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Abstract

This paper is dedicated to exploring the practical implementation of deep learning and Internet of Things (IoT) 
technology within systems designed for recognizing human motion behavior. It places a particular emphasis on 
evaluating performance in complex environments, aiming to mitigate challenges such as poor robustness and 
high computational workload encountered in conventional human motion behavior recognition approaches 
by employing Convolutional Neural Networks (CNN). The primary focus is on enhancing the performance of 
human motion behavior recognition systems for real-world scenarios, optimizing them for real-time accuracy, 
and enhancing their suitability for practical applications. Specifically, the paper investigates human motion 
behavior recognition using CNN, where the parameters of the CNN model are fine-tuned to improve recognition 
performance. The paper commences by delineating the process and methodology employed for human motion 
recognition, followed by an in-depth exploration of the CNN model's application in recognizing human motion 
behavior. To acquire data depicting human motion behavior in authentic settings, the Internet of Things (IoT) is 
utilized for extracting relevant information from the living environment. The dataset chosen for human motion 
behavior recognition is the Royal Institute of Technology (KTH) database. The analysis demonstrates that the 
network training loss function reaches a minimum value of 0.0001. Leveraging the trained CNN model, the 
recognition accuracy for human motion behavior achieves peak performance, registering an average accuracy 
of 94.41%. Notably, the recognition accuracy for static motion behavior generally exceeds that for dynamic 
motion behavior across different models. The CNN-based human motion behavior recognition method exhibits 
promising results in both static and dynamic behavior recognition scenarios. Furthermore, the paper advocates 
for the use of IoT in collecting human motion behavior data in real-world living environments, contributing 
to the advancement of human motion behavior recognition technology and its application in diverse domains 
such as intelligent surveillance and health management. The research findings carry significant implications for 
furthering the development of human motion behavior recognition technology and enhancing its applications 
in areas such as intelligent surveillance and health management.
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I. Introduction

IN the domain of computer vision, human motion behavior 
recognition stands as a prominent and widely acknowledged 

subject of interest. This field holds considerable application value in 
various domains, including intelligent monitoring, robotics, human-
computer interaction (HCI), virtual reality, smart home technologies, 
smart security systems, and athletic training assistance [1]. A practical 
application of human motion analysis is content-based video retrieval, 

allowing for efficient retrieval of specific athlete movements, such as 
those observed during horizontal bars competitions in sports events. 
This technology not only saves users significant time and effort in 
querying video data [2] but also facilitates the extraction of various 
technical parameters, such as joint position, angle, and angular speed, 
contributing valuable guidance and suggestions for athletes' training 
and overall improvement. Moreover, this application finds relevance 
in sports dance movement analysis and clinical orthopedic research. 
Exploring human motion-tracking research presents a range of 
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theoretical and practical challenges within fields like computer vision, 
pattern recognition, and video image processing, especially when 
considering the non-rigid nature of the human body undergoing 
rotational motion of joints [3].

Previous research has demonstrated the significant success of 
convolutional neural network (CNN) models in image and video 
recognition tasks. However, for complex human motion behavior 
recognition, CNN faces challenges in terms of robustness. This paper 
proposes a method to enhance human motion behavior recognition by 
optimizing CNN model parameters. Additionally, it categorizes human 
motion behavior into static and dynamic actions, investigating the 
recognition results for different types of motion behaviors to improve 
accuracy. The application of the Internet of Things (IoT) introduces more 
diverse data scenarios for human motion behavior recognition, thereby 
enhancing recognition accuracy and robustness. Collecting diversified 
data via IoT better represents different aspects of human motion 
behavior, leading to a more comprehensive and accurate recognition 
[4]. Several challenges in human motion behavior recognition research 
include the immense variability in human movement patterns, 
resulting in identical movements manifesting in different behavioral 
performances. Additionally, the wide array of movements within 
human motion exhibits numerous distinct manifestations, posing 
challenges in accurately identifying human motion behaviors. Diverse 
viewpoints can yield various two-dimensional images of the same 
action, and occlusions between individuals and backgrounds present 
difficulties in early-action classification during feature extraction. The 
proposed system’s insensitivity to video playback rates, exacerbated 
by dynamic and cluttered backgrounds, fluctuating ambient lighting 
conditions, and low image and video resolution, further complicates 
the recognition process [5]. Some researchers have addressed multi-
vision and occlusion problems through the proposal of multi-camera 
fusion [6], a technique managed through three-dimensional (3D) 
reconstruction [7].

The incorporation of human behavior recognition technology in 
community management holds the potential to establish an efficient 
and secure intelligent service system. This technology enables real-time 
behavior recognition for individuals and groups within community 
monitoring. In situations where hazardous behaviors, such as illegal 
entry and high-altitude throwing, go unnoticed by video surveillance 
personnel, the automated system can promptly alert community 
managers, mitigating safety risks and streamlining the subsequent 
evidence-gathering process. The integration of CNN models, based 
on supervised learning, with human behavior recognition technology 
represents a promising research avenue deserving further exploration. 
Through additional research in this domain, this paper provides a 
robust theoretical framework and reliable technical support, laying 
the groundwork for future practical endeavors.

