
- 1 -

Please cite this article as:
K. Varpe, S. Sakhare. Reading Modi Lipi: A Deep Learning Journey in Character Recognition, International Journal of Interactive Multimedia and Artificial
Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.09.002

Keywords

Classification, Deep
Learning, Feature
Extraction, Image
Processing, InceptionNet
V3, ResNet50, ResNet9.

Abstract

Advancements in deep learning methodologies have played a significant role in the success of various character
recognition processes. Character recognition refers to the technique of identifying either handwritten or
printed characters from documents and their conversion into a form that can be read by machines. MODI
script, an ancient Indian script, is categorized under the Devanagari script and holds historical significance.
Despite its historical importance, there are only a few MODI translators available. Conversely, there exist a
vast number of historical documents written in MODI that are yet to be deciphered. Recognizing characters
in Indian language scripts poses many challenges due to the complex nature of the scripts and variations in
individuals' writing styles. This paper provides an overview of the newest advancements in the Handwritten
Optical Character Recognition (HWCR) methodology specifically designed for the MODI script. Utilization of
residual networks and inception in image classification has gained popularity in recent times.

In this paper the authors have implemented three techniques: ResNet9, ResNet50, and InceptionNet V3, trained
specifically for handwritten MODI characters and vowels. The dataset used for training the models consists
of handwritten MODI script images. The benchmark database from IEEE data port for handwritten MODI
script is used to evaluate the performance. The dataset contains 46 classes, including 10 vowel classes and
36 consonant classes. Each class comprises 90 images, resulting in a total of 4140 images. The image size in
the dataset is 227×227. The accuracy achieved by the trained models is as follows: 98.92% for ResNet9, 91.91%
for ResNet50, and 86% for Inception Net V3. The obtained results have been compared with existing models
and it is observed that the proposed model attained improved performance parameters and less training and
validation losses in comparison to existing methods. There are several advantages of the proposed model in
comparison to state of the art, namely minimal training and validation loss. In addition to this, the proposed
approach improved generalization and robustness, and improved model scalability.

DOI: 10.9781/ijimai.2024.09.002

Reading Modi Lipi: A Deep Learning Journey in
Character Recognition
Kanchan Varpe, Sachin Sakhare *

Department of Computer Engineering, Vishwakarma Institute of Information Technology, Pune
411048 (India)

* Corresponding author: Kanchanv2007@gmail.com (K. Varpe), sachin.sakhare@viit.ac.in (S. Sakhare)

Received 23 July 2023 | Accepted 21 April 2024 | Early Access 9 September 2024

I. Introduction

The script known as "MODI Lipi" is an old script and has significant
importance in medieval Maharashtra. It served as the script for

a wide range of historical documents, covering subjects such as land
revenue, judiciary, justice, religious matters, property matters, and
military orders and strategies during the reign of Chhatrapati Shivaji
Maharaj and the Peshwas.

For nearly 700 years, MODI remained the medium for administrative
and official documentation in Marathi within Maharashtra, until
the late 19th century. This prolonged usage emphasizes the need to
prioritize the recognition process for the MODI script, as it contains a
wealth of valuable information yet to be uncovered.

Researchers are interested in studying handwritten optical
character recognition (HOCR) for MODI Lipi, seeking to understand
the writing techniques used during the medieval period of the
Maratha Empire. The automation of recognition holds the potential
to unveil a trove of historical knowledge and understanding. HOCR
holds the most promise for the future in image processing, pattern
recognition, natural language processing, and analysis of documents.
Due to advancements in various technologies for image processing
and pattern recognition, considerable improvements were observed in
identifying handwritten characters [1].

HOCR is challenging because different scripts have their own style
of writing when it comes to shape and continuity. Table I enumerates
challenges faced by handwritten Modi character recognition.

- 2 -

International Journal of Interactive Multimedia and Artificial Intelligence

A. History
The Modi script has been utilized for writing Marathi language for

an estimated duration of 700 years.

