 
to predict groundwater levels in the coastal plains of eastern China 
using data such as precipitation, evaporation, river water levels, and 
tides. By analyzing the trend of groundwater level variations and 

performing linear regression analysis, satisfactory prediction results 
can be obtained with effective data and computational models [23].

We are investigated how pumping behavior affects groundwater 
level variations. However, the pumping data have a non-normal 
distribution and are difficult to fit into a multiple linear regression 
model. Considering this, the multiple linear regression model was 
not the optimal choice, and so we opted for machine learning models 
based on classifiers for data analysis and modeling [14], [24], [25]. In 
this study, we incorporated support vector regression and Long Short-
Term Memory Networks (LSTM), a type of recurrent neural network, 
to handle both linear and non-linear relationships in the data, thus 
achieving better analytical results.

B. Support Vector Regression Applied to Groundwater Level 
Prediction

Excessive groundwater pumping may affect groundwater level 
fluctuations and cause land subsidence in the CRAF area in Taiwan. 
Previous studies have focused on the problem of irreversible land 
subsidence caused by excessive groundwater extraction [24], [26]. 
In the field of artificial intelligence, the support vector regression 
(SVR) model is utilized to analyze the trend changes between linear 
groundwater levels and non-linear extraction data. As a machine 
learning model based on classifier design, SVR minimizes structural 
risk and exhibits strong adaptability, global optimization and 
excellent generalization ability with respect to the data [27]. Previous 
studies have demonstrated that the SVR model has better predictive 
performance when analyzing non-linear data [11], [28] - [30]. El 
Bilali [30] used four machine learning models, including adaptive 
boosting, random forest, artificial intelligence and support vector 
regression, to assess and predict the water quality of the Berrechid 
aquifer in northwestern Morocco. The results of the research showed 
that Support Vector Regression had less sensitivity to input variables 
and better generalization capabilities compared to Adaptive Boosting 
and Random Forest. Therefore, it was more suitable for evaluating and 
predicting different types of data [30]. Mirarabi et al. [31] conducted 
a performance comparison between support vector regression and 
artificial intelligence models using groundwater data from the 
Hashtgerd Plain in Alborz Province, Iran. They found that the accuracy 
of both models declined over time.

Based on the above, we have found that Support Vector 
Regression (SVR) can be effectively utilized for both linear and non-
linear regression analysis. This model can improve its predictive 
performance by optimizing the model parameters and performing 
data pre-processing [32]-[35]. Therefore, optimizing the parameters of 
the SVR model in research has a crucial positive impact on improving 
model performance.

C. Recurrent Neural Network Applied to Groundwater Level 
Prediction 

In recent years, the extensive utilization of sensor techniques 
in groundwater monitoring has resulted in a greater number of 
influencing factors that need to be analyzed and investigated 
[36]. In the past, predictive models were often limited to capturing 
shallow correlations in the data, and were unable to uncover deeper 
relationships, resulting in inaccurate predictions [37]-[38]. Hinton 
and colleagues proposed the use of unsupervised learning with 
Deep Belief Networks (DBNs), which have the advantage of using 
hierarchical feature representations to model deep and complex 
nonlinear relationships [39]. The exceptional performance of such 
networks has made deep learning a trendsetter. Among them, 
Recurrent Neural Networks (RNNs) are widely regarded as effective 
methods for capturing the temporal dependencies in sequential data 
[40]-[42]. However, according to relevant studies, traditional RNNs 
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are only suitable for processing short sequences. When applied to 
long sequential data, they can suffer from problems such as vanishing 
gradients, where the network struggles to remember long-term 
information, or exploding gradients [43]-[44]. To address this problem, 
Hochreiter and Schmidhuber [45] proposed Long Short-Term Memory 
Networks (LSTMs), a model that introduced memory cells capable 
of storing information for longer periods of time. This breakthrough 
allowed for more effective modeling and prediction of long sequential 
data. Gers et al. [46] improved the LSTM by introducing the forget 
gate mechanism, which allows the model to selectively retain or 
discard information from the previous cell state. This enhancement 
significantly improved the predictive performance of the model.