The paper aims to investigate the practical application of deep 
learning and IoT technology in human motion behavior recognition 
systems. It underscores the evaluation of performance in complex 
environments and addresses the challenges of poor robustness and 
high computational workload in traditional human motion behavior 
recognition methods using CNN. The focus is on evaluating the 
performance of human motion behavior recognition systems in real-
world scenarios and optimizing them for real-time accuracy, enhancing 
their suitability for practical applications. This paper proposes an 
enhanced CNN-based human motion behavior recognition method 
by seamlessly integrating IoT technology and the CNN model. This 
method can accurately and efficiently recognize various types of 
human motion behaviors. The proposed approach in this paper 
holds significant practical relevance in real-world applications, with 
extensive utility in areas such as surveillance, health management, 
and intelligent transportation. It offers valuable technical support 

for real-time monitoring and recognition of human motion behavior. 
Moreover, the proposed method can adapt to different scales and 
complexities of application scenarios, laying a solid foundation for 
future research and applications in behavior recognition.

The paper is structured into five sections to provide a cohesive 
framework. Section 1 functions as an introduction, offering insights 
into the research background and the underlying motivation behind 
the paper. Section 2 presents a comprehensive review covering 
methodologies for target motion detection and the application 
of deep learning techniques in addressing challenges related to 
target recognition. Section 3 constitutes the paper’s focal point, 
concentrating on the intricacies of human motion recognition. This 
section introduces an adaptive correlation learning module specifically 
based on traditional CNN, effectively calculating correlation weights 
between samples to enhance the recognition process. In Section 
4, a series of meticulously designed experiments are conducted to 
empirically validate the performance of the proposed algorithm. 
Furthermore, the algorithm’s practical significance and real-world 
applicability are extensively discussed. Finally, Section 5 serves as a 
succinct summary, encapsulating the essential findings and insights 
conveyed throughout the entirety of the paper.

II. Literature Review

In the field of behavior recognition technology, Guo et al. proposed a 
method for foreground target motion detection where the background 
of the target motion remains unchanged. This approach leverages 
the changing background as a foreground for discriminating targets. 
However, if the target remains stationary for a certain period, the static 
part is updated to the background, making it unidentifiable. Therefore, 
the construction of a robust background model capable of adaptive 
updates becomes crucial [8]. In a distinct context, Wei et al. introduced 
the fusion of Parametric Rectified Linear Units (ReLU) and robust 
initialization methods within a CNN to address applications in the 
ImageNet 2012 dataset. Their findings indicated that the recognition 
rate of the behavioral dataset surpassed that discernible by the human 
eye [9]. Acknowledging the complexity of the provided information, 
Bolanos et al. categorized behavior analysis methods into three classes: 
static gestures, motor behaviors, and recognition of complex processes. 
The static gesture recognition method primarily identifies the target’s 
gesture within a static single-frame image, while motion behavior and 
complex process recognition focus on identifying video motion events 
[10]. Chebbout et al. performed human behavior recognition based 
on the spatial-temporal volume model of behavior recognition, which 
involves the projection of the human body onto the time axis and 
template matching [11]. Peng et al. engaged in feature extraction of 
3D-Scale-invariant feature transform (3D-SIFT) points of interest and 
established a feature-based statistical histogram construction of video 
interest classes on the codebook. This eigenvector was then utilized 
for identification and training on Support Vector Machines (SVM). 
Lastly, leveraging the space-time trajectory method, key points in 
human motion were connected along the time axis to form a trajectory 
curve [12]. Chen et al. undertook the identification of multi-feature 
channels in a 3D-CNN, encompassing a grayscale image, vertical 
and horizontal gradients, and optical flow. Each input video sample 
comprised seven consecutive frames, ensuring effective utilization of 
time domain information. The experiments showcased the network’s 
commendable recognition rate across real-world and Royal Institute of 
Technology public databases [13].

The video employs an innovative network architecture designed 
for human motion behavior recognition. Lin et al. formulated a 
3D-CNN and conducted training on the University of Central Florida 
101 (UCF101) dataset. During network training, eight convolution 
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and four pooling operations were executed. The convolution core 
had dimensions of 3*3*3 with a stride of 1*1*1 [14]. In a separate 
study, Zhi et al. employed a 3D-CNN to extract spatial and motion 
features, integrating dense trajectory features into Long Short-Term 
Memory (LSTM) networks and embedding time series information. 
Subsequently, they utilized weighted averaging of the output from 
multiple LSTM units to obtain recognition results [15]. Jin et al. 
introduced a bidirectional CNN that incorporates both spatial and 
temporal information. This network employed two distinct paths 
to capture appearance information from a static frame and motion 
information between two frames, effectively enabling motion 
recognition [16]. Lu et al. developed a Trajectory-pooled CNN 
model, combining manual feature extraction with feature extraction 
derived from CNN models for motion recognition [17]. Furthermore, 
Guenzi et al. merged Deep Learning (DL) with Slow Feature Analysis 
(SFA), resulting in the construction of the Slow Feature Analysis-
Deep Learning (SFA-DL) network specifically designed for behavior 
recognition [18]. Table I below illustrates the strategies, algorithms, 
and principal contributions adopted by different researchers in 
addressing behavior recognition problems.