The origins of the Modi script are surrounded by various narratives.
One theory suggests that Hemadpant, a minister during the rule of
Mahadev, is the creator of the Modi script. However, alternative theories
propose that Hemadpant did not invent the script from scratch, but
rather refined an existing version of Modi before introducing it as the
official script for writing Marathi.

According to research conducted by Kulkarni et al. [2], one theory
asserts that Hemadpant brought the Modi script from Sri Lanka to
India. Another theory suggests that the script was developed during
the reign of Chhatrapati Shivaji Maharaj by Baḷaji Avaji, the secretary
of state.

These differing accounts contribute to the intriguing history and
origins of the Modi script, highlighting the need for further research
and exploration to uncover its true genesis and evolution.

TABLE I. Challenges for Handwritten MODI Character Recognition

Sr. No. Challenges

1 Large number of classes.

2 Open and closed loops, arcs, strokes, straight lines.

3 Various strokes existing in a character may touch each other due
to hasty writing.

4 Large intra-class variations due to different writing styles.

5 There are inter-class similarities.

6 Extracting structural features is very difficult due to the complex
structure of some of its alphabet letters.

7 MODI is written in cursive type; hence it creates extra branches
in letters.

Modi evolved into different forms over the years until the 20th
century when the Balbodh style of Devanagari script was adopted as a
standard form for writing Marathi. Different styles of Modi are listed
according to the eras and centuries in which they emerged in Table
II. As all documents before the 20th century were written in the Modi
script, this makes Modi historically significant [3].

TABLE II. Modi Script Writing Forms Over Years

Modi style Time Period

Proto-Modi (आद्यकालीन) 12th Century

Yadav Era (यादवकालीन) 13th Century

Bahamani Era (बहमनीकालीन) 14th – 16th Century

Shiva Era (शिवकालीन) 17th Century

Chitnisi (चितनीसी) 17th Century

Peshwa Era (पेशवेकालीन) Lasted till 1818

Anglakalin or British Colonial Era (आंग्लकालीन) 1818-1952

B. Properties of MODI Script
During the 12th century, the MODI script gained prominence

as a writing system for the Marathi language. This ancient script
continued to be extensively utilized starting in the 12th century. The
term “MODI” is deemed to have been derived from the Marathi verb
“moḍaṇe,” which means to “to break or bend” [4].

To write in the MODI script, a writing instrument called “Boru” or
“Lekhan” was utilized, with the pen being made from bamboo. Despite
the fact that the MODI script is based on the Devanagari script, there
are significant variations between them. The MODI script is part

of the Nagari family of scripts and is most suitable for continuous
writing. These variations show up in rendering behaviors, letter
forms and orthography of the characters. Joseph et al. [5] provide a
comprehensive exploration of these distinguishing features.

The unique characteristics and historical significance of the MODI
script have attracted considerable scholarly attention, prompting in-
depth investigations into its structural intricacies and functional aspects.

The behaviors exhibited by characters in specific contexts, such as
combinations of consonants and vowels and consonant conjuncts, are
intrinsic features of MODI orthography and differentiate it from the
Devanagari script. The MODI script comprises 46 distinct letters, with
10 vowels and 36 consonants. The task of word segmentation for the
MODI script is quite challenging as no termination symbol is used to
designate the end of a sentence. In the MODI script, all the characters
are written as if they are hanging from a horizontal line that is drawn
across the page. This distinct style sets MODI apart. Notably, research
conducted by Kulkarni et al. [6] highlights that the elimination of
terminating symbols in the MODI script significantly increased the
writing speed.

This removal reduced the need to lift the “Boru” pen frequently.
The unique characteristics of the MODI script play a crucial role in
defining its identity and require specialized approaches for precise
interpretation and analysis. Continual research endeavors to further
enhance our comprehension of MODI orthography and foster the
development of effective methods for working with MODI script
documents.

By delving into the intricacies of the MODI script, researchers
strive to uncover its nuances, intricacies, and underlying patterns.
This deeper understanding helps in refining techniques for accurate
recognition, transcription, and translation of MODI script content.
Additionally, ongoing research contributes to the advancement of tools
and methodologies that facilitate efficient handling and processing of
MODI script documents.

