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Accurately and feasibly predicting the future trajectories of autonomous vehicles is a critically important task. 
However, this task faces significant challenges due to the variability of driving intentions and the complexity 
of social interactions. These challenges primarily arise from the need to understand one’s driving behaviors 
and model the interaction information of the surrounding environment. A substantial amount of research has 
been focused on integrating interaction information from the surrounding environment, mainly using raster 
images or High-Definition maps (HD maps). However, the real-time update of environmental maps and the 
high computational cost associated with processing interaction information using compatible technologies 
such as vision have become limiting factors. Additionally, ineffective simulation and modeling of real driving 
scenarios, coupled with inadequate understanding of contextual environmental information, result in lower 
prediction accuracy. To overcome these challenges, we propose a multi-modal trajectory prediction model 
based on sequence modeling namely IAtraj, incorporating multiple attention mechanisms, focuses on the three 
critical elements in real traffic scenarios: the target agent’s historical trajectory, effective interactions with 
neighboring vehicles, and lane supervision and retention strategies. To better model these elements, we design 
modules for Temporal Interaction (TI), Spatial Interaction (SI), and Lane Awareness (LA). Through extensive 
experiments conducted on the publicly available nuScenes dataset, IAtraj exhibits outstanding performance, 
successfully addressing the challenges of temporal dependencies in trajectory sequences and the representation 
of scene changes. Finally, comprehensive ablation experiments validate the effectiveness of each significant 
module, reinforcing the reliability and robustness of IAtraj in dealing with complex traffic scenarios.
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I.	 Introduction

In multi-agent interactive prediction, accurate and feasible trajectory 
prediction of self-driving vehicles is an important prerequisite 

for safe and efficient vehicle operation. This requires a thorough 
comprehension and integration of the agents' historical trajectory 
sequences and the environmental information, encompassing traffic 
participants and lane details. However, fully understanding and 
modeling the historical trajectory information and the environmental 
information is a great challenge. In the actual driving scenarios, 
affected by various potential factors such as the driver's driving habits 
and the actual environmental conditions, there are many possibilities 
for the future driving trajectories of the target agent, so the future 
trajectories of the target agent should be extensively multi-modal. As 
shown in Fig. 1, according to the environment information, drivers' 

psychology, behavioral habits, or other potential factors, the target 
agent can choose to continue straight (vertical diversity) or steer 
(horizontal diversity) at different speeds presenting rich multi-modal 
future trajectory sequences. Earlier, due to the limited experimental 
conditions and equipment, researchers often explored trajectory 
prediction methods based on physical models. [1], [2], [3] all used 
Kalman filter-based physical models to predict the state of the agent 
(including the moving direction, traveling lane, speed, and acceleration, 
among others). Chen et al. [4] explored vehicle trajectory prediction 
using a deep Monte Carlo Tree Search (deep-MCTS) approach. Both 
[5], [6] used machine learning-based methods for path planning 
and prediction. However, traditional physical and machine learning 
models have lower prediction accuracy, robustness, and high latency.

As historical driving trajectories directly influence future driving 
behaviors, extracting features from chronological trajectory sequences 
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becomes crucial. This process involves time-series modeling of the 
trajectory data. Generally, the more historical information that can be 
provided and the better the model’s ability to extract and model the 
trajectory information, the more accurate the trajectories we predict. 
Regrettably, the dataset imposes limitations on the available feature 
information for the model. Therefore, our focus lies in enhancing 
the model’s capacity to comprehend historical information. Existing 
works such as [7], [8], [9], [10] fully consider the sequential nature 
of trajectory sequences and use Long Short-Term Memory (LSTM) 
Networks to extract the long-term temporal dependence of trajectory 
sequences. Additionally, [11], [12] utilize an attention mechanism 
to learn which time-step feature information needs more attention 
adaptively. Meanwhile, for generating future trajectory sequences 
that also have temporal features with long-term dependence, 
future prediction trajectories need to be generated with a complete 
understanding of the interaction information to generate plausible 
trajectory sequences that cover a wide range of future possibilities. 
Numerous studies, such as [8] and [12], correspond to the encoder 
using LSTM as a multi-modal trajectory decoder. PGP [13] and 
LAformer [14] introduce random noise to simulate longitudinal 
driving behaviors, such as acceleration and deceleration, and the 
introduction of random noise covers the diversity of changes in a 
variety of future driving trajectories. Nevertheless, this approach to 
some extent, heightens the model’s uncertainty, thereby affecting the 
accuracy and realism of predictions.