Previous investigations have highlighted that targets exhibit not 
only spatial attributes but also temporal characteristics throughout 
their motion processes. The analysis of intricate behavioral processes 
places emphasis on human interactions and group behavior. In contrast 
to traditional human behavior recognition methods, CNN presents a 
considerable advantage by obviating the necessity for manual feature 
extraction. Instead, the network assimilates the characteristics that 
delineate the target’s behavior and acts upon the target without 
prior experiential input. In the actual collection of human motion 
behavior data, challenges such as noise and incompleteness may 
arise, including image blurriness, occlusion, and missing data. These 
factors can influence the performance of the recognition model. 
In this study on human motion action recognition using CNN, the 
CNN model undergoes optimization to accommodate variations in 

complex environments and lighting conditions. This optimization 
reduces the model’s parameter size and complexity, thereby 
mitigating computational workload, improving real-time performance 
and efficiency, and augmenting the CNN model’s effectiveness in 
recognizing human motion behavior. For action behavior recognition 
in video sequences, this paper integrates multiple modalities of 
information, such as depth images and motion sensors, to capture 
temporal variations in action behavior, thereby enhancing recognition 
accuracy and robustness. Additionally, to address potential noise and 
incompleteness in the collected data from previous research, this paper 
utilizes the KTH database as the dataset for human motion behavior 
recognition experiments. The dataset undergoes preprocessing and 
enhancement, eliminating noise and supplementing missing data to 
fortify the model’s robustness and accuracy.

III. Research Methodology

A. Research Approach
The principal aim of this paper is to proficiently utilize both labeled 

and unlabeled data, extracting valuable information to achieve optimal 
performance in semi-supervised behavior recognition. In order to 
fulfill this objective, this paper proposes a semi-supervised algorithm 
grounded in adaptive correlation learning. This algorithm capitalizes 
on the feature characteristics of samples to explore correlations 
between them and incorporates the acquired correlation information 
in the process of feature aggregation. Through the aggregation of 
features from neighboring samples for each sample, the algorithm 
generates more expressive and discriminative feature representations. 
The training process of the semi-supervised algorithm based on 
adaptive correlation learning is delineated in Fig. 1.

In Fig. 1, the initial step involves the preparation of both the 
training set and the unlabeled dataset. The training set comprises 
labeled samples designed for supervised learning, while the unlabeled 

TABLE I. Strategies, Algorithms, and Main Contributions of Different Researchers in Behavior Recognition

Researcher Strategies and Algorithms Main Contributions

Guo et al. [8] They proposed foreground target action detection method, the 
optimized background model

The research developed an adaptive and robust background 
model

Wei et al. [9] They proposed CNN with the fusion of Parametric ReLU and 
robust initialization methods

The research achieved behavior recognition rates superior to 
human eyes on ImageNet 2012 dataset

Bolanos et al. [10] They categorized behavior analysis into the static posture, 
motion behavior, and complex processes

The research classified recognition of video motion events 
and static postures

Chebbout et al. [11] They used spatiotemporal volume model and template 
matching for human behavior recognition

The research introduced a novel approach to human behavior 
recognition

Peng et al. [12] They employed 3D-SIFT and SVM for feature extraction and 
training of human actions

The research achieved favorable recognition results based on 
the spatial-temporal trajectory method

Chen et al. [13] They utilized 3D-CNN multi-feature channels for human 
action recognition

The research demonstrated good recognition results in real-
world and KTH public databases

Lin et al. [14] They developed 3D-CNN for training the UCF101 dataset The research employed specific network structure for human 
action recognition

Zhi et al. [15] They used 3D-CNN to extract spatial and motion features, 
fused with LSTM for recognition

The research utilized LSTM’s weighted average output for 
recognition results

Jin et al. [16] They build bidirectional CNN for capturing spatiotemporal 
information

The research combined two pathways for motion and 
appearance recognition

Lu et al. [17] They developed trajectory aggregation CNN model The research integrated manual feature extraction and CNN 
model for motion recognition

Guenzi et al. [18] They combined Deep Learning with Slow Feature Analysis The research constructed SFA-DL network for behavior 
recognition
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dataset includes samples devoid of labels, utilized in semi-supervised 
learning. Feature extraction is subsequently executed for both the 
training set and the unlabeled dataset, transforming raw data into 
more representative feature representations for subsequent learning. 
A pivotal stage in the semi-supervised algorithm based on adaptive 
correlation learning is correlation learning. The primary objective 
is to scrutinize the correlations between samples and incorporate 
this correlation information into the feature aggregation process. 
Unlabeled data is employed to learn these correlations. Following 
correlation learning, feature aggregation ensues to generate feature 
representations that are more expressive and discriminative. This 
is accomplished by aggregating the features of each sample with 
those of its neighboring samples, employing methods such as 
weighted averages or maximum pooling. Upon obtaining feature 
representations, a semi-supervised learning approach is employed 
to train the classifier. Semi-supervised learning combines both 
labeled and unlabeled samples for training, enhancing the classifier’s 
generalization ability and accuracy by leveraging information 
from unlabeled samples. Ultimately, post-training, the model’s 
performance on new samples is evaluated using either a validation set 
or cross-validation. The assessment results contribute to evaluating 
the model’s effectiveness and generalization ability.