The ultimate goal is to bridge the gap between the historical
significance of the MODI script and its effective utilization in
contemporary contexts. By harnessing insights gained from
ongoing research, scholars, language enthusiasts, and technological
advancements can collaborate to preserve, analyze, and leverage the
rich cultural heritage contained within MODI script documents.

Modi is a beautifully flowing cursive script known for its elegance.
The fundamental graphical structure of Modi letters, as shown in Fig.
1, Fig. 2, and Fig. 3, follows the traditional bārākhadi format.

Fig. 1. Vowels used in Modi Script.

There are 13 combining vowel signs as shown in Fig. 2.

Fig. 2. Vowel Signs in Modi Script.

There are 34 consonant letters as shown in Fig. 3.

- 3 -

Article in Press

Fig. 3. Consonants in Modi Script.

The organization of the remainder of the paper is set out here. Section
II contains an in-depth and organized summary of a literature review
of the innovative methodologies that researchers have proposed along
with challenges from state of the art. Section III contains an outline
of research techniques of the proposed Convolutional Neural Network
(CNN)-based deep learning models. Section IV describes the database.
Section V includes a discussion of the initial outcome procured from
the experimentation utilizing the deep learning architectures. Finally,
Section VI concludes and highlights future research possibilities.

II. Literature Review

Table III presents various research works that focus on MODI
character or numeral recognition. Each researcher has employed
distinct methodologies in their studies.

In the research conducted by Besekar et al. [7], classification and
recognition of MODI characters were achieved using mathematical
morphology and decision tree algorithms. Features extracted from
vertical and horizontal lines, blobs and concavities were utilized,
resulting in an accuracy of 75%.

Besekar et al. [8] employed a two-layer feed-forward neural network
with scaled conjugate gradient for MODI vowel classification. Different
accuracies were obtained by using different directional chain codes.
For instance, 65.3% accuracy was achieved using the 4-directional
chain code histogram (CCH4) and the 4-directional normalized chain
code histogram (CH4D). Furthermore, using the 4-directional CCH,
the 4-directional NCCH, and a centroid, the accuracy improved to
67.9%. Similarly, the 8-directional CCH and the 8-directional NCCH
resulted in 65.9% accuracy, while utilizing the 8-directional CCH, the
8-directional NCCH, and a centroid increased the accuracy to 73.5%.

Ramteke et al. [9] introduced the use of a Variance table to
categorize MODI numerals, achieving an accuracy of 93.5%. This
approach involved dividing the numeral into four identical 15 × 15
square zones and analyzing their polar coordinates, variance, theta,
and rh distance to generate a feature set for recognition.

These research studies demonstrate various techniques and
algorithms employed for MODI character recognition, highlighting
the progress and achievements in this field.

In the study conducted by Katkar et al. [10], the utilization of the
Kohonen Neural Network for classification, coupled with a measured
structural similarity approach for feature extraction, resulted in a
performance rate ranging from 91% to 97%.

The Euclidean distance classifier is generally employed for MODI
character identification. In the research by Kulkarni et al. [5], a correct
recognition rate of 94.92% was obtained using Zernike moments, while
an accuracy of 94.78% was obtained using Zernike complex moments
with an integrated approach for heterogeneous zones in offline
character recognition.

Kulkarni et al. [11] employed Hu’s seven invariant moments as the
feature vector for training samples, and recognition of test sample

features was performed using the Euclidean distance classifier. The
accuracy achieved with Hu’s invariant seven moments was 70%.
Zernike Moments, on the other hand, provide statistical measures of
pixel distribution around the character’s center of gravity and capture
information at a single boundary point. When using Zernike moments,
an accuracy of 86.66% was obtained.

In the research work of Sidra Anam et al. [12], the Kohonen
Neural Network was employed for classification, preceded by Otsu’s
Binarization algorithm, resulting in a performance rate of 72.6%. Otsu’s
threshold algorithm was employed for the Modi Script Character
Recognizer System (MSCR).