The LSTM method has gained considerable prominence in 
groundwater research. Zhang et al. [47] used it to predict the depth 
of groundwater levels in agricultural regions of China. The results 
indicated that LSTM excels in capturing the intricate relationships 
between linear and non-linear dynamics present in long-term 
sequential data, making it a key factor in improving the efficiency of 
agricultural irrigation and groundwater management. Vu et al. [48] 
utilized the LSTM method to reconstruct missing groundwater level 
data in the Normandy region of France. The result demonstrated 
the effectiveness of this approach in successfully reconstructing the 
missing groundwater level data, thereby improving the accuracy and 
reliability of hydrological forecasting and management.

Based on the current literature review, this study used the MLR, 
SVR, and LSTM methods to analyze the data from groundwater 
monitoring stations and the electricity consumption data from 
pumping wells in the Chuoshui River alluvial fan area of Taiwan. 
These models are utilized for deep learning modeling and analysis. In 
addition, this study incorporated optimization algorithms to enhance 
the predictive performance of the models, thereby improving the 
accuracy of groundwater level prediction.

III. Methods

A. Study Area
The CRAF is the largest alluvial fan plain in Taiwan [26]. It stretches 

from the Wu River in the north to the Beigang River in the south, from 
the Taiwan Strait in the west to the Bagua Mountain Plateau and the 
Douliu Hills in the east. The area is about 2,100 square kilometers. 
The main river is the Chuoshui River. Flowing from east to west, the 
Chuoshui River crosses the alluvial fan in the central mountain range 
before emptying into the Taiwan Strait [49]-[50]. Fig. 1 shows the 
geographical extent of the entire CRAF area, represented by solid lines.
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Fig. 1. The geographical location of the Chuoshui River Alluvial Fan.

The CRAF area consists of four underground aquifer layers and 
three aquitard layers. To access the groundwater resources, most of 
the pumping wells extract water from aquifer 1 and aquifer 2 [26]. 
In addition, the groundwater monitoring stations have a numerical 
code (1, 2, 3, 4) appended to their names, indicating the specific aquifer 
layer in which the groundwater monitoring station is located.

B. Groundwater Level Data Acquisition and Processing
This study used groundwater level data collected from 2007 to 

2021. The data were obtained from the Integrated Service System for 
Ground Subsidence Monitoring of the Water Resources Agency and 
the Hydrological Information Network of the Ministry of Economic 
Affairs, Water Resources Agency. The data collection period for the 
Integrated Service System for Ground Subsidence Monitoring extended 
until December 31, 2022, with groundwater level data provided at 
24-hour intervals. The data collection period for the Hydrological 
Information Network of the Ministry of Economic Affairs started from 
January 1, 2020 to the present, with groundwater level data provided 
at 10-minute intervals.

The Python programming (version 3.8.10) can be used to pre-
process and store groundwater level data. Python libraries such as 
Pandas, NumPy, Requests, and InfluxDB_Client can be used to write a 
web crawler program that downloads the raw groundwater level data 
and stores it in an InfluxDB (version 2.0.9) database [51]. Although the 
collected groundwater level data come from different sources, there 
are common elements between the two datasets. The dataset from 
the Hydrological Information Network of the Ministry of Economic 
Affairs can be matched with the code data from the Integrated Service 
System for Ground Subsidence Monitoring of the Water Resources 
Agency. If the time series and water level values of the groundwater 
data are the same, this indicates that the information has been collected 
from the same groundwater level monitoring station. The processed 
groundwater level information can be organized as shown in Table I.

TABLE I. Data on Groundwater Level 

Name Descriptions Examples

ST_NO
Groundwater level monitoring 

station code
07010111

NAME_C

Chinese name of the 
groundwater level monitoring 

station, with a number indicating 
the aquifer level.