B. Recognition of Human Exercise Behavior
Human motion behavior recognition constitutes a pivotal research 

avenue within the realms of computer vision and pattern recognition, 
aiming to autonomously discern and comprehend diverse human 
motion actions through the implementation of computer algorithms 
and deep learning models. In the sphere of intelligent surveillance, 
the application of human motion behavior recognition technology in 
video surveillance systems facilitates the analysis and identification 
of pedestrian, vehicle, and other object behaviors. This integration 
enables functionalities like intelligent alerts and anomaly detection 
in behavior, significantly enhancing the efficiency and accuracy of 
surveillance systems. Such precise recognition contributes markedly 
to security personnel’s ability to detect potential security risks. 
Within the domain of HCI, human motion behavior recognition 
technology finds utility in natural interaction, encompassing aspects 
such as posture recognition and gesture control. Identification of 
users’ actions and postures enables computers to comprehend their 
intentions, thereby enhancing the convenience and intelligence of HCI. 
In the field of health management, the application of human motion 
behavior recognition technology extends to motion monitoring and 
rehabilitation assistance. Monitoring and analyzing human motion 
behavior allow for the assessment of individual movement status and 

the monitoring of movement performance. This, in turn, provides 
scientific evidence and personalized guidance for rehabilitation 
training, thereby augmenting rehabilitation outcomes. Despite the 
aforementioned applications, traditional human motion behavior 
recognition methods encounter challenges related to pose variations, 
complex backgrounds, and lighting changes, resulting in diminished 
recognition accuracy and weak robustness. The advent of deep 
learning, particularly the implementation of CNN, has substantially 
progressed human motion behavior recognition. CNN models 
demonstrate an inherent capacity to automatically learn features from 
data, exhibiting robust representational capabilities and adaptability. 
This advancement significantly elevates the accuracy and robustness 
of human motion behavior recognition.

The exhaustive analysis of human motion behavior encompasses 
several integral processes, including database construction, human 
motion detection, feature extraction, behavior comprehension, and 
recognition. The core emphasis in human motor behavior analysis lies 
in motion detection and feature extraction [19], as illustrated in the 
schematic representation of the recognition process for human motor 
behavior in Fig. 2.

Data
preprocessing

Human motion
detection

Motion feature
extraction 

Behavior
recognition 

Video input

Recognition
result 

Classifier

Fig. 2. Recognition process of human motion behavior.

As depicted in Fig. 2, the process of target classification detection 
entails extracting the region of interest from the foreground 
motion area identified by a moving object [20]. In intricate scenes, 
the foreground areas may encompass diverse targets, including 
pedestrians, vehicles, birds, clouds, swaying branches, among others. 
However, within the context of the human motion analysis system, the 
detection target is exclusively restricted to human movement. Hence, 
it becomes imperative to meticulously scrutinize, analyze, identify, 
and isolate human targets. The method utilized for detecting target 
classification is delineated in Fig. 3.

Target
classification

Shape features
of motion areas

The periodicity
of human motion

Simple human silhoue�e mode shape parameters

Extract motion area features, and use a three-layer
neural network to classify foreground targets into

people, groups, vehicles, and background disturbances

Distinguish people, vehicles and chaotic
disturbances based on dispersion and area

Time-frequency analysis method to determine
whether there is periodicity in human motion

Rigidity and period of moving objects analysis
of residual optical flow in moving areas

Fig. 3. Detection target classification method.

Label data and unlabeled data

Feature extractor

K-nearest neighbor graph

Adaptive related learning module 

Graph convolution

Adaptive related learning module Graph convolution

Classifier 

Prediction results

Minimize cross entropy loss

Authentic labels

Fig. 1. Training process of semi-supervised algorithm based on adaptive 
correlation learning.
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Fig. 3 entails the classification of detected targets based on the 
shape characteristics of the motion area and the periodicity of human 
movement. The assessment of residual light flow within the moving 
area enables the analysis of the rigidity and periodicity of the moving 
target. This approach proves effective due to the relatively higher 
residual light flow in non-rigid human movements compared to the 
movements of rigid vehicles, thereby facilitating the discrimination 
of human bodies. Currently, numerous video-based classification 
methods for moving objects are available, including those based on 
static features, dynamic features, or a combination of both. However, 
a single moving target feature often falls short of recognizing more 
than three targets or achieving satisfactory recognition accuracy. As a 
result, target classification studies typically select a minimum of two 
features. General features are indicative of characteristics applicable 
to all objects, while attribute characteristics represent the inherent 
qualities of a target, specifically reflecting its unique attributes.

Given the presence of multiple angles in the experimentally 
extracted foreground targets, including shadows and incomplete 
target area extraction, shape-based feature classification proves 
more suitable under such circumstances. The shape-based features 
of the target encompass target contour, area, aspect ratio, dispersion, 
centroid, and bounding rectangle [21]. The attribute characteristics of 
the moving target are delineated in Table II.

TABLE II. Attribute Characteristics of Moving Targets

Sports Goals Attribute characteristics

People Circular
Periodicity of human motion (regular changes in human gait)

Automobile Movement speed
Variation in dispersion (variation of each target)

Bicycles The attribute is somewhere between person and automobile.

In the present study, a wide array of target features is extensively 
employed, encompassing aspects such as aspect ratio, area 
information, dispersion (regional compactness), inertial principal axis 
direction, invariant moment, and other regional characteristics. For 
experimental purposes, several attributes are defined, including the 
ratio of target height to the width of the target area at approximately 
one-third of the height, the ratio of target height to width at about 
two-thirds of the target area height, and the duty cycle, defined as the 
ratio of the background area within the target boundary rectangle to 
the area of the boundary rectangle. Notably, the aspect ratio feature 
signifies the aspect ratio of the entire target. The analysis of moving 
object characteristics is demonstrated using the moving target within 
the scene, as depicted in Fig. 4.