The future travel paths of the vehicles are influenced not only by 
their historical trajectories but also by the surrounding environmental 
information in the scenes, and the neighboring agents may directly 
impact the current decisions of the target agent. Therefore, the model 
needs to consider the contextual scene information of the target 
agent and the environmental information comprehensively. In this 
regard, previous researchers have conducted numerous studies on 
extracting feature information, leading to a multitude of interaction-
aware models. Early literature employed trajectory sequences and 
scene raster images as multi-modal inputs. Including raster images 
and videos facilitate interaction between multiple agents and the 
understanding of contextual information to a certain extent [15], 
[16], [17]. Although these methods can be implemented using 
visual techniques, they are often limited by the fact that they can’t 
capture the dynamic information of the agents and scenes well, as 
well as require significant computational overhead. Additionally, the 
decoder struggles to decode spatio-temporal information accurately. 
In recent years, a large number of researchers have applied graphs 
to traffic prediction in traffic scenarios [18], [19], [20]. However, the 
incorporation of graphs can also simulate social interactions in traffic 
scenarios, and existing works use high-definition maps to vectorize 
and encode traffic scenario contextual information. Vectornet [21] 
vectorizes both historical trajectories and lane lines as folded segments 
and models them as global interaction graphs. PGP [13] divides lanes 

into nodes and models lane graphs. Similarly [22] and [23], Graph 
Neural Networks (GNNs) are used to realize the interaction and 
awareness of feature information among multiple agents. Meanwhile, 
numerous research efforts have explored the trajectory prediction 
based on the attention mechanisms [9], [12], [14], [24], [25], [26], [27]. 
They all use the improved attention mechanisms to calculate attention 
weights for realizing the effective interactions between multiple 
agents. Compared to the raster image methods, these approaches can 
fully comprehend environmental and scene information to predict the 
future trajectories of agents accurately.

Although studies have made significant progress in raster images, 
high-definition maps, and sequence modeling, there are still the 
following problems: (1) Lack of organic and unified modeling of the 
environment and awareness: most of the existing research only deals 
with and models one-sided factors, such as modeling interactions 
around the vehicles, but lacks monitoring and understanding of 
lane keeping aspects, (2) Insufficient understanding and modeling of 
feature information, as the availability of the vehicle history data is 
limited, the model can only increase the understanding and modeling 
of the vehicle history feature information, (3) Raster images can be 
compatible with advanced visual technologies but often face challenges 
of high computational costs and difficulty in effectively extracting and 
modeling subtle features, (4) More advanced models and predictive 
capabilities, providing accurate and efficient forecasting, can assist 
autonomous vehicles in making wiser and safer decisions.

To solve the abovementioned problems, we propose a multi-modal 
trajectory prediction model based on contextual spatio-temporal 
interaction and awareness: IAtraj. The model fully considers and 
analyzes the complex spatio-temporal interactions between the target 
agent and its neighboring agents, as well as its ability to perceive the 
road environment. Moreover, it establishes an integrated model that 
combines feature extraction and modeling, interaction awareness, and 
multi-modal decoding. We have the following key contributions:

•	 To study the problem of trajectory prediction based on historical 
sequences and environmental information, and construct a 
generalized prediction network framework that can be applied to 
efficient trajectory prediction for multiple agents, such as vehicles, 
pedestrians, and others.

•	 To propose an Interaction and Awareness Block (IAB) based on 
the attention mechanisms, from which intrinsic interaction and 
awareness features are extracted by fusing joint temporal, spatial, 
and lane features. The module takes into full consideration the 
three most crucial elements in actual driving scenarios (historical 
trajectories, neighboring vehicles, and road information). It 
establishes independent yet organically integrated processing 
strategies, thereby providing the target agent with accurate 
judgment and decision-making strategies.

•	 To achieve better performance on the nuScenes [28] dataset and verify 
the effectiveness of the module through extensive ablation studies.

The remainder of this article is organized as follows. Section 
II presents related work on sequence modeling and interaction 
awareness, and Section III presents the complete implementation of 
our proposed IAtraj model. Section IV conducts extensive comparisons 
and ablation experiments on the public dataset nuScenes, and finally, 
Section V gives concluding remarks and directions for future work.

II.	 Related Work

A.	Time Sequence Modeling
Sequence modeling is a key component of the trajectory prediction, 

which determines whether the interaction and awareness block 
can effectively utilize trajectory features. In recent years, with the 

Fig. 1. Multi-modal travel trajectory map of the target agent.
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advancement of deep learning, researchers have extensively explored 
trajectory feature modeling. LSTMs are capable of modeling the long-
term dependence within time sequence data and simultaneously 
addressing the issue of gradient explosion associated with Recurrent 
Neural Networks (RNNs). [9] uses LSTMs in the encoder stage to 
extract and model the target agent, neighboring agents, and lane 
information respectively, and similarly, in the decoding stage where 
the trajectory data is also time-sequential, [8] and [12] apply LSTMs to 
generate multi-modal future trajectory sequences.

With the emergence of attention mechanisms [29], a large number 
of attention mechanism variants have been produced, and the field 
of trajectory prediction has also used them for feature extraction and 
interaction. [12] uses a multi-head attention mechanism to adaptively 
assign weights to the agent’s historical trajectory data, in which [30] 
combines LSTM with attention mechanisms for multi-dimensional 
extraction of the target agent’s historical trajectories. However, 
attention mechanisms entail high computational complexity. [30] also 
designs a single-agent coding module for a multi-dimensional attention 
mechanism to improve the computational speed. For this purpose, we 
refer to the above works and design our Temporal Interaction (TI) 
module using LSTMs in combination with the AFT FULL module [31], 
the module eliminates matrix multiplication operation compared to a 
traditional attention mechanisms, which are used in a way that not 
only has better results but also has a lower computational complexity.