Guosheng (1)

Time Timestamp of observation 2022-01-01T00:00:00Z

Water_Level(m)
Groundwater level height, with 

data units in metres.
16.943

From the Integrated Service System for Ground Subsidence 
Monitoring of the Water Resources Bureau and the Hydrological 
Information Network of the Ministry of Economic Affairs, a total of 
260 groundwater monitoring stations within the CRAF area were 
considered for organizing the time-series groundwater level datasets. 
However, not every monitoring station has complete groundwater 
level data available. Therefore, a comparison was made between the 
data collected from the groundwater monitoring stations and the map 
of abandoned groundwater monitoring wells [52]. It was found that 
there were anomalies and abandoned statuses in the data collection 
for 95 monitoring stations.

In the end, we had 165 monitoring stations that were currently 
active and had complete data. These 165 groundwater monitoring 
stations are located at different depths. Fig. 2 shows the distribution 
and number of groundwater monitoring stations in the different 
aquifers. (A) The first aquifer of the CRAF contains 62 groundwater 
monitoring stations, most of which are located at depths between 
25 and 100 meters. (B) The second aquifer of the CRAF contains 55 
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groundwater monitoring stations, most of which are located at depths 
between 73 and 182 meters. (C) The third aquifer of the CRAF contains 
32 groundwater monitoring stations, with most stations located at 
depths ranging from 142 to 248 meters. (D) The fourth aquifer of the 
CRAF contains 18 groundwater monitoring stations, most of which 
are located at depths between 218 and 302 meters. In Fig. 2, it is 
evident that each groundwater level monitoring station is situated at 
a different aquifer depth. Therefore, this study aimed to compare the 
accuracy of different deep learning models in predicting groundwater 
level variations within the context of the same aquifer depth. This 
allowed us to construct groundwater level prediction models for 
similar groundwater environments.

C. Water Pumping Data Acquisition and Processing
The study collected water extraction data from the CRAF 

area in Taiwan between 2007 and 2021. This included electricity 
consumption data from pumping wells located in Changhua County 
and Yunlin County. The electricity consumption of the pumping 
wells was collected using electricity meters, with data provided at 
monthly intervals. The electricity consumption data were used to 
simulate the groundwater extraction volume for each month. The 
water extraction data record the coding of the pumping wells, their 
latitude and longitude coordinates, installation depths, and electricity 
consumption, as shown in Table II.
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Fig. 2. Map showing the distribution of groundwater level monitoring stations in the Chuoshui River Alluvial Fan. 
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Fig. 3. Map of pumping well station distribution in the Chuoshui River Alluvial Fan.
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There are a total of 242,586 pumping wells in the CRAF area, 
including 125,905 wells in Changhua County and 116,681 wells in 
Yunlin County. Fig. 3 shows the locations of the pumping wells 
installed in Changhua County and Yunlin County, indicating the 
depth ranges of the pumping well stations.

TABLE II. Data on Pumping Wells 

Name Descriptions Examples
WELL_NO Pumping well code 10237500000004

TIME Observation timestamp 2007-01-01T00:00:00

Pumping_well_power
Electricity consumption 
data of pumping wells

0.0

Lon Longitude (WGS84) 120.506997

Lat Latitude (WGS84) 24.075657

W_TUBE_DEP
Depth at which the station 
is located underground in 

metres
16.0

This study used the method of determining flow rate based on the 
relationship between electricity consumption and pumping volume 
to calculate the pumping volume of water wells in the Yunlin and 
Changhua regions. The hybrid pumping equipment includes an 
electronic water meter, an electronic electricity meter, and a pumping 
motor on/off time recorder. The electronic electricity meter records 
the monthly electricity consumption. By utilizing the electricity 
consumption data and the water/electricity ratio specific to each 
local pumping well, the pumping flow rate can be calculated to 
determine the pumping volume for each month. The water/electricity 
ratio is expressed in cubic meters per kilowatt-hour and represents 
the pumping volume of water per unit of electricity consumed. It 
can be obtained by dividing the pumping flow rate by the power 
consumption [53]. Fig. 4 shows the time series chart of the pumping 
volume for pumping station 10237500000004. The water/electricity 
ratio parameter for this pumping station is 12.9 cubic meters per 
kilowatt-hour. The pumping period is from 2007 to July 2021, and the 
unit of water volume is cubic meters.
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Fig. 4. The time series chart of the pumping volume for pumping station with 
ID 10237500000004.