Fig. 4 conducts classification on the extracted moving objects, 
distinguishing between “bicycle” and “automobile,” “automobile” 
and “pedestrian,” as well as “crowd” by detecting the moving objects 
present in the scene. Remarkably, the aspect ratio of the target “person” 
and “automobile” demonstrates significant differences.

C. CNN Modeling
CNN represents a variant of the Multilayer Perceptron (MLP) 

originating from early research conducted by biologists Hubel and 
Wiesel on the cat visual cortex [22]. The architecture of the CNN is 
delineated in Fig. 5.

In Fig. 5, the architecture of the CNN involves convolution, 
subsampling, and fully connected layers. Each level in the CNN 
comprises multiple feature maps, with each feature map extracting 
unique features from the input through a convolution filter, housing 
multiple neurons. Local features are extracted as the input image and 

filters undergo convolution, determining their relationships with 
other features. The neurons in each layer receive the same input 
as the previous layer, establishing connected local receptive fields. 
The subsequent layer following each feature extraction layer is the 
computation layer responsible for local averaging and secondary 
extraction, also referred to as the feature mapping layer. This layer 
comprises multiple feature mapping planes with equal neuron weights. 
The mapping from the input layer to the hidden layer is commonly 
termed feature mapping. Consequently, the feature extraction layer 
is obtained through the convolution layer, while the feature mapping 
layer is achieved after downsampling [23]. The process of linking the 
convolution layer to the subsampling layer is illustrated in Fig. 6.

In Fig. 6, the input layer processes the normalized image, and each 
neuron within each layer receives input from a small local neighborhood 
of the previous layer. These neurons extract fundamental visual 
features, such as edges and corners, which are utilized by higher-level 
neurons. The CNN derives feature maps through the convolution 
operation, where cells at different locations acquire distinct features 

(a) (b)

Fig. 4. Moving target in the scene (Data source: https://sucai.redocn.com/
yixiang_6739023.html).

 

Convolution kernel 2

Convolution kernel 1

3 Channel
image

Convolution kernel n

Single channel
feature map n

n-Channel
feature map

Fig. 5. Structure of CNN.
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from various feature maps. A convolution layer typically comprises 
multiple feature maps with different weight vectors, allowing for the 
retention of richer image features. Subsequently, the convolution layer 
is connected to the subsampling layer, serving dual purposes. Firstly, it 
reduces the image resolution and the number of parameters. Secondly, 
it fosters robustness to translation and deformation. The convolution 
and subsampling layers are interspersed throughout the network, 
progressively increasing the number of feature maps while decreasing 
the resolution [24], [25]. The calculation of the convolution layer is 
presented in Equation (1).

 (1)

In Equation (1), 𝑥(m +  i, n +  j) represents the pixel value of the input 
data; (m +  i, n +  j) indicates the two-dimensional coordinates of the 
point; 𝑦mn represents the output data after convolution; b is offset; P × Q  
is the size of the convolution kernel; 𝑤ij represents the value of the 
convolution kernel in (i, j). M and N are the input image in P × Q ; f is 
the excitation function. The excitation function is shown in Equations 
(2) and (3):

 (2)

 (3)

In Equations (2) and (3), within the Sigmoid function, the output of 
f(𝑥) ranges between [0, 1] when a real number is input. If the output 
approaches zero, the neuron exhibits no response; conversely, if the 
output tends to 1, the neuron is activated. However, when the input is 
excessively large or small, the output approaches 1 or 0, respectively. 
In such cases, the neuron becomes saturated, impeding weight 
updates, and resulting in vanishing gradients. Contrastingly, in the 
ReLU activation function, when 𝑥 ≥ 0, the output of f(𝑥) is 𝑥, leading 
to rapid network convergence, and the neurons remain unsaturated. 
Consequently, computational efficiency is enhanced. Following 
convolution, the calculation of image feature size is expressed in 
Equation (4):

 (4)

In Equation (4), W × W represents the input image size; F is the size 
of the convolution kernel; P indicates filling. The step size is S; N × N 
represents the output image size. The sampling calculation expression 
of the down-sampling layer in S1 × S2 is shown in Equation (5):

 (5)

In Equation (5), 𝑥(m × S1 +  i, n × S2 +  j) represents input data; 
(m × S1 +  i, n × S2 +  j) represents the two-dimensional coordinates of 
the point; ymn represents output data. b is offset; (S1, S2) is the pixel 
coordinate of the area; w is the weight value. Under the action of the 
common four excitation functions, a two-dimensional feature map 
is obtained with a resolution of ¼ of the original image, that is, S𝑥+ 1 
sample the layer for feature extraction again. The size of the feature 
map after downsampling is shown in Equation (6):

  (6)

In Equation (6), W × W represents the input image size; F is the size 
of the downsampling template; the step size is S. N × N is the output 
image size. The network training process is divided into the forward 
and backward propagation stages. The calculation of forwarding 
propagation is shown in Equations (7), (8) and (9):

 (7)

  (8)

  (9)