B.	 Spatial Interaction and Awareness
In real traffic scenarios, the target agent is not an isolated moving 

entity. It typically relies on real-time, efficient analysis, understanding, 
and response to the surrounding environment to make timely 
adjustments such as steering, acceleration, and deceleration. However, 
to achieve accurate judgments, we need to extract rich interaction 
information and feature representation from traffic scenes. Previous 
works have mainly transformed traffic scenes (e.g., lanes, pedestrian 
crossings, traffic signals, etc.) into bird’s-eye views and performed 
feature extraction from the bird’s-eye views by visual methods. Usually, 
the studies involve fusing the acquired feature information with the 
target agent’s data processed through a temporal model, which is 
then utilized as input for subsequent predictions. Many works have 
leveraged visual technologies such as Convolutional Neural Networks 
(CNNs) to characterize the rich features of traffic scenes effectively. 
For example, H. Cui et al. [15] constructs an MTP model using 
MobileNet-v2 and ResNet models to represent traffic scene information 
as raster images. T. Phan-Minh et al. [32] improves the MTP model by 
approximating all possible motions through a set of trajectories and 
focusing on the multi-modal trajectory outputs. [33], [34], [35] adopt 
social pooling techniques to achieve effective interactions between 
the target agent and neighboring agents. However, raster images are 
susceptible to limitations of local awareness and tend to overlook 
important features in the global context and dynamic scenes, reducing 
the accuracy of trajectory prediction. The attention mechanisms also 
eliminate the need for raster images and can focus on more important 
information in the environment through adaptive weight allocation. 
[8] and [9] both employ LSTM to handle information from multi-
agent, emphasizing the significance of neighboring agents and lanes 
in predicting the trajectories of the target agent through the use of 
attention mechanisms. [11] adopts a dual-attention mechanism to 
model intentional behaviors and trajectory prediction separately, 
which improves the accuracy of prediction. Therefore, to achieve 
effective interactions between multiple agents, we designed the 
spatial interactive attention module to perceive the interactions 
among multiple agents and accurately predict trajectories by utilizing 
effective spatial representation to the greatest extent.

III.	Methods

Fig. 2 shows the proposed IAtraj model, in this section, we first 
introduce data preprocessing and problem formulation, followed by a 
detailed overview of the IAtraj model.

A.	Preprocessing and Problem Formulation
Target agent history trajectory ( ): Using the state 

information of the target agent in the past 2 seconds as input.  
represents the historical trajectory sequences of the target agent in the 
past T + 1 time steps. That is, , each state 
information is denoted as , where 𝑥𝑡, 𝑦𝑡 denote 
the agent’s transverse and longitudinal coordinate in the coordinate 
system in the 𝑡 moment, and 𝑣𝑡, 𝑎𝑡 and θ𝑡 denote the agent’s velocity, 
acceleration, and yaw angle information at the moment 𝑡.

Target agent future information ( ): Generating predicted 
trajectory coordinates for the target agent in the next 6 seconds.  
represents the sequences of predicted trajectory states of the target 
agent at the future H time steps. That is, , and 
each state information is denoted as , where 𝑥h, 𝑦h denote 
the agent’s transverse and longitudinal coordinate in the coordinate 
system at the h moment, respectively.

Lane information (𝐿(N)): Based on the target agent’s centroid 
position, search for the nearest N lane segments within the surrounding 
threshold range. Subsequently, select the two preceding and following 
lane segments to ensure connectivity. Finally, resample their 
coordinates to have equal distances. Among them, the lane closest to 
the future trajectory in all lanes is labeled as the reference lane. 𝐿(N)

represents the N lane information that the surrounding environment 
influences the target agent. That is, 𝐿(N) = {𝐿(1), 𝐿(2), …, 𝐿(N)}.

Neighboring agent historical trajectory information : 
Since the selected lanes are the closest to the target agent, it is only 
necessary to choose the state information of the closest agents within 
each of the selected paths. We consider the closest neighboring agents 
in the lanes to have the most significant impact on the target agent; 
therefore, there is no need to screen other neighboring agents.  
represents the trajectory sequences of the neighboring agents for 
the past T + 1 time steps. That is, , and the 
specific state information is similar to the above target agent.