D. Groundwater Level Prediction Techniques
To analyze the impact of pumping rates on groundwater level 

changes, this study proposes a groundwater level prediction model 
to determine how much the pumping wells within a certain range 
and depth will influence the accuracy of predicting groundwater 
levels. This method provides an actionable approach to manage and 
monitor groundwater levels, allowing an understanding of how the 
groundwater level changes at a single groundwater observation station 
are influenced by pumping wells within specific ranges and depths. In 
this study, we employed the method of determining flow rate based 
on the relationship between electricity consumption and pumping 
volume to accurately calculate the pumping data. Three models were 

used to predict the variations in groundwater levels: multiple linear 
regression, SVR, and LSTM. By analyzing the accuracy of predicting 
groundwater levels, we were able to evaluate the strengths and 
weaknesses of these models. The workflow of prediction modeling 
and validation settings is illustrated in Fig. 5.
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Fig. 5. The flowchart of the groundwater level prediction model.

In Fig. 5, this study begins with the selection of potential features 
from the collected data. Both pumping volume and groundwater level 
data are subjected to outlier detection, imputation, and normalization 
processes to obtain the appropriate format [1], [54], [55]. However, the 
relative position and depth between groundwater monitoring stations 
and pumping wells can affect the model construction and the accuracy 
of groundwater level prediction. During the model execution, the 
information from groundwater observation stations is selected as 
the target for model construction. Additionally, data from pumping 
wells located at different distances and depths were collected based on 
the position and depth information of the groundwater observation 
stations [56]. The collected pumping volume dataset served as the 
input dataset, and the groundwater level data served as the output 
dataset. Both datasets are used together to train, validate, and test the 
candidate deep learning models, including multiple linear regression, 
support vector regression, and LSTM models. These models were used 
to estimate the groundwater levels at the groundwater monitoring 
stations. The aim was to understand how pumping wells within 
a certain radius distance influence the prediction accuracy of 
groundwater levels at the observation stations. 

In the final step, the estimated groundwater data and the observed 
groundwater data were used to test the models. The prediction 
accuracy of the models was compared using metrics such as root mean 
square error and mean absolute error. This analysis helps to identify 
which ranges and depths of pumping volume datasets are suitable for 
the groundwater monitoring stations.

E. Evaluation Metrics
Accurately assessing the performance and accuracy of deep learning 

models is crucial. We seek to evaluate the predictive performance 
of multiple linear regression, support vector regression, and LSTM 
models in predicting groundwater levels [1]. The accuracy of the 
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aforementioned deep learning models is assessed using root mean 
square error (RMSE) and mean absolute error (MAE) for evaluation 
purposes. These two metrics are commonly used to measure the 
accuracy of predicting groundwater levels. The RMSE is more sensitive 
to outliers and is suitable for errors that follow a Gaussian distribution. 
On the other hand, MAE calculates the average weighted error for all 
errors [11], [14]. The evaluation of the RMSE and MAE in this study 
represents the accuracy of the deep learning model in predicting the 
groundwater level sequence from 2020 to August 2021. By comparing 
the predicted groundwater levels obtained from the deep learning 
model with the original groundwater levels, RMSE and MAE results 
were generated. When MAE = 0, RMSE = 0, or if they approach 0, it 
indicates the highest consistency between the predicted values and the 
observed values, demonstrating a better performance of the model in 
predicting groundwater levels.