In Equations (7)-(9), 𝑙 is the number of layers of CNN; 𝑚(𝑙) is the 
number of neurons in 𝑙-layer; W(L) is the weight matrix; b(𝑙) is offset; 
𝑎(𝑙) represents the output of l-layer neurons; z(𝑙) is the input of 𝑙-layer 
neurons; fl (∙) is the activation function. Equation (9) represents the 
network prediction output 𝑎(𝑙) of forward operation. The difference 
value of the backward propagation output layer is shown in Equation 
(10):

 (10)

In Equation (10), δ 𝑙 represents the difference value of the output 
layer; J(W, b, 𝑥, y) is the mean square error; z 𝑙 represents the input 
of layer l neurons; 𝑎 𝑙 is the output of 𝑙-layer neurons; σ'(∙) indicates 
derivative operation. The calculation of δ 𝑙 is shown in Equation (11):

 (11)

All parameters (W, b) are updated, as shown in Equations (12) and 
(13).

  (12)

  (13)

D. IoT Technology
The IoT employs diverse connectivity technologies to meet 

connection requirements in various scenarios, including passive 
identification, short-distance wired, short-distance wireless, and 
long-distance wireless connections. The initial impetus for the IoT 
was driven by the emergence of Radio Frequency Identification 
(RFID) technology, although its passive reading nature limited its 
applicability in certain contexts. In the data collection and processing 
phase, the IoT integrates various sensor types into the network to 
capture different facets of human motion behavior. Visual sensors, 
such as cameras, are employed to obtain video data for recognizing 
human postures, actions, and motion trajectories. Motion sensors, 
like accelerometers, detect human movement status and acceleration 
changes. Concurrently, environmental sensors capture surrounding 
environmental information, such as light, temperature, and humidity, 
which may contribute to behavior recognition. Establishing real-
time data transmission and communication mechanisms between 
sensors and the behavior recognition system is crucial. Through IoT 
technology, sensors can transmit collected data in real-time to the 
behavior recognition system, ensuring data timeliness and accuracy. 

 

Convolution 
operation

Excitation
function

Downsampling
operation

Weight
parameter

Biased
summation

Biased
summation

Two-dimensional
feature map

 

Fig. 6. Operation of connecting the convolution layer to the lower sampling 
layer.



Special Issue on Deep Learning Techniques for Semantic Web  in Web of Things (WoT) and Internet of Everything (IoE)

- 61 -

This facilitates real-time monitoring and recognition of motion 
behavior, thereby enhancing the system’s real-time performance and 
efficiency [26],[27]. Additionally, the integration of edge computing 
into the IoT network allows local data processing and analysis, reducing 
the burden on centralized servers. In the behavior recognition process, 
tasks with high real-time requirements can be processed on edge 
devices where the sensors are located, mitigating the need to transmit 
all data to central servers for processing. This reduction in network 
latency improves response speed and lowers data transmission costs 
[28]. In order to enhance the energy efficiency of IoT devices, low-
power sensors and energy-saving technologies are employed to 
extend sensor lifespan [29]. Energy harvesting techniques, such as 
solar charging or vibration energy harvesting, contribute to providing 
sustainable energy for sensors. By fully leveraging the potential of 
IoT, integrating various sensor types into the network, enabling real-
time data transmission and communication, and incorporating edge 
computing technologies, an efficient, reliable, and real-time human 
motion behavior recognition system can be established [30]. Such a 
system is capable of addressing complex motion behavior recognition 
scenarios, enhancing accuracy and response speed, and providing 
comprehensive and reliable support for human motion behavior 
research and applications. The second wave of IoT was catalyzed by 
the maturity of short-range wireless networking technologies such as 
ZigBee and Wireless Fidelity (WIFI). Moreover, the ongoing evolution 
of cellular communication technology is anticipated to further facilitate 
the widespread adoption and advancement of IoT [31], [32]. In the 
context of ZigBee wireless networking technology, human motion 
behavior is collected in living environments, as illustrated in Fig. 7.

PC (Personal computer)

Wireless terminal

Wireless terminal

Wireless terminal

Coordinator

ZigBee wireless 
network

Collect sports 
behavior data

Fig. 7. Acquisition scenario under ZigBee wireless networking technology.

E. CNN Behavior Recognition Based on Adaptive Correlation 
Learning

In order to better represent the correlation between samples, this 
paper proposes an adaptive correlation learning module based on 
traditional CNN. This module can be used to calculate the correlation 
weights between samples. A shared learnable module is used to 
parameterize corr(𝑥i, 𝑥r ) to obtain the specific value of wir , as shown 
in Equation (14):

 (14)

In Equation (14), Z represents a learnable weight vector and ⊙  
represents the Hadamard product. ReLU(*) represents an activation 
function, which can increase the sparsity of features and enhance the 
nonlinearity of the adaptive correlation learning module.

In the original feature space, the dimensions of features are usually 
relatively large. The input features are mapped to a low dimensional 
feature space, as shown in Equation (15):

  (15)

In Equation (15), W represents a learnable linear transformation 
matrix. An offset term can also be added to the calculation process of 
feature mapping.