B.	Detailed Overview of the Model

1.	Vehicle-Lane Feature Encoder (VLFE):
The first step in trajectory prediction is to encode the trajectory 

sequence data and environment information, and the effective 
extraction of features determines whether the interaction and 
awareness block can fully understand and utilize the feature 
information. As shown in Fig. 2, the feature encoding module 
contains two key parts: the feature extraction and the information 
aggregation. Specifically, for the feature extraction module, to capture 
the feature information at different scales, a one-dimensional CNN 
(1D-CNN) is used to perform a sliding convolution operation on 

 or ∀L ∈ {𝐿(1), 𝐿(2), …, 𝐿(N)}. In addition, 
introducing the LSTM helps to improve the model’s understanding of 
sequence information, which in turn improves the ability of temporal 
modeling of contextual information. The feature extraction module can 
be expressed as Eq.  (1)-(3):

	 (1)

	 (2)

	 (3)

In the above section, Li, , and VTar denote the original sequence 
information of the lanes, neighboring agents, and the target agent, 
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respectively. , , and ηT are the feature information generated by 
the lanes, neighboring agents, and the target agent after the feature 
extraction module, respectively. In the information aggregation 
module, we can combine the rich information , , and ηT in 
the trajectory sequences, and then provide more expressive features 
for the subsequent trajectory prediction tasks through the mapping 
of feedforward layers. Eq. (4) describes the process of information 
aggregation.

	 (4)

The ∅1, ∅2 layers are two fully connected layers, whose main 
function is to transform and map the features nonlinearly, and ηi is the 
output of the VLFE module, which contains the historical trajectories 
of the target agent, neighboring agents, and lane information.

2.	Interaction and Awareness Block (IAB):
For multi-modal trajectory prediction, it is crucial to establish the 

spatio-temporal interactions between the target agent, neighboring 
agents, and the surrounding environment, so we use the IAB module 

VehicIe-Lane Feature Encoder (VLFE)

Past Trajectory
and Lane Information

Lane Feature Extraction

Feature Information

Information Aggregation

Feed
Foward

concat

concat

Nearby Agent Feature Extraction

Target Agent Feature Extraction

Interaction and
Awareness
Block (IAB)

LA SI TI

Trajectory
Predictor (TP)

Generate Trajectory

Target Vehicle Surrounding Vehicle Non-e�ective Vehicle

Fig. 2. A multi-modal trajectory prediction model framework using contextual information spatio-temporal interaction and awareness. The proposed model 
is divided into three main phases: Vehicle-Lane Feature Encoder (VLFE): processing and extracting features of the target agent (red), neighboring agents 
(green), and lanes (black); Interaction and Awareness Block (IAB): simulating effective spatio-temporal interactions of multiple agents and approximating 
lanes in case of lane deviation of the target agent; Trajectory Predictor (TP): generating multi-modal predicted trajectory sequences.
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to achieve the spatio-temporal interactions of the target agent and 
efficient awareness of the surrounding environment. Following the 
1D-CNN with the LSTM, the temporal features of the target agent 
are initially extracted. To emphasize the significant spatio-temporal 
features, we predominantly employ the information passing through 
the VLFE module, emphasizing the significant temporal and spatial 
expressions of the target agent via the TI and SI modules. For the lane 
awareness module, the lane weights are adaptively assigned to select 
an appropriate driving lane.

Temporal Interaction Module (TI): The TI module enables the 
model to more selectively focus on and integrate information from 
different time steps in the sequences, and the features ηT generated 
by the target agent after the VLFE module are nonlinearly mapped 
into QTI, KTI, and VTI. The mapping relationship changes as shown in 
Eq. (5)-(7):

	 (5)

	 (6)

	 (7)

Where, ηT denotes the feature information generated by the target 
agent after the VLFE module. WQTI , WKTI  and WVTI  are the weight matrix. 
Additionally, ρ1, ρ2 and ρ3 are the different linear transformation layers 
to compute the significant time expressions:

	 (8)

The temporal interaction attention values are calculated as described 
in Eq. (8). We calculate the time-series weighted average using KTI and 
VTI, then employ QTI for implicit attention calculations. This process 
allows us to acquire trajectory information based on these calculated 
weights. Consequently, it can emphasize or balance the significance 
of specific time steps, thereby obtaining more representative temporal 
features ηTI . Here, W is the weight matrix, and ⊙ is the element-
wise product, which makes the computational complexity of the 
AFT FULL much lower than that of other attentional mechanisms, 
as the element-wise operation replaces the matrix multiplication of 
traditional attentional mechanisms.

Spatial Interaction Module (SI): The SI module interacts with 
each element of the target agent’s trajectory sequences (for example, 
features at each time step) with elements from other sequences 
through matrix multiplication. It generates weights based on their 
similarity to simulate the impact of neighboring agents on the ego 
vehicle’s movement in real driving scenarios. The computation of 
the Query, Key, and Value in the multi-head attention mechanism is 
described in Eq. (9)-(11):

	 (9)

	 (10)

	 (11)

In this case, the Query (QSI), Key (KSI), and Value (VSI) are obtained by 
nonlinear mapping of the target agent features ηT with the aggregated 
features η. The nonlinear mapping is shown in Equations (9)-(11). Each 
head ∈ 1, 2, ..., Nh of QSI, KSI, and VSI for attention computation can be 
defined as Eq. (12):

	 (12)

	 (13)

By utilizing the similarity relationship between the information of 

the target agent and that of neighboring agents, a weighted aggregation 
was conducted on the neighboring agents’ information. Enable the final 
feature representation headi to more effectively capture interactions 
between the target agent and its neighboring agents. Where, Eq. (13) 
represents the value of attention for aggregating multiple heads, Nh 
represents the number of heads of multi-head attention, W represents 
the weight matrix, b represents the bias, ⊗ denotes the matrix 
multiplication, and ηSI represents the feature values generated by the 
spatial interaction module.