IV. Results

This study focused on the alluvial fan area of the Chuoshui River 
to investigate the relationship between groundwater level variations 
and pumping behavior. In this study, groundwater level monitoring 
stations in Changhua County, including Guosheng, Tianwei and 
Hexing, and in Yunlin County, including Dongguang, Wencuo and 
Fengrong, were selected as research objects. These stations were 
selected because they showed more than 98% of normal values after 
analysis using the recursive seasonal trend decomposition method, 
which requires minimal adjustment for abnormal values [57], [58]. 
By using the installation locations and depths of each groundwater 
observation station, we created different datasets of pumping rates 
under various geographic conditions. The generation of pumping rate 
datasets primarily focused on pumping well stations located within a 
radius of 10 and 20 kilometers and at depths of ±10, 15, and 20 meters 
relative to each groundwater observation station. Table III shows 
the number of pumping well stations requiring data collection and 
organization under five distance and depth conditions. The collected 
data were aggregated as input variables to predict the groundwater 
level variations at the monitoring stations.

TABLE III. Number of Well Used to Collect Pumping Station Data 

Sampling 
range Groundwater monitoring station

Guo 
sheng

Tian wei Hexing
Dong 
guang

Wen cuo
Feng 
rong

10km/10m 968 4275 7494 5322 1195 2219

10km/15m 1565 6629 11790 8002 1862 3399

10km/20m 2475 9235 17402 10716 2510 4676

20km/15m 7680 12038 20598 16450 11000 10583

20km/20m 12186 16699 30856 22227 15035 14431

Using data from pumping well stations as input variables, we 
constructed MLR, SVR and LSTM models to predict groundwater 
level variations from January 2020 to August 2021. Despite their 
different implementation methods, MLR, SVR, and LSTM models all 
belong to the field of machine learning and deep learning techniques. 
In this study, the pumping well station data were pre-processed 
and normalized to reduce errors. 89% of the pumping data were 
used for model building to analyze the groundwater level variations 
between 2007 and 2020 and to determine the initial prediction values. 
Training performance was evaluated by selecting the lowest RMSE 
and correlation coefficient. In addition, 11% of the pumping data 
were used for testing and predicting subsequent groundwater level 
variations [59]. In this study, the MLR model used the linear regression 

algorithm. The SVR model was configured with parameters such as a 
linear kernel, an epsilon value of 0.01, gamma set to auto mode, and 
a soft margin (C) value of 1. The LSTM model was constructed with 3 
input layers, 2 dropout layers with a dropout rate of 0.2, and 1 output 
layer. The optimizer used for the LSTM was the Adam optimizer with 
a learning rate of 0.0001 [60]. All of these models were used to predict 
groundwater level fluctuations, and Tables IV to IX show the tested 
groundwater level monitoring stations paired with different samples 
of the pumping environment. By using the MLR, SVR and LSTM 
models to predict groundwater level variations for each groundwater 
level monitoring station from January 1, 2020 to August 1, 2021, the 
RMSE and MAE values were obtained to evaluate the prediction 
accuracy of the models [61]. 

The datasets from each groundwater observation station and 
pumping station are input into the artificial intelligence prediction 
process for predicting groundwater levels. Tables IV to IX display 
the predictive accuracy for each groundwater observation station. 
By identifying the lowest RMSE (Root Mean Square Error) and MAE 
(Mean Absolute Error) values, it is possible to determine the suitable 
pumping station datasets within a certain range of distance and depth 
that match the location and observation depth of each groundwater 
observation station.