The operation of feature mapping can not only reduce the 
dimensionality of input features but also enhance the expression 
ability of features to a certain extent, as shown in Equation (16):

  (16)

Initially, video samples are denoted as graph nodes, and a graph 
structure is established using the K-nearest neighbor method, 
integrating both labeled and unlabeled data. Within this graph 
structure, adaptive correlation learning is implemented, and the 
original feature X of each video sample serves as the input feature 
for the initial layer of graph convolution. The adaptive correlation 
learning module calculates the adjacency matrix for each layer of graph 
convolution, thereby capturing correlation information. In the course 
of feature aggregation within the graph convolutional networks, this 
correlation information is harnessed to generate more expressive 
features for the video samples. This is achieved by aggregating the 
features of neighboring samples within local neighborhoods.

IV. Experimental Design and Performance Evaluation 

A. Datasets Collection
The KTH database has been selected as the dataset for human 

motion behavior recognition [33]. This dataset comprises six distinct 
actions (walk, jump, run, fist, wave, and clap) performed by 25 
individuals across four scenes, totaling 599 videos. It is important 
to note that the background remains relatively static during the 
recording of these human motion behaviors. Although each video may 
have varying durations and camera shooting angles, the background 
remains relatively static, facilitating a more focused recognition of 
human motion behavior.

In order to ensure uniformity in size and resolution, video 
processing tools are employed for segmenting each video into 
individual frames, followed by cropping and scaling. Grayscale 
images, which contain only brightness information, are preferred over 
color images for human motion behavior recognition tasks, as they 
enhance the visibility of the human body’s form and motion features. 
Employing data augmentation techniques, such as random rotations, 
flips, translations, and other operations, enhances the diversity and 
generalization ability of data samples, generating additional training 
samples. Prior to conducting experiments, the entire dataset is 
partitioned into training and testing sets with a ratio of 4:1, ensuring 
consistency in sample distribution and features between the two sets.

Recognition outcomes based on geometric shapes or motion 
information from various human motion behavior databases are 
presented in Table III. Notably, the KTH database demonstrates the 
highest recognition performance among the listed databases, achieving 
an impressive recognition rate of 95.77% based on geometric shape or 
motion information.

TABLE III. Recognition Results Based on Geometric Shape or Motion 
Information

Database Accuracy of recognition

KTH [34] 95.77%

UCF [35] 86.5%

Hollywood 2 [36] 53.3%
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B. The Setting of Experimental Environment and Parameters
The processor employed in this paper is the Intel (R) Core (TM) i5-

7500 Central Processing Unit (CPU) @ 3.40GHz, while the operating 
system is Windows 10. The GTX1050, in conjunction with the Caffe 
framework, is utilized for GPU processing. The experimental dataset 
is divided into a training set and a test set with a ratio of 4:1, and 
each iteration encompasses 5000 generations. In order to optimize 
the network’s recognition performance, certain network parameters 
undergo adjustment, including the size of the convolution kernel, the 
number of convolution layers, and the batch size. The optimization 
method involves maintaining the residual variable fixed and adjusting 
each individual variable until the optimal recognition rate is attained. 
Fig. 8 illustrates the specific parameters along with their corresponding 
value ranges.

3*3, 5*5, 7*7,
9*9, 11*11 

2, 3, 4, 5 5, 10, 20, 30

Number of
convolutional

layers
Batch size

Tuned
parameter

Fig. 8. Called parameters and their value ranges.

In Fig. 8, the CNN is configured to process single-channel grayscale 
images with a frame size of 80*80. The experiment centers on the 
KTH dataset and involves fine-tuning the CNN network architecture, 
specifically focusing on the convolution layers, kernel sizes, and other 
related parameters. Initially, the network configuration comprises 
three convolution and downsampling layers, two fully connected 
layers, and one Softmax layer responsible for generating identification 
results. The number of convolution kernels for the three convolution 
layers is set to 64, 128, and 128, respectively, while the two fully 
connected layers utilize 256 and 128 kernels. The initial learning rate 
is established at 0.005, and the training process is concluded after 20 
Epochs.

C. Performance Evaluation

1. CNN Parameter Adjustment Results
When the batch size is defined as 10, the CNN network integrates 

three convolution layers and lower sampling layers. Fig. 9 illustrates 
the relationship between the CNN network parameters and the 
corresponding recognition accuracy.

In Fig. 9, the graphical representations illustrate the 
interdependencies between the convolution kernel size, the number 

of convolution layers, batch size, and their corresponding impact on 
recognition accuracy. Subfigure (A) elucidates the influence of the 
convolution kernel size on recognition accuracy, while Subfigure (B) 
delineates the effect of the number of convolution layers on recognition 
accuracy. Subfigure (C) provides insights into the relationship between 
batch size and recognition accuracy.

Upon meticulous examination of the findings, it is discerned that a 
convolution kernel size of 5*5 attains the highest recognition accuracy. 
Furthermore, when the number of convolution layers reaches 3, the 
network achieves its zenith recognition rate of 88.3%. Additionally, the 
network registers its peak recognition rate of 88.3% when the batch 
size is stipulated as 10. Consequently, the optimal configuration is 
ascertained to be a convolution kernel size of 5*5, three convolution 
layers, and a batch size of 10.

2. Analysis of Training Results Under the CNN Model
The training outcomes of the CNN model are visually represented 

in Fig. 10. Commencing at the initial iteration 0, the model’s accuracy is 
documented at 0.0787. With successive iterations, there is a discernible 
enhancement in accuracy, coupled with a concurrent reduction in the 
value of the loss function. The loss function diminishes from its initial 
value of 1.7954 at iteration 0 to a minimal value of 0.0001 at iteration 
5000. This decrease in the loss function signifies the progressive 
optimization of the model throughout the training process, resulting 
in a reduction of the disparity between predicted outcomes and actual 
labels. By the time the iteration count reaches 5000, the accuracy 
attains 92.59%. This data elucidates that the CNN model iteratively 
refines and assimilates knowledge during training, leading to a 
substantial improvement in classification accuracy on the test set.

Fig. 10 illustrates the categorization of human motion behavior into 
static and dynamic classifications. In order to evaluate the model’s 
accuracy across distinct behavioral states, a comparative analysis is 
conducted, employing the proposed algorithm, CNN, SVM, and BPNN 
algorithm. The recognition accuracy of human motion behavior under 
these diverse models is depicted in Fig. 11.

In Fig. 11, the recognition accuracy of various models for static 
motion behavior generally exceeds that for dynamic motion behavior. 
Specifically, as depicted in Fig. 11(A), the CNN model attains the 
highest recognition accuracy for dynamic motion behavior, with 
an average accuracy of 93.61%. The proposed algorithm closely 
follows with an average recognition accuracy of 91.50%, while the 
SVM model achieves an average recognition accuracy of 83.83% for 
dynamic motion behavior recognition. The BPNN model records an 
average recognition accuracy of 90.44% for dynamic motion behavior 
recognition. In Fig. 11(B), concerning static motion behavior, the CNN 
model demonstrates the highest recognition accuracy, achieving an 
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average accuracy of 94.41%. Following closely, the proposed algorithm 
achieves an average recognition accuracy of 92.76%. For dynamic 
motion behavior recognition, the SVM model attains an average 
recognition accuracy of 92.88%, and the BPNN model records an 
average recognition accuracy of 93.96%. Remarkably, the CNN model 
showcases the highest recognition accuracy overall for human motion 
behavior recognition.
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Fig. 11. Recognition accuracy of human motion behavior under different 
models (A: the dynamic motion behavior, B: the static motion behavior).

D. Discussion
The research findings presented in this paper underscore the 

substantial capability of CNN in recognizing human motion behavior. 
In direct comparison with alternative recognition algorithms, the 
CNN model emerges with the highest recognition accuracy for human 
motion behavior, boasting an average accuracy of 94.41%. For instance, 
Dong et al. delved into the application of 3D-CNN in human behavior 
recognition and achieved a recognition accuracy of 94.7%. In contrast, 
other recognition algorithms, such as the time-space domain depth 
CNN, recorded a comparatively lower recognition accuracy of 93.5%, 
underscoring the superior performance of the CNN model in this context 
[37]. In comparison to Dong et al.’s research outcomes, the 3D-CNN 
model employed in this paper showcases notably elevated recognition 
accuracy, reinforcing its superior performance among various 
recognition algorithms. The paper adopts a segmentation approach, 
dividing human motion behavior into static and dynamic categories 
and conducting separate network recognition, thereby yielding distinct 
recognition results for different motion behaviors. This segmentation 
strategy contributes to more accurate identification and differentiation of 
diverse types of motion behaviors, consequently enhancing recognition 
precision. Mahmoud conducted research on human behavior recognition 
utilizing LeNet-5CNN, revealing that with an increase in sample size, the 
recognition accuracy also improved, reaching a maximum accuracy of 
78.54% [38]. In contrast to Mahmoud et al.’s research (2022), the CNN 
model employed in this paper demonstrates superior performance in 
human motion recognition. The 3D-CNN model adopted herein achieves 
a higher recognition accuracy in human motion behavior compared to 
the LeNet-5 CNN, indicating that the model utilized in this paper exhibits 
robust adaptability to complex motion recognition tasks.

V. Conclusion

This paper presents a methodology for extracting human motion 
behavior data scenes from the human living environment, leveraging the 
IoT framework. The primary objective is to investigate the recognition 
performance of human motion behavior using CNN. In order to 
achieve this, the KTH database is selected as the recognition dataset 
for human motion behavior. Rigorous parameter determination and 
analysis identify optimal settings for CNN recognition effectiveness, 
specifying a convolution core size of 5*5, three convolution layers, and 
a batch size of 10. The training loss function reaches a minimum value 
of 0.0001. Furthermore, the recognition accuracy of different models 
highlights CNN’s superior performance in recognizing static motion 
behavior. While the paper introduces the concept of utilizing IoT to 
collect human motion behavior data characteristics, it acknowledges 
the challenge of processing and aggregating this data for network 
training due to its dispersed and complex nature. As a result, the KTH 
database is chosen as the training dataset instead of the collected 
data set. Experimental results demonstrate the recognition process 
and effectiveness of CNN in human motion behavior recognition 
using the KTH database as the training and testing dataset, yielding a 
commendable recognition accuracy. However, the limited number of 
sample data remains a consideration. In order to enhance the model’s 
generalization ability and reliability, future research could explore 
the collection of more diverse and abundant human motion behavior 
data, validating it with other publicly available large-scale datasets. 
Additionally, despite utilizing an optimized CNN model to enhance 
human motion behavior recognition robustness, challenges may 
persist in complex scenarios, such as lighting variations, occlusions, 
and background interference, potentially affecting recognition 
accuracy. Future studies may delve into exploring more sophisticated 
network structures and data augmentation techniques to further 
improve the model’s robustness in challenging scenarios.
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