Deshmukh et al. [13], utilized the chain code feature extraction
technique with a non-overlapping blocking strategy, followed by
the use of correlation coefficient. The correlation feature (r or R) is
a measure of the strength and direction of the linear relationship
between two variables. It is calculated by dividing the covariance of the
variables by the product of their standard deviations. The maximum
recognition rate procured on a database of 30,000 images was 85.21%.
The results of the recognition showed an improved performance when
using 5 × 5 grid divisions. These research studies highlight various
approaches and techniques employed for MODI character recognition,
showcasing the advancements and achievements in this field.

Chandure et al. [14], conducted a study in which the entire
character set of the MODI script was recognized using the chain
code in combination with BPNN, KNN, and SVM. The respective
accuracies obtained were 37.5%, 60%, and 65%. Feature extraction was
performed using these techniques while combining the BPNN, KNN,
and SVM techniques, resulting in accuracies of 15%, 40%, and 47.5%
respectively. There are multifarious reasons of low accuracy namely
inadequate training of model such as imbalanced dataset and limited
discriminative power of algorithm. etc.

The output layer consisted of 13 neurons for Devanagari characters
and 12 neurons for MODI characters. When the chain code feature
extraction technique was used, an accuracy of 37.5% was achieved,
while an accuracy of 15% was obtained when the insertion junction
feature extraction technique was employed.

Since there are 13 classes of vowels, 13 SVM classifiers were
required for their separation. When the chain code was used as
a feature extraction technique, an accuracy of 65% was achieved.
Similarly, when the insertion junction was used as a feature extraction
technique, an accuracy of 47.5% was obtained.

The k-nearest neighbor algorithm (KNN) yielded an accuracy of
60% when the chain code feature extraction technique was employed,
and an accuracy of 40% when the insertion junction feature extraction
technique was utilized.

In research conducted by Gharde et al. [15], a combination of
moment invariant and affine moment invariant approaches was
used. This hybrid approach extracted 18 features from each number
or character. SVM was employed as the classifier, resulting in an
accuracy of 89.72%. An accuracy of 89.72% was obtained when two
feature extraction approaches, namely, moment invariant and affine
moment invariant were utilized along with SVM being used as the
classifier.

Maurya et al. [16] came up with a proposal for a framework for
recognizing handwritten MODI characters digitally. The authors
used heuristics that were empirically determined to figure out the
contribution of features from a hybrid feature space for character
recognition. The pre-processing methods included noise removal,
binarization, skeletonization, character segmentation and smoothing.
The characters that were segmented underwent post-processing and
recognition once the pre-processing was done. The average accuracy
obtained was 91.20%, with a claimed best accuracy of 99.10%.

- 4 -

International Journal of Interactive Multimedia and Artificial Intelligence

TABLE III. Overview of Research Work Related to Modi Character Recognition

Sr. No. Author Feature Extraction Classification Data type Accuracy%

C
ha

ra
ct

er
s

Vo
w

el
s

N
um

er
al

s

(1) Besekar D.N. et al., 2011 [7]
Blobs, vertical & horizontal lines,
concavities

Mathematical morphology, decision
tree.

- - ✔ 75

(2) Besekar D.N. et al., 2012 [8]
Chain code, image, and centroid
method

Two-layer feed forward network
with scaled conjugate gradient.

- ✔ -
65.3, 67.9,
65.9, 73.5

(3) Ramteke R.J. et al., 2012 [9]
Polar coordinate of zone, Variance,
theta angle and Rh distance

Comparing the variance table. - - ✔ 93.5

(4) Katkar G. S. et al., 2013 [10] Structural similarity Kohonen neural network, BPNN ✔ - - 91-97

(5) Solley Joseph et al., 2014 [5]
Zoning, (1) Zernike Moments and
(2) Zernike complex moments

Euclidean Distance ✔ - -
1) 94.92
2) 94.78

(6) Kulkarni S.A et al., 2015 [11]
(1) Hu’s invariant features (2)
Zernike moments