Lane Awareness Module (LA): Calculate the attention weights 
designed to decrease the extent of lane deviation for the target agent 
using lane-aware probabilities associated with neighboring lane 
features. The lane-aware feature results are obtained by summing the 
calculated probabilities. The specific formula expressions are shown 
in (14) - (15):

	 (14)

	 (15)

Where ωi is derived from the feature aggregation module, mapping 
through softmax indicates the degree of attention to neighboring lanes 
in the form of probabilities. The weighted probability ωi is multiplied 
by the feature values ηL to obtain lane features with weights ηLA. ηLA 
represents the feature value generated by the lane awareness module; 
∅3 and ∅4 denote fully connected layers.

We employ a gated selection mechanism to compute and filter 
temporal, spatial, and lane-aware features concurrently, specifically 
through Sigmoid gated filtering to extract the effective feature 
information, multiply it with the original information, and then carry 
out the residual connection to input it into the layer normalization 
layers, as illustrated in Eq. (16)-(18):

	 (16)

	 (17)

	 (18)

LayerNorm denotes the layer normalization, and TI, SI, and LA 
represent the outputs of the final temporal, spatial interaction, and lane 
awareness modules, respectively. The residual concatenation of feature 
values from the temporal, spatial interaction, and awareness modules, 
together with the temporal features of the original target agent, yields 
ηall as the output of the IAB module. Residual connectivity allows 
information to propagate more directly between different layers of the 
network and avoids model degradation caused by vanishing gradients 
[36]. Eq. 19 describes the feature aggregation process for IAB.

	 (19)

3.	Trajectory Predictor (TP):
The TP mainly consists of K LSTMs with a fully connected layer. 

Its main function is to aggregate the features of the target agent ηT 
with the features from the interaction and awareness block TI, SI, and 
LA, resulting in the combined features ηall, which is then inputted into 
the TP module. Using the feature information, the module generates 
multiple sequences of future trajectories .

	 (20)

The TP module is described in Eq. (20). Among them, ∅7 is 
composed of a multilayer linear network (Linear), a normalization 
layer (BatchNorm), and an activation function layer (Relu).

C.	Realization Details
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1.	LOSS
We introduce the classification loss Lclass to constrain behaviors 

such as lane change and mode choice, the regression loss Lregression to 
constrain the degree of deviation of the predicted trajectories from the 
true trajectory, and the lane choice loss Llc to encourage the model to 
choose an appropriate lane. Therefore, the total loss Ltotal function of 
IAtraj is shown in Eq. (21):

	 (21)

The class loss consists of trajectory modal classification loss Lcls and 
lane classification loss Llane_cls. These two losses are implemented using 
cross-entropy loss, and the regression loss Lreg is implemented using 
Smooth L1. The class loss and regression loss are shown in Eq. (22) 
and (23), respectively.

	 (22)

	 (23)

Where, K denotes the number of modalities, and L denotes the 
number of candidate lanes.  denotes the target probability, 

 is the predicted probability. a, b and c are the weighting 
factors, balancing the overall impact of multiple factors on the model 
[37].  and  denote the real and predicted trajectories of the target 
agent, respectively.

	 (24)

Lane choice loss Llc is utilized to measure the deviation of the 
predicted trajectories from the lane, as illustrated in Eq. (24). This 
metric encourages the target agent to approach the reference lane to 
enhance prediction accuracy when the predicted trajectory’s distance 
from the reference lane exceeds that of the true trajectory, as measured 
by δ (X, Y), denoting the distance difference between X and Y. Here, Lref 

represents the reference lane.

2.	Training
The training process for the IAtraj model is performed using the 

NAdam optimizer and end-to-end training for 33 epochs on NVIDIA 
RTX 3090 GPUs, taking approximately 4 hours. We use the PyTorch 
framework to implement the proposed model. To provide a better 
understanding and implementation, we provide a pseudo-code form 
algorithm for the entire model, refer to Algorithm 1 for details.

IV.	Experiment

A.	Dataset
nuScenes: We evaluated the IAtraj model on the large-scale 

public trajectory prediction dataset nuScenes, which is an automated 
driving dataset created by nuTonomy, Inc. The dataset comprises 
1,000 different scenarios occurring at various times of the day and 
under different weather conditions, encompassing settings like city 
streets, highways, parking lots, and more. Each sample in the dataset 
includes multiple sensor data points and annotated information 
about associated vehicles, pedestrians, bicycles, and other objects. 
The maximum length of the dataset is based on the agent’s historical 
trajectory data from the past 2 seconds to predict the target agent’s 
motion trajectories for the next 6 seconds.