TABLE IV. Performance Evaluation of Using Three Models to Predict 
Groundwater Level Variations at Guosheng (1) Station

MLR SVR LSTM

Sampling range RMSE MAE RMSE MAE RMSE MAE

10KM/10M 0.536 0.388 0.346 0.293 0.308 0.256

10KM/15M 0.512 0.367 0.510 0.398 0.291 0.242

10KM/20M 0.450 0.366 0.424 0.311 0.344 0.268

20KM/15M 0.451 0.327 0.373 0.309 0.341 0.255

20KM/20M 0.227 0.181 0.425 0.328 0.287 0.236

The installation location of the Guosheng groundwater monitoring 
station is located at longitude 120° 56’ 91” and latitude 24° 09’ 26”, at 
a depth of 24 meters. Table IV shows the prediction accuracy for the 
Guosheng groundwater monitoring station. It was found that the 
most suitable pumping volume dataset for predicting groundwater 
level variations at the Guosheng groundwater monitoring station is 
within a distance difference of 20 kilometers and a depth difference 
of 20 meters. Furthermore, based on the RMSE and MAE values, it 
was determined that the Multiple Linear Regression (MLR) model is 
the most suitable for predicting groundwater level variations at the 
Guosheng groundwater monitoring station. Therefore, Fig. 6 shows 
the groundwater level time series plot for the Guosheng groundwater 
monitoring station. The red line represents the actual groundwater 
level time series, while the blue line represents the groundwater level 
time series predicted by the MLR model.
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Fig. 6. The actual groundwater level and predicted groundwater level chart for 
the Guosheng groundwater monitoring station.
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TABLE V. Performance Evaluation of Using Three Models to Predict 
Groundwater Level Variations at Tianwei (1) Station 

MLR SVR LSTM

Sampling range RMSE MAE RMSE MAE RMSE MAE

10KM/10M 0.408 0.354 0.484 0.368 0.350 0.261

10KM/15M 0.390 0.324 0.306 0.242 0.285 0.228

10KM/20M 0.506 0.405 0.484 0.367 0.388 0.252

20KM/15M 0.372 0.299 0.361 0.283 0.547 0.378

20KM/20M 0.388 0.310 0.390 0.297 0.225 0.185

The installation location of the Tianwei groundwater monitoring 
station is at longitude 120° 52’ 73” and latitude 23° 89’ 13”, at a depth 
of 36 meters. Table V presents the prediction accuracy for the Tianwei 
groundwater monitoring station. It was found that the most suitable 
pumping volume dataset for predicting groundwater level variations 
at the Tianwei groundwater monitoring station is within a distance 
difference of 10 kilometers and a depth difference of 15 meters. 
Furthermore, based on the RMSE and MAE values within a distance 
of 10 kilometers and a depth of 15 meters, it was determined that 
the Long Short-Term Memory (LSTM) model is the most suitable for 
predicting groundwater level variations at the Tianwei groundwater 
monitoring station. Therefore, Fig. 7 shows the groundwater level 
time series chart for the Tianwei groundwater monitoring station. The 
red line represents the actual groundwater level time series, while the 
blue line represents the groundwater level time series predicted by the 
LSTM model.
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Fig. 7. The actual groundwater level and predicted groundwater level chart for 
the Tianwei groundwater monitoring station.

TABLE VI. Performance Evaluation of Using Three Models to Predict 
Groundwater Level Variations at Hexing (1) Station 

MLR SVR LSTM

Sampling range RMSE MAE RMSE MAE RMSE MAE

10KM/10M 0.721 0.418 0.692 0.445 0.521 0.365

10KM/15M 0.596 0.390 0.551 0.360 0.604 0.415

10KM/20M 0.701 0.446 0.687 0.463 0.447 0.341

20KM/15M 0.555 0.365 0.885 0.544 0.513 0.406

20KM/20M 0.727 0.437 0.229 0.186 0.319 0.250

The installation location of the Hexing groundwater monitoring 
station is at longitude 120° 45’ 81” and latitude 23° 89’ 40”, at a depth of 
23 meters. Table VI represents the prediction accuracy for the Hexing 
groundwater monitoring station. It was found that the most suitable 
pumping volume dataset for predicting groundwater level variations 
at the Hexing groundwater monitoring station is within a distance 
difference of 20 kilometers and a depth difference of 20 meters. 
Furthermore, based on the RMSE and MAE values within a distance 

of 20 kilometers and a depth of 20 meters, it was determined that 
the Support Vector Regression (SVR) model is the most suitable for 
predicting groundwater level variations at the Hexing groundwater 
observation station. Therefore, Fig. 8 shows the time series of 
groundwater levels for the Hexing groundwater monitoring station. 
The red line represents the actual groundwater level time series, while 
the blue line represents the groundwater level time series predicted by 
the SVR model.
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Fig. 8. The actual groundwater level and predicted groundwater level chart for 
the Hexing groundwater monitoring station.

TABLE VII. Performance Evaluation of Using Three Models to Predict 
Groundwater Level Variations at Dongguang (1) Station 

MLR SVR LSTM

Sampling range RMSE MAE RMSE MAE RMSE MAE

10KM/10M 1.074 0.852 1.515 1.073 0.738 0.574

10KM/15M 1.585 1.297 1.245 1.021 0.633 0.500

10KM/20M 1.493 1.102 1.281 1.071 0.904 0.686

20KM/15M 1.185 0.887 1.537 1.103 0.875 0.652

20KM/20M 1.483 1.060 1.562 1.272 0.811 0.653

The installation location of the Dongguang groundwater 
monitoring station is at longitude 120° 27’ 20” and latitude 23° 65’ 19”, 
at a depth of 33 meters. Table VII represents the prediction accuracy 
for the Dongguang groundwater observation station. It was found that 
the most suitable pumping volume dataset for predicting groundwater 
level variations at the Dongguang groundwater observation station is 
within a distance difference of 10 kilometers and a depth difference 
of 15 meters. Furthermore, based on the RMSE and MAE values 
within a distance of 10 kilometers and a depth of 15 meters, it was 
determined that the Long Short-Term Memory (LSTM) model is 
the most suitable for predicting groundwater level variations at the 
Dongguang groundwater monitoring station. Therefore, Fig. 9 shows 
the groundwater level time series plot for the Dongguang groundwater 
monitoring station. The red line represents the actual groundwater 
level time series, while the blue line represents the groundwater level 
time series predicted by the LSTM model.
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Fig. 9. The actual groundwater level and predicted groundwater level chart for 
the Dongguang groundwater monitoring station.
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TABLE VIII. Performance Evaluation of Using Three Models to Predict 
Groundwater Level Variations at Wencuo (1) Station 

MLR SVR LSTM

Sampling range RMSE MAE RMSE MAE RMSE MAE

10KM/10M 0.483 0.408 0.466 0.398 0.460 0.351

10KM/15M 0.397 0.331 0.441 0.341 0.441 0.341

10KM/20M 0.493 0.348 0.449 0.373 0.339 0.246

20KM/15M 0.387 0.299 0.395 0.282 0.446 0.322

20KM/20M 0.468 0.364 0.347 0.303 0.390 0.296

The installation location of the Wencuo groundwater monitoring 
station is at longitude 120° 51’ 20” and latitude 23° 65’ 77”, at a depth 
of 35.67 meters. Table VIII represents the prediction accuracy for the 
Wencuo groundwater observation station. It was found that the most 
suitable pumping volume dataset for predicting groundwater level 
variations at the Wencuo groundwater monitoring station is within a 
distance difference of 10 kilometers and a depth difference of 20 meters. 
Furthermore, based on the RMSE and MAE values within a distance 
of 10 kilometers and a depth of 20 meters, it was determined that 
the Long Short-Term Memory (LSTM) model is the most suitable for 
predicting groundwater level variations at the Wencuo groundwater 
monitoring station. Therefore, Fig. 10 shows the groundwater level 
time series plot for the Wencuo groundwater monitoring station. The 
red line represents the actual groundwater level time series, while the 
blue line represents the groundwater level time series predicted by the 
LSTM model.
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Fig. 10. The actual groundwater level and predicted groundwater level chart 
for the Wencuo groundwater monitoring station.

TABLE IX. Performance Evaluation of Using Three Models to Predict 
Groundwater Level Variations at Fengrong (1) Station 

MLR SVR LSTM

Sampling range RMSE MAE RMSE MAE RMSE MAE

10KM/10M 0.693 0.593 0.872 0.704 0.961 0.670

10KM/15M 0.947 0.745 0.770 0.608 0.812 0.558

10KM/20M 0.700 0.510 0.797 0.661 0.672 0.495

20KM/15M 0.922 0.652 0.642 0.492 0.813 0.530

20KM/20M 0.646 0.512 0.700 0.524 0.753 0.577

The installation location of the Fengrong groundwater monitoring 
station is at longitude 120° 31’ 09” and latitude 23° 79’ 07”, at a depth 
of 51.82 meters. Table IX represents the prediction accuracy for the 
Fengrong groundwater monitoring station. It was found that the 
most suitable pumping volume dataset for predicting groundwater 
level variations at the Fengrong groundwater observation station is 
within a distance difference of 10 kilometers and a depth difference 
of 20 meters. Furthermore, based on the RMSE and MAE values 
within a distance of 10 kilometers and a depth of 20 meters, it was 

determined that the Long Short-Term Memory (LSTM) model is 
the most suitable for predicting groundwater level variations at the 
Fengrong groundwater observation station. Therefore, Fig. 11 shows 
the groundwater level time series chart for the Fengrong groundwater 
observation station. The red line represents the actual groundwater 
level time series, while the blue line represents the groundwater level 
time series predicted by the LSTM model.
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Fig. 11. The actual groundwater level and predicted groundwater level chart 
for the Fengrong groundwater monitoring station.

Based on the results from Tables 4 to 9, we obtained the most 
suitable applied pumping dataset for predicting groundwater level 
variations for each groundwater monitoring station. Consequently, 
from the optimal execution environment, the RMSE and MAE values 
from the optimal execution environment were used to identify the best 
and most stable deep learning model. The RMSE values for the MLR 
method ranged from 0.2 to 1.6, and the MAE values ranged from 0.18 
to 1.3. For the SVR method, the RMSE values ranged from 0.2 to 1.3, 
and the MAE values ranged from 0.18 to 1.1. For the LSTM method, the 
RMSE values ranged from 0.28 to 0.7, and the MAE values ranged from 
0.2 to 0.5. The findings of this research indicate that the best model for 
predicting groundwater level variations is the LSTM method, followed 
by the SVR method, and finally the MLR method. 

V. Conclusion

This study applied artificial intelligence techniques to predict 
groundwater level variations in the CRAF area of Taiwan from 2020 
to August 2021. We investigate the performances of the MLR, SVR, 
and LSTM methods in predicting groundwater levels with limited 
data. The dataset includes groundwater level and pumping data 
collected from the CRAF area. The pumping dataset was constructed 
by extracting pumping well data from the positions and depths around 
groundwater level monitoring stations as input variables, while the 
groundwater level data obtained from groundwater level measurement 
stations serve as output variables. The positions and depths of each 
groundwater level observation point acted as reference points, and the 
collection of pumping data at different distances and depths affected 
the accuracy of predicting groundwater level variations using the 
MLR, SVR, and LSTM methods. From the results, it was observed that 
the Guosheng and Hexing groundwater level measurement stations 
are suitable for executing the groundwater level prediction procedure 
using pumping data within a radius of 20 kilometers and a depth of 
20 meters. In the experimental results, we found that the LSTM model 
shows stability, strong generalization capabilities, and high prediction 
accuracy in groundwater level prediction. By comparing the results 
of applying the best pumping conditions at six groundwater level 
monitoring stations, it is evident that the MAE and RMSE values of 
the LSTM method tend to be smaller than those produced by the MLR 
and SVR methods. Additionally, the LSTM method provides the best 
predictive models for groundwater level at four groundwater le vel 
monitoring stations. Therefore, the results of this study will contribute 
to the planning and management of groundwater resources.
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