Euclidean distance - - ✔
1) 70
2) 86.66

(7) Sidra Anam et al., 2015 [12] - Kohonen neural network ✔ - - 72.6

(8) Manisha S. et al., 2015 [13]
Chain code feature extraction and
non-overlapping blocking strategy

Correlation coefficient - - ✔ 85.21

(9) Chandure S.L. et al., 2016 [14]
Chain Code Histogram
Features, Intersection /
Junc. Features

1)BPNN
2)KNN
3)SVM

✔ - -

Chain Code:
60, 37.5, 65
InsertionJunc
40, 15, 47.5

(10) Gharde S.S. et al., 2016 [15]
Using Moment
Invariant and Affine
Moment Invariant

SVM ✔ - - 89.72%

(11) Maurya R.K. et al., 2018 [16] Chain code Empirically determined heuristics ✔ - -
Average:
91.20%
Best: 99.10%

(12) Joseph S. et al., 2020 [17] -
1)Euclidean distance classifier,
2)Manhattan distance classifier

✔ - -
1) 99.28%
2) 94%

(13) S. Joseph et al., 2020 [18] CNN autoencoder SVM ✔ - - 99.3%

(14) Shruti Sawant et al., 2020 [19] - CNN ✔ - -
95.44%,
95.97%

(15) Solly Joesph et al., 2021[20] WT-SVD Euclidean distance ✔ - - 99.5%

(16) Joseph S. et al., 2021 [21] - ACNN ✔ - - 99.78%

(17) Tamhankar et al., 2021 [22] - DCNN ✔ - - 64%

(18) Kirti et al., 2021 [23] - AlexNet ✔ - - 89.72 %

(19) Chandure et al., 2021 [24] -
1)Supervised TL
2)SVM

✔ - - 92.32%

(20) Kulkarni S.A. et al., 2021 [25]

Zoning,
1.Zernike moments
2.Zernike Complex moments
3.Ensemble Bagging

Euclidean distance classifier

✔ - -

1. 94.92%
2. 94.78%
3. 97.68%

(21) Jidnyasa Kondhare et al., 2022 [26] -
1)CNN
2)VGG16

✔ - ✔
1)76.46%
2)92.48%

(22) Maitreyi Ekbote et al., 2022 [27] -
1)Random Forest
2)XGBoost

✔ - ✔
1)92% 
2)93.3%

(23) Vishal Pawar et al., 2022 [28] - CNN ✔ - - 91.62%

(24)
Chaitali Chandankhede et al., 2023
[29]

-
1)Inception V3
2)ResNet 50

✔ ✔ -
93.923%
94.552%

- 5 -

Article in Press

In the study conducted by Joseph et al. [17], two algorithms
utilizing distance classifiers were implemented for the classification of
handwritten Modi script. The data underwent vectorization, followed
by noise reduction techniques. The first experiment utilized Euclidean
distance classifiers, while the second experiment used the Manhattan
distance classifier. The procured accuracies were 99.28% and 94%
respectively. The Manhattan distance method demonstrated better
performance in terms of time complexity, although it was less accurate
in comparison to the second method.

S. Joseph et al. [18], came up with a proposal to make use of a CNN
autoencoder as a feature extractor in order to recognize characters in
the MODI script. Making use of the CNN autoencoder, the feature set
size was decreased from 3600 to 300. SVM was then used as a classifier
for the features that were extracted and an accuracy of 99.3% was
achieved.

Two architectures were considered in the study conducted by
Shruti Sawant et al. [19]. The first framework was made up of two
convolution layers that came first. Next came max pooling and fully
connected layers. The second architecture comprised three sets of
convolution and max pooling layers. Three fully connected layers
followed. The accuracy obtained for the first architecture was 95.44%,
and for the second architecture, it was 95.97%.

Joseph et al. [21], utilized an Augmented CNN (ACNN) model
by incorporating data augmentation techniques such as 45-degree
horizontal and vertical flips. This combined approach with a CNN
resulted in an accuracy of 99.78%.

Tamhankar P.A. et al. [22], implemented a Deep CNN (DCNN)
with Rectified Linear Unit neural activation in the convolutional
layers, which improved the performance and reduced computational
requirements. Their work achieved an accuracy of 64%.

Mahajan Kirti et al. [23], employed a pre-trained Conventional
Neural Network called AlexNet for training their model. AlexNet has
been trained on a vast dataset of 15 million labeled high-resolution
images from 22,000 categories. The experimental arrangement utilizing
the AlexNet model in MATLAB yielded an accuracy of 89.72%.

Savitri Chandure et al. [24], utilized a DCNN, namely, AlexNet as
a pre-trained network, transferring its weights for retraining. They
trained a SVM classifier on activation features to procure classifier
models, obtaining an accuracy of 92.32%.

Kulkarni S.A et al. [25] used Zernike moments to achieve an
accuracy of 94.92% for an integrated approach, while Zernike Complex
moments yielded 94.78% for the integrated approach.

Jidnyasa Kondhare et al. [26] employed CNN for Modi character
recognition, achieving a training accuracy of 73.93%, a validation
accuracy of 76.46%, and a training time of 9866 seconds. They also
tried VGG16, which resulted in an accuracy of 99.73% for training, an
accuracy of 92.48% for validation, and a training time of 7267 seconds.

Maitreyi Ekbote et al. [27] proposed a character recognition model
on the basis of a CNN for effectively identifying MODI numerals
and alphabets. They enhanced the model by utilizing a classifier like
Random Forest or XGBoost, achieving recognition accuracies of 92%
for characters and 93.3% for numerals.

Vishal Pawar et al. [28] developed a CNN model to recognize
characters in the MODI script. Due to the limited dataset of 4140
images, they applied data augmentation methodologies such as
flipping, rotation, noising, and blurring to expand the dataset. The
trained model was approximately 91.62% accurate in recognizing
handwritten MODI characters.

Chaitali Chandankhede et al. [29], experimented with character
recognition using ResNet50 and InceptionNet V3. Their dataset
consisted of about 8000 photos, and they employed the Global Otsu

threshold approach for binarization. The processed images recognized
using ResNet50 achieved a testing accuracy of 94.552% with a model
precision of 0.86, while InceptionV3 provided a testing accuracy of
93.923% with a model precision of 0.843. The article suggests further
research in different binarization strategies, varied CNN models,
regularization treatment configurations, and the automation of a
powerful word recognition model.

III. Methodology

The primary focus of this work is to leverage deep learning models,
specifically Residual Networks and Inception V3, for character
recognition in the MODI script. To evaluate performance, the
benchmark database for handwritten MODI script from IEEE DataPort
[30] is utilized.

The training involves handwritten MODI script images from this
IEEE DataPort dataset, which serves as the benchmark for model
performance evaluation. This dataset includes 46 distinct classes: 10
vowel classes and 36 consonant classes. Each class contains 90 images,
leading to a total of 4140 images. These images are standardized to a
size of 227×227 pixels.

The hyperparameters are as follows: an initial learning rate of
0.001, a batch size of 32, activation functions including Sigmoid and
ReLU, and the Adam optimizer.

A. ResNet 9-Residual Networks
ResNet is short for Residual Networks, and in our model, we pass

our data through 9 layers. In Residual Networks, skip connections are
employed for connecting the activations of each of the layers to the
other layers, omitting a few layers in between. This forms a residual
block, and multiple residual blocks are stacked on top of each other to
create the entire network. In our character recognition model, we have
8 convolutional blocks. Each block performs a convolution operation
on the image using a 3x3 kernel size, followed by batch normalization.
The results of each block are then passed through the ReLU activation
function and sent to the next block. The skip connections are utilized to
form a residual block, which consists of two consecutive convolutional
blocks. Additionally, max pooling is performed to down sample or
pool the feature map before passing it to the next layers. The flow of
this process is illustrated in Fig. 4.

We will utilize the ResNet-9 architecture in our character recognition
model. In our model, we have 8 convolutional blocks