B.	Performance Evaluation
In this section, we will introduce two common evaluation metrics 

for trajectory prediction, Average Displacement Error (ADE) and 
Final Displacement Error (FDE), and use these two evaluation 
metrics to assess the performance of the proposed model.

Average Displacement Error (ADE): The ADE is computed by 
calculating the average Euclidean distance difference between the true 
trajectory and the corresponding moment in the predicted trajectories 
for each moment, reflecting the overall level of prediction effectiveness. 
In the equation, K denotes the predicted modal number, H denotes the 
future time step, , and VTar denote the predicted trajectory positions 

Algorithm 1. Trajectory Prediction through Contextual 
Information Spatio-Temporal Interaction and Awareness

Input: Historical trajectory sequences and lane information, 

            Xi, i ∈ {VTar, VSur, L} 
Output: Future trajectory sequences 

1:   procedure VLFE(Xi, i ∈ {VTar, VSur, L}
2:      for each i do
3:          = Calculate the 1D-CNN embeddings.

4:         ηi = Calculate the LSTM outputs.

5:          = Calculate the aggregation information.

6:      end for
7:      return 

8:   end procedure
9:   procedure IAB 

10:    η = Calculate the feature aggregation output.

11:    TI = Calculate the Time Interaction Module output.

12:    SI = Calculate the Spatial Interaction Module output.

13:    LA = Calculate the Lane Awareness output.

14:    Concatenate ηT , TI, SI, LA to generate ηall.

15:    return ηall

16: end procedure
17: procedure TP(ηall)
18:     = Calculate decode outputs and generate initial future

         trajectories

19:    return  

20: end procedure
21: if then train == True:

22:    for each epoch do
23:        ← VLFE (Xi, i ∈ {VTar , VSur ,L})
24:       ηall ← IAB (ηi, , i ∈ {VTar , VSur ,L})
25:        ← TP(ηall)
26:       Calculate Loss and update backward.

27:    end for
28: end if
29: for test dataset do
30:        ← VLFE (Xi, i ∈ {VTar , VSur ,L})
31:       ηall ← IAB (ηi, , i ∈ {VTar , VSur ,L})
32:        ← TP(ηall)
33:       return All future trajectories .

34: end for
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and true trajectory position of the target agent at time t, respectively. 
The ADE is calculated as shown in Eq. (25).

	 (25)

Final Displacement Error (FDE): The FDE is computed by 
calculating the Euclidean distance difference between the predicted 
trajectories and the position of the endpoint of the corresponding true 
trajectory. Where, K denotes the predicted modal number,  and 
VTar(F) denote the final predicted trajectory positions corresponding to 
the target agent and the final true trajectory position, respectively. 
The FDE is calculated as shown in Eq. (26).

	 (26)

C.	Comparison
To fully assess the overall performance of our model, we compared 

the IAtraj model with mainstream models and methods in recent years.

•	 AME [38]: Relies on bird’s eye view (BEV) local perception 
maps to supplant the need for high-definition maps, avoiding 
dependency on HD maps and enabling accurate predictions of 
practical significance.

•	 CoverNet [32]: Constructs the trajectory prediction problem as 
a prediction method for classifying different sets of trajectories 
using trajectory state sequences and raster images as inputs.

•	 GATraj [10]: Applies Graph Convolutional Networks (GCNs) to 
simulate interactions between multiple agents, and incorporates 
the attention mechanism to model the spatio-temporal dynamics 
of the agents. The method demonstrates excellent prediction speed 

and efficiency while maintaining prediction accuracy, presenting a 
graphical model based on the attention mechanism.

•	 AgentFormer [26]: Joints modeling of temporal and social 
dimensions mainly using the attention mechanism, through which 
effective interactions between traffic participants can be achieved, 
allowing the social behaviors of traffic participants to influence 
the model of other participants.

•	 SGNet [39]: The method considers that the agent’s movement will 
change with time, so the designed model mainly performs step-
by-step goal estimation and application on multiple time scales for 
use in predicting successive goals in the future.

•	 ContextVAE [40]: An environment-aware vehicle trajectory 
prediction model in real-time is developed utilizing a temporal 
VAE architecture and map encoding module, generating high-
fidelity and effective trajectories corresponding to the given map.

•	 Lapred [9]: By selecting the target agent along with the potential 
lanes around it and applying attention computation, the model 
enhances the effective interactions between the target agent and 
the lanes, thereby improving the accuracy of prediction.

We evaluated the IAtraj model on the nuScenes dataset and 
compared it with existing research, whose results are presented in 
Table I. It can be observed that our proposed method outperforms the 
other prediction methods in most of the metrics for modal numbers K 
of 1, 5, and 10. Although Lapred [9] slightly outperforms our method 
in the ADE10 metric, it achieves significant improvement in all other 
metrics, especially the FDE indicators. We attribute the excellent 
performance in terms of evaluation metrics to the exquisite and 
complete design of IAtraj. It differs from models with raster images 
attempting to extract contextual environment information using image 
techniques and also differs from models focusing on processing local 

TABLE I. Comparison Results With Existing State-of-the-art Methods in the NuScenes Test Set

Network
ADEK FDEK

K = 1 K = 5 K = 10 K = 1 K = 5 K = 10
AME - 1.99 1.53 - 4.23 3.08

CoverNet 3.87 1.96 1.48 10.16 - -
GATraj - 1.87 1.46 - 4.08 2.97

AgentFormer - 1.86 1.45 - 3.89 2.86
SGNet - 1.85 1.32 - 3.87 2.50

ContextVAE 3.54 1.59 - 8.24 3.28 -
Lapred 3.51 1.53 1.12 8.12 3.37 2.39

IAtraj(Ours) 3.27 1.48 1.21 7.59 2.90 2.11

ADE5 and FDE5 vs. No of Epochs

val_FDE5

train_ADE5
train_FDE5
val_ADE5

1 3

3

4

5

6

7

8

9

2

5 7 9 11 13 15 17
Epoch

19 21 23 25 27 29 31 33

A
D

E5
 a

nd
 F

D
E5

 D
ur

in
g 

Tr
ai

ni
ng

 a
nd

 V
al

id
at

io
n

Fig. 3. Change curve of evaluation metrics for training and validation process.
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information. IAtraj focuses on three key elements in traffic scenarios: 
its historical trajectory, neighboring vehicle behaviors, and lane-
keeping. By cleverly modeling these factors, it can effectively simulate 
variations in real driving scenarios, establish temporal dependencies, 
and generate plausible prediction results.

D.	Ablation Studies

1.	Quantitative Analysis
In order to comprehensively study and evaluate the model’s overall 

performance, focusing particularly on the effectiveness of the Time 
Interaction (TI), Spatial Interaction (SI), and Lane Awareness (LA) 
modules, we take a step-by-step approach to add modules to verify 

the predicted performance of the model. The baseline model uses a 
fully connected layer to replace the entire interaction and awareness 
block. Based on this, Method A introduces the Temporal Interaction 
(TI) module in the baseline model to consider only the role of temporal 
information on the target agent; Methods B and C consider the ability 
of the LSTM component and the TI component to extract temporal 
information, respectively; Method D retains the Spatial Interaction 
(SI) module to assess the degree of influence of the surrounding 
environment on the target agent; Method E lacks the gating selection 
mechanism, which reduces the screening and filtering ability of feature 
information; and Method F includes the complete interaction and 
awareness block with the best prediction performance. The specific 
performance evaluation is presented in Table II.

TABLE II. Ablation Experiments on the NuScenes Test Set

Modules Metrics  

Ablations Time Spatial Awareness
Gate

ADEK FDEK

LSTM TI SI LA K = 1 K = 5 K = 1 K = 5
Baseline  4.29 2.08 10.36 4.57

Method A    4.11 1.99 10.06 4.39

Method B     3.39 1.53 7.89 3.06

Method C     3.38 1.51 7.88 2.98

Method D    3.33 1.47 7.86 2.93

Method E     3.37 1.50 7.78 2.95

Method F      3.27 1.48 7.59 2.90

(a1)

(b1)

(c1)

Predicted Endpoint Lane

(a2)

(b2)

(c2)

(a3)

(b3)

(c3)

(a4)

Baseline Baseline+TI Baseline+SI IAtraj

(b4)

(c4)

Predicted Trajectory Past Trajectory Ground Truth

Fig. 5. Qualitative analysis of the module ablation study on the nuScenes dataset. Horizontal represents being in the same scenes (respectively straight, left turn, 
right turn), while vertical means being in the same ablation research models. The past trajectories are shown in red, the ground-truth trajectories are shown in 
blue, and the predicted trajectories are shown in green. The same applies to the following image.
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From the data in Table II, it is evident that the baseline model’s 
performance is notably inferior to that of the other models due to its 
lack of adequate interaction awareness. However, all the improved 
methods have shown significant enhancements when compared with 
the baseline method. This suggests the effectiveness of our proposed 
interaction and awareness block in the trajectory prediction tasks. 
Notably, Method D, which simply incorporates the Spatial Interaction 
(SI) module, demonstrates the most substantial performance 
improvement over the baseline model. This highlights the paramount 
importance of comprehensively considering and understanding 
spatio-temporal interaction behaviors around the target agent’s 
driving path in trajectory prediction tasks, aligning with real-world 
driving situations.

To have a more comprehensive understanding of changes in 
the IAtraj model training process, we experimented with various 

configurations. By evaluating the curves of metric changes and loss 
changes, we observed that the training loss and validation loss almost 
converged around the 33rd epoch. Therefore, we decided to halt the 
training at epoch=33. The curves depicting changes in evaluation 
metrics and loss during the training and validation processes related 
to the model are displayed in Fig.3, 4.

E.	 Qualitative Analysis
Fig. 5 visualizes the scenarios of baseline, temporal interaction, 

spatial interaction, and IAtraj model, respectively. It mainly explores 
the influence of different modules with varying critical information 
on the prediction accuracy of specific scenarios. Horizontally 
observing different ablation research models, a comprehensive 
understanding of feature information, including time, space, and 
lanes, proves advantageous in enhancing the accuracy of predictions. 

Fig. 6. Qualitative analysis of IAtraj and Lapred on the nuScenes dataset, with the left and right columns representing scenarios with modal numbers K=1 and 
K=5, respectively. Horizontal means being in the same scenes (respectively straight, left turn, right turn, multimodal variation), while vertical represents being 
in the same models.

(1)

(3)

(5)

Predicted Endpoint Lane

(7)

(4)

(6)

(2)

Lapred (K = 1) IAtraj (K = 1) IAtraj (K = 5)Lapred (K = 5)

(c4)

Predicted Trajectory Past Trajectory Ground Truth
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The detailed comparative analysis is shown in Fig. 5. Trajectories 
predicted by the baseline model are approximate extensions of 
historical trajectories, suggesting that the target agent relies solely on 
historical trajectories to continue moving along potentially possible 
directions. The introduction of the Temporal Interaction (TI) module 
brings the predicted trajectories closer to the actual trajectory, 
thereby improving the understanding of historical sequences beyond 
being mere extensions of historical trajectories. Upon adding the 
Spatial Interaction (SI) module, the predicted trajectories generally 
align with actual driving trajectories. However, the judgment of 
possible neighboring driving lanes and predicted endpoints remains 
insufficient, particularly in Fig. 5 (b3) where the predicted endpoint 
location judgment is poor. Interestingly, the comparison between 
Fig. 5 (c3) and Fig. 5 (c4) illustrates that thorough consideration and 
comprehension of lane information can generate potential left turn 
trajectory sequences, thus expanding the richness of modalities.

Fig. 6 compares predictions between IAtraj and Lapred [9] in 
specific scenarios on the nuScenes large-scale dataset. The left and 
right columns showcase the prediction scenarios for modalities 
K = 1 and K = 5. The overall comparison indicates that our proposed 
IAtraj model outperforms the Lapred model in predicting trajectories 
and endpoint positions. Further detailed comparisons reveal that in 
Scenario (2), the IAtraj model effectively predicts potential variations 
in agent speed, demonstrating its advantage in longitudinal richness. 
However, in Scenario (6), regrettably, the IAtraj model’s richness is 
inferior to that of the Lapred model, as it fails to predict potential 
driving possibilities other than right turns. Interestingly, in Scenario 
(7), despite the accurate prediction generated in the case of modality 
K = 1, the model still comprehensively understands lane information, 
proposing potential modes for left turns, with most modes aligning 
with the real trajectory. This scenario reflects the diverse and rich 
prediction possibilities in real driving situations influenced by various 
potential factors.

Based on the qualitative analysis mentioned earlier, our IAtraj model 
has demonstrated significant improvements over baseline models in 
terms of accuracy, multimodality, and lane supervision and retention. 
Particularly noteworthy is its outstanding performance in longitudinal 
diversity, where our model can accurately predict the target agent's 
movement at different speeds without deviating from the lane. This 
result strongly validates the effectiveness of the proposed TI, SI, and 
LA modules.

V.	 Conclusions and Future Work

In this work, we introduce a vehicle trajectory prediction model 
namely IAtraj, based on contextual spatio-temporal interaction and 
awareness. The model takes into account the historical trajectories of 
the target agent and surrounding contextual information as inputs. 
It employs a Temporal Interaction (TI) module to comprehend the 
temporal dependence within historical trajectories. Simultaneously, 
the Spatial Interaction (SI) module adapts to the influence of 
neighboring agents on potential driving trajectories, while the Lane 
Awareness (LA) module extracts available lane information from 
the surrounding environment. This facilitates the generation of 
diverse multi-modal trajectory predictions. Additionally, the feature 
information undergoes filtration and screening via a gated selection 
mechanism. Finally, a trajectory predictor generates multi-modal 
trajectory sequences.

Large-scale experiments on the nuScenes dataset have validated the 
outstanding performance of the IAtraj model in trajectory prediction 
tasks, achieving superior results compared to existing studies. 
Moreover, extensive ablation studies have confirmed the effective 
representation of both the spatio-temporal interaction and awareness 

block, providing rich dynamic information and enhancing the 
understanding of spatio-temporal interactions among multiple agents.

Despite achieving excellent predictive performance in this work, 
there are still some directions worth exploring. For instance, especially 
when integrated into terminal vehicles and real-time systems, we 
need to consider the model’s computational and memory limitations. 
Therefore, we are committed to developing lighter network 
architectures. Next, in addition to considering history trajectory and 
environmental factors, we should also pay more attention to predictive 
performance in variable scenarios, such as school zones, intersections, 
freeways, etc., which exhibit extensive randomness and immediate 
driving behaviors. Future predictive models should prioritize the 
modeling and application of these special scenarios.
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