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Abstract

The playing field of a tennis competition is a dynamic and complex formative environment given the following 
preliminary knowledge: (a) the basic technical, tactical, situational, and special types of shots used by the 
opponent; (b) the hitting area of the tennis player; (c) the place of service; (d) the ball drop position; and 
(d) batting efficiency and other related information that may improve the chances of victory. In this study, 
we propose an AI classification model for tennis serve scores. Using a deep learning algorithm, the model 
automatically tracks and classifies the serve scores of professional tennis players from video data. We first 
defined the players’ techniques, volleys, and placements of strokes and serves. Subsequently, we defined the 
referee's tennis terms and the voice in deciding on a serve score. Finally, we developed a deep learning model 
to automatically classify the serving position, landing position, and use of tennis techniques. The methodology 
was applied in the context of 10 matches played by Roger Federer and Rafael Nadal. The proposed deep 
learning algorithm achieved a 98.27% accuracy in the automatic classification of serve scores, revealing that 
Nadal outscored Federer by 2.1% in terms of serve-scoring efficiency. These results are expected to facilitate 
the automatic comparison and classification of shots in future studies, enabling coaches to adjust tactics in a 
timely manner and thereby improve the chances of winning.
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I. Introduction

There are four major tennis Grand Slam tournaments played 
around the world: US Open, Australian Open, French Open, and 

Wimbledon. It is the ultimate dream of professional tennis players to 
win any of these championships, attaining the highest level of glory 
in the sport [1]. Unsurprisingly, many videos are generated during 
these tournaments. Whitson and Horne [2] compared the results 
of large-scale sports events in Canada and Japan, finding that the 
analysis of footage showing various sports competitions is associated 
with commercial interests, diverse entertainment effects, and a large 
audience base [3]. With developments in software and hardware for 
image analysis, Nhamo et al. and Keshkar et al. [4]–[5] considered 
the attendance restrictions for various sports competitions during the 
COVID-19 pandemic, and employed information technology to share 
footage analyzed in real time, allowing the audience to interact through 
the Metaverse technology. Today, athletes increasingly look toward 
the assistance of multimedia systems to obtain analyses of relevant 
factors such as athlete habits, movements, sports performance, basic 
and advanced data, and tactics [6]–[9]. To address the audience’s 
perspective, sports video analyses tend to focus on scene classification 
or the capture of exciting moments. To achieve this, these analyses 

provide footage from multiple camera angles, allowing users to 
quickly receive the desired multimedia data and emotionally invest 
themselves in live matches [10]–[11]. During competitions, video 
assistant referees, players, coaches, and referees can request the use of 
computer technology to ensure a fair decision-making process when 
addressing disputed situations [12]–[14]. The aforementioned image 
analysis techniques primarily focus on the real-time transmission and 
analysis of individual matches, aiming to increase interaction with 
the audience. Rangasamy et al. [15] compiled deep learning methods 
and AI-based image analyses, many of which combine computer 
vision technologies such as human-computer interfaces, handwriting 
recognition, and speech recognition with big data to analyze an 
athlete’s performance in single and multiple matches. 

The analysis of video footage has a direct and profound impact on 
the outcomes of games, as the player’s grip, technical movements, 
physical strength, and overall hitting style determine their performance 
on the court. Following an analysis, the player’s posture and grip on 
the racket helps improve control, and the proficiency of technical 
movements directly relates to the accuracy and speed of hitting the 
ball [8]. In addition, the athlete’s endurance and psyche are also key 
factors. Good endurance ensures sustained high-level performance in 



Special Issue on Deep Learning Techniques for Semantic Web  in Web of Things (WoT) and Internet of Everything (IoE)

- 49 -

the game, while a strong mindset allows players to stay calm under 
pressure and adapt to changes in opponents. The quality of playing 
habits directly determines the outcome of a game and is crucial to the 
player’s success on the court. The combat models of tennis players have 
been widely studied and classified at the academic level, with technical 
characteristics covering different tactical styles [7]. First, baseline 
golfers primarily stand at the baseline position and demonstrate superb 
baseline skills, including steady hitting and excellent endurance, to 
suppress their opponents. Second, net players focus on approaching the 
net area to win with fast and precise offensive tactics, demonstrating 
excellent reaction speed and volleying skills. Finally, all-court players 
combine the advantages of the baseline and net types by flexibly using 
the entire court and continuously adjusting tactics. This technical 
classification provides a theoretical basis for tennis matches that helps 
players tailor their strategies to combat their opponents.

In this study, we designed a two-dimensional virtual Internet-of-
Things (IoT) tracking model by defining action images for commonly 
used tennis techniques [16]–[17]. The tennis court, represented 
virtually in two dimensions, is divided into 48 areas. We employed 
deep learning to analyze 10 matches played by Roger Federer and 
Rafael Nadal from 2007 to 2019. Each shot played by Federer and 
Nadal was recorded and classified automatically, enabling the analysis 
of tennis techniques and player positions. This allowed us to compile 
the playing styles and habits of both players.

The rest of the paper is structured as follows. In Section 2, we 
present a literature review of shot classification applied to motion 
analysis and applications of deep learning in sports. In Section 
3, we describe the materials and algorithm used in this study. Our 
experimental results are presented and discussed in Section 4. Finally, 
Section 5 concludes the paper.

II. Literature Review 

A. Shot Classification Applied to Motion Analysis
Currently, sensors and videos are used for the analysis of movements 

in tennis. Duan et al. [18] proposed a unified classification framework 
for sports video shots by extracting 5-10 shots from sports movies 
and defining semantic shot categories. Using supervised learning, 
they achieved accuracy rates of 85–95% in the classification of tennis, 
basketball, volleyball, and football events, videos, and catalogs. Dang et 
al. [19] proposed a court-line pixel detection method, using the RANSAC 
linear parameter estimation method to determine the sideline range 
and subsequently deploying an image tracking system to automatically 
identify video footage of the four major tennis tournaments, achieving 
accuracy rates of 96–99%. Connaghan et al. [20] examined the accuracy 
of sensor recognition and classification in tennis strokes, with 
seven players trained on the three actions of serves, backhands, and 
forehands. They achieved recognition rates of 82.5%, 86%, 88%, and 90% 
for configurations corresponding, respectively, to the accelerometer 
and gyroscope; accelerometer and magnetometer; gyroscope and 
magnetometer; and accelerometer, gyroscope, and magnetometer. 
Raymond et al. [21] employed wearable sensors to identify strike types 
and rotations. In their study, 17 college-age athletes completed 10 
exercises for each action with 5–10 shots for each shot over six games. 
The statistical results show that the average error of shots and spins 
was 32.0%. Other studies have also employed sensors to collect data for 
the purpose of action recognition in tennis [22]–[26].

B.  Deep Learning in Sports
Batting techniques in tennis can be classified into four primary 

categories: serve, draw, slice, and volley [27]. In addition to good 
technical, physical, tactical, psychological combat plans and strategies, 
players must have an excellent ability to control the ball in a variety 

of game scenarios. Furthermore, good playing strategies must rely 
on continuous simulation, training, and accumulated experience. To 
date, scholars have primarily integrated video features and design-
related algorithms to achieve the content understanding, indexing, 
annotation, and retrieval of sports videos for the development of 
automatic referees, as well as technical and tactical analyses.

Voeikov et al. [28] proposed the TTNet neural network model, 
which employs a high-speed camera to provide online real-time 
automatic refereeing of table tennis matches, achieving an accuracy of 
97.5%. Xu et al. [29] deployed a K-nearest neighbor algorithm to achieve 
human motion and gesture recognition in table tennis videos. The 
deep learning process was divided into two stages: semi-supervised 
video image feature learning, and the supervised optimization of video 
sequence features. The resulting image recognition method achieved 
a 1.9% improvement in accuracy over the conventional image capture 
method. Qiao [30] employed a long short-term memory model to 
instantly track images of table tennis games for action feature 
recognition, achieving a maximum recognition accuracy of 89% and 
a target tracking effect and trajectory prediction accuracy of 90%. 
Compared with a traditional convolutional neural network (CNN), the 
model proposed by Qiao achieved a 23.17% improvement in accuracy.

Deep learning has also been used for tennis image recognition. Reno 
[31] deployed a CNN to learn video data of tennis matches after filtering 
the background of the game environment to track the ball’s landing, 
achieving an accuracy rate of 98.77%. Ganser et al. [32] developed 
an automatic classifier for tennis shots. Specifically, they equipped 
tennis players with wearable sensors, and subsequently analyzed 
and classified the collected signals using a CNN. Of the 5682 shots 
collected, 91% were successfully detected and classified. Bastanfard 
and Amirkhani [33] used a CNN to classify tennis videos with 92% 
accuracy. Huang [34] proposed the HyperNet CNN model to extract and 
analyze tennis videos through a loss function, achieving an orientation 
accuracy of 96.32% and a size accuracy of 91.05%. Sports video analyses 
are typically conducted with 2D images for identification. Ning and 
Na [35] employed a dynamic time normalization barycenter averaging 
algorithm, as well as a K-means clustering algorithm, to analyze 3D 
dynamic tennis videos with the objective of identifying batting actions, 
achieving an accuracy of 94.5%. Li et al. [36] proposed a 3D CNN 
architecture and constructed a 3D video analysis algorithm for tennis 
videos, reaching an identification accuracy of 94.8%.

Successful tennis techniques must combine power and speed as 
key factors to win the game. Accordingly, individual skill must be 
complemented by smart tactics to gain advantage. Therefore, we 
conducted video and annotation analyses, using deep learning to 
examine the tactics and habits of two professional players, including their 
positions, techniques, and shooting points. Our results can be used by 
players to optimize their strategies during matches and training sessions.

III. Proposed Framework

This research used a recurrent neural network (RNN) to develop a 
two-stage analysis model, analyze the tactics used by Roger Federer 
and Rafael Nadal from 2007 to 2019, construct a battle model, and 
adjust autonomous training and match strategies. To accurately 
identify the two players’ positions, techniques, and scores from video 
data, we designed a two-stage deep learning algorithm. Prior to the 
analysis, we preprocessed the data by eliminating extraneous images 
from the footage. Subsequently, we deployed the RNN algorithm for 
classification. Through image recognition and deep learning with 
RNN, the algorithm identifies the ball placement when Nadal and 
Federer win points, their respective positions on the court, and the 
tennis techniques they employ. The research process is illustrated in 
Fig. 1, and the analysis procedures are detailed below.
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IV. Stage 1: Denoising

Step 1: Defining Noise

Certain scenes in the video data—such as audience reactions, 
ball retrieval breaks, court maintenance, shots with stationary balls, 
advertisements, reporter broadcasts, and graphic analyses—were 
considered noise, as they did not represent actual play. We eliminated 
these scenes prior to training the RNN to improve analytical accuracy. 
Noise was defined according to the following criteria: (1) scenes not 
focused on the tennis court, (2) scenes where the ball was out of 
bounds, and (3) scenes where neither player was engaged in receiving 
or serving actions. As shown in Fig. 2, we modeled the tennis court with 
48 relative positions for both players during a match. The encoding of 
these positions corresponds to the players’ on-court locations. Fig. 3 
depicts the ball’s landing positions. Table 1 lists common receiving and 
serving techniques in tennis [37]-[38]. Any scene that failed to meet 
the criteria defined in Fig. 2 was considered noise.

center m
ark baseline

8 16 24 32 40 48 41 33 25 17 9 1 Baseline in tennis court center m
ark   →

7 15 23 31 39 47 42 34 26 18 10 2

6 14 22 30 38 48 43 35 27 19 11 3

5 13 21 29 37 45 44 36 28 20 12 4

4 12 20 28 36 44 45 37 29 21 13 5

3 11 19 27 35 43 46 38 30 22 14 6

2 10 18 26 34 42 47 39 31 23 15 7

1 9 17 25 33 41 48 40 32 24 16 8

Fig. 2. Players’ position on the tennis court.
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Fig. 3. Returner’s impact location of player.

Step 2: Filtering Noise

The selected video footage was processed to eliminate noise as 
defined in Step 1.

Step 3: Marking Noise Timestamps

The timestamps of identified noise shots were marked for later 
verification and analysis.

V. Stage 2: Recurrent Neural Network Algorithm

We deployed the RNN algorithm according to the following steps:

Step 1: Defining Image Features for Analysis

Based on the definitions provided in Fig. 2, Fig. 3, and Table I, the 
positions of the players, the ball’s landing locations, and the tennis 
techniques are defined and recognized in the images.

Step 2: Initialize

We define the dimensions of various parameters—including U, V, 
W, b, and c—to implement the basic RNN unit.

Input: At each time step t, the input x(t) is fed into the network.

Hidden State: h(t) represents the hidden state at time step t, serving 
as the “memory” of the network. h(t) is computed based on the current 
input and hidden state from the previous time step, and h(t) is defined 
as (1). This function is considered a non-linear transformation, such 
as tanh or ReLU.

 (1)

Weights: The RNN has input-hidden connections parameterized 
by the weight matrix U, recurrent hidden-hidden connections 
parameterized by the weight matrix W, and hidden-output connections 
parameterized by the weight matrix V. All the weights are shared 
across time.

Output: o(t) represents the output of the network. This output is 
often subject to non-linear transformations, especially when the 
network contains more layers downstream.

Step 3: Forward pass

Based on our equations for each timestamp t, we compute the 
hidden state h(t) and apply the softmax function to obtain the output 
o(t), which represents the probability of the next character.

Calculating softmax and numerical stability:

The softmax function takes an N-dimensional real-valued vector 
and transforms it into a real-valued vector within the range of (0, 1), 
with the elements summing to 1. We performed this transformation 
using the formula as (2):
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Fig. 1. The research process.
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TABLE I. Tennis Techniques and Corresponding Algorithm Codes

Techniques Code Definition

Forehand FH A stroke in which the inner side of the palm of the dominant hand that is holding the racket faces forward. Essentially, the 
tennis forehand is made by swinging the racket across one’s body in the direction one wants to land the ball.

Backhand H A shot in which one swings the racket around one’s body with the back of the hand preceding the palm. In a backhand 
volley, the term backhand refers to a groundstroke.

Forehand Volley FHV A fairly simple movement, in which the player uses one arm to hit the ball by their dominant side without letting the ball 
touch the ground. The player usually hits volleys when standing close to the net and inside the service box. This move 
requires firm hands and fast reflexes.

Backhand Volley BHV The player’s hitting arm is bent, and their elbow is centered between their shoulders. The backhand volley begins with a 
hip and shoulder turn. This volley can be shot while standing close to the back fence to test the size of one’s backswing.

Forehand Half-volley FH A shot in which the player hits the ball just after it bounces off the ground and before it reaches the height of a normal 
volley:
1. Move quickly to get into position for the shot. The ideal position is slightly behind the baseline, but not too far back.
2. Keep your knees slightly bent and your weight on the balls of your feet to maintain balance, and be ready to move in any 

direction.
3. As the ball approaches, take a small step forward and to the side to get into the right position.
4. Keep your racket head up and swing forward with a smooth and controlled motion. Try to contact the ball just after it 

bounces off the ground.
5. Follow through with your swing and always keep your eye on the ball.
6. Recover quickly and be ready for the next shot.

Backhand Half-
volley

BH A shot where the player hits the ball just after it bounces off the ground and before it reaches the height of a normal 
volley, using their backhand stroke: 
1. Move quickly to get into position for the shot. The ideal position is slightly behind the baseline, but not too far back.
2. Keep your knees slightly bent and your weight on the balls of your feet to maintain balance and be ready to move in any 

direction.
3. As the ball approaches, take a small step forward and to the side to get into the right position.
4. Keep your racket head up and swing forward with a smooth and controlled motion using your backhand stroke. Try to 

contact the ball just after it bounces off the ground.
5. Follow through with your swing, and always keep your eye on the ball.
6. Recover quickly and be ready for the next shot.

Forehand Spin FHS The ability of a player to apply spin to the ball while executing a forehand stroke. Forehand spin is achieved through 
a combination of racquet and stroke techniques. Topspin involves brushing the racquet from above the ball’s center 
towards the bottom, generating a downward spin on the ball. This causes the ball to descend in an arched trajectory as its 
rotational speed increases.

Backhand Spin BHS The ability of a player to impart spin to the ball when hitting the backhand. Backhand spin is achieved through a 
combination of racket and stroke techniques. This can produce topspin or backspin depending on how the player uses the 
racket and body when hitting the ball. Spin is generated mainly from the angle, speed, and position of the hitting point of 
the racket.

First Serve FS The first serve a player makes at the beginning of a serving game. This serve is usually the strongest and fastest serve a 
player can deliver, and is intended to achieve a direct score or take advantage of the opponent’s return.

Second Serve SS The player’s second serve in the service game, occurring after the player misses the first serve or the receiver successfully 
returns the ball.

Smash S Usually occurs when the player is in front of the net. When the ball is in the air, the player quickly jumps and hits the ball 
down hard, so that the ball falls to the opponent’s court with great speed and force.

Unsuccessful Shots US A shot that fails to achieve the intended goal or produce the desired effect. These shots may occur in a variety of 
situations. Examples of unsuccessful shots include the following:
Errors: These include unforced and forced errors. An unforced error is the failure to complete a successful stroke without 
apparent stress, such as hitting the ball out of bounds or netting. A forced error may occur when the opponent applies 
pressure or creates difficulty, e.g., by making a hard return that leaves the other player unable to hit back.
Hitting the ball too deep: When the player hits the ball beyond the bottom line, leading the ball to fall behind the 
backcourt, the shot is considered unsuccessful. This can result in missed scoring opportunities and give the opponent the 
opportunity to counterattack.
Too-short shot: A shot is judged unsuccessful when it does not have enough power or height to keep the ball from clearing 
the net and landing in its own court. This usually gives the opponent the opportunity to attack, forcing the player to react.
Net shot: A shot is deemed unsuccessful when the player does not hit the ball high enough for it to go over the net. This 
results in a lost scoring opportunity, allowing the opponent to score or restart the round.
Unstable shot: A shot is considered unsuccessful when it lacks stability, i.e., when the player cannot accurately control the 
direction, height, or spin of the ball. This may cause the ball to go out of bounds or give the opponent a chance to score.
Unsuccessful shots commonly occur in games, and present opportunities for players to improve and adjust their shot 
techniques and tactics. Through reflection and training, players can improve the stability and accuracy of their shots, 
thereby increasing their chances of success.

Others O Not defined above; all count as other tennis skills.
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Step 4: Compute Loss

In a text generation model, the next character can be any unique 
character from the given vocabulary. Accordingly, we implemented 
a cross-entropy loss. In multi-class classification, the logarithmic loss 
values are summed for each predicted class in the observation. The 
compute loss is also defined as (3).

 (3)

Step 5: Backpropagation

The gradients must propagate from the last cell to the first cell. The 
product of these gradients may become zero or grow exponentially. 
The latter case corresponds to the gradient explosion problem, where 
a significant increase in the gradient norm accumulates during 
the training process. The former case corresponds to the gradient 
vanishing problem, wherein long-term components reach a norm of 
zero, rendering the model unable to learn correlations between events 
that are far apart in time.

Step 6: Update Weights

The gradients for each model parameter are calculated and updated 
accordingly.

Step 7: Repeat Steps 2-6

To train the model and generate text from the data, it is necessary 
to train the model for a certain period of time and evaluate the loss 
following each iteration. If the loss exhibits an overall decrease, the 
model’s learning is progressing as expected.

VI. Results and Discussions

Our analysis was conducted on 10 videos of matches played by 
Roger Federer and Rafael Nadal from 2007 to 2019. We recorded the 
techniques, player positions, shot landing points, and serve landing 
points for each ball until every ball was analyzed.

Our deep learning analysis yielded a total of 122 valid shots between 
the two players. Table II lists statistics pertaining to the techniques 
used by Federer and Nadal individually, and Fig. 4 and Fig. 5 depict the 
corresponding graphic representations. The five most used techniques 
by both players, in order, were: forehand groundstroke, backhand 
groundstroke, first serve, backhand slice, and second serve.

TABLE II. Analyzed Player Statistics

Tennis Techniques Federer Nadal

Code times accuracy times accuracy

FH 2232 35.94% 2506 41.48%

H 1948 31.37% 1809 29.95%

FHV 770 12.40% 871 14.42%

BHV 477 7.68% 364 6.03%

FH 414 6.67% 341 5.64%

BH 118 1.90% 31 0.51%

FHS 87 1.40% 24 0.40%

BHS 88 1.42% 51 0.84%

FS 35 0.56% 19 0.31%

SS 23 0.37% 20 0.33%

S 11 0.18% 2 0.03%

US 7 0.11% 1 0.02%

O 0 0.00% 2 0.03%

Summary 6210 100% 6041 100.0%

2232 , 35.94%

1948 , 31.37%

770, 
12.40%

477, 7.68%

414, 6.67%

118, 1.90%

87, 
1.40%

88, 
1.42%

35, 0.56%

23, 0.37%

11, 0.18%

7, 0.11%
0, 0.00%

76, 
1.22%

FH H FHV BHV FH BH FHS BHS FS SS S US O

Fig. 4. Statistics of tennis techniques used by Federer.

2506, 41.52%

1809 , 29.97%

871, 
14.43% 364, 6.03%

341, 
5.65%

31, 0.51%

24, 0.40%

51, 0.84%

19, 0.31%

20, 0.33%

145, 
2.40%

FH H FHV BHV FH BH FHS BHS FS SS

Fig. 5. Statistics of tennis techniques used by Nadal.

To illustrate the analytical results, we consider the first serves and 
winning shots used by Federer and Nadal. Federer hit a total of 770 
first serves, of which 275 resulted in points and 495 led to second shots. 
Nadal hit a total of 871 first serves, with 243 yielding points and 628 
leading to a second shot. Looking at the first serve points, Federer’s 
scoring efficiency is 53.1%, whereas Nadal’s is 46.9%. An analysis of 
player positions, techniques, and landing points corresponding to first 
serve scores is presented in Table III.

In Federer’s case, 60.36% of the successful first serves were shot 
from position 12, with the remaining 39.64% shot from position 13.

In Nadal’s case, 51.03% of the successful first serves were shot from 
position 12, with the remaining 48.97% shot from position 13.

Because Federer scored 275 points with his first serve, whereas 
Nadal scored 243 points, Federer has a lead of 32 points over Nadal. 
Both players were more successful when serving for position 12. For 
this position, Federer leads Nadal by 42 points.

When Federer served from position 12, most of the balls landed 
in position I, corresponding to 32.36% of his points. When Nadal 
served from position 12, most of the balls also landed in position 
I, corresponding to 23.46% of his points. We can observe that both 
players scored higher when they served from position 12, as well as 
when the ball landed in position I. However, these results indicate that 
Federer had an advantage over Nadal when serving.

In a comparative analysis, we employed existing models to examine 
the two players’ first-serve performance. For Federer, Qiu’s method 
[16] achieved a classification accuracy of 96.73%, the C5.0 algorithm by 
Chang and Qiu [17] achieved a classification accuracy of 98.36%, and 
our proposed method achieved a classification accuracy of 98.96%. For 
Nadal, Qiu’s method achieved a classification accuracy of 98.36%, the 
C5.0 algorithm achieved a classification accuracy of 99.10%, and our 
proposed method achieved a classification accuracy of 99.37%. Thus, 
the proposed deep learning method outperformed the two existing 
methods for both players.
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Because tennis is an open-ended sport, players must not only 
exercise their own abilities, but also adjust their playstyle in response 
to their opponents. In this study, we defined and classified the 
variables of shot placement, technique usage, and landing point using 
a deep learning algorithm to analyze video footage. Our model was 
successfully used to interpret the playstyles, strengths, and weaknesses 
of two professional tennis players.

VII. Conclusions

In this study, we employed the techniques of annotation analysis 
and decision tree algorithms to categorize the scoring techniques of 
two prominent tennis champions. Accordingly, we constructed an 
adversarial model to identify the habitual scoring positions, stroke 
techniques, and shot placements of players during matches. The 
matchup model can be applied to analyze the strengths and weaknesses 
of any tennis player by simultaneously analyzing their opponent. 
Through this approach, we attained an understanding of the pivotal 
factors contributing to the victories of the two tennis champions.

The following observations were confirmed by our analysis:

(1) The results in Table 3 indicate that both Federer and Nadal aim for 
the inside corner K when serving from position 12, whereas they 
target the outside corner I when serving from position 13. This 
corresponds to the results shown in Figures 2 and 3, indicating 
that Federer’s serves primarily attack Nadal’s forehand, whereas 
Nadal focuses on targeting Federer’s backhand.

(2) Although Nadal’s serves predominantly target Federer’s 
backhand, the probabilities of the six target areas are relatively 
even, and Nadal scores fewer points with his serves than Federer. 
In contrast, Federer’s serves concentrate on the inside and outside 
corners irrespective of serving position, with lower probabilities 
in the middle. This tactical approach of aiming for the edges and 
creating wide angles not only increases the likelihood of scoring, 
but also forces the opponent to create openings, which explains 
why Federer scores more points.

(3) To prevent the opponent from scoring, data analyses can be 
conducted in advance to understand the opponent’s preferred 
shot techniques and playstyle. In this study, we utilized the 
labeled analysis method to mark the landing points of shots, and 
integrated the serving positions, techniques, and landing points of 
both players using decision tree algorithms to develop a matchup 
model. This model can provide guidance to players during pre-
match training and preparation, helping them overcome their 
limits, address weaknesses, enhance strengths, and maximize 
winning potential.

A limitation of this study is that we only considered 10 matches 
played by Federer and Nadal between 2007 and 2019. We did not 
account for variations in match venues, such as tennis court surfaces. 
In future studies, new deep learning methods can be developed to 
enhance classification performance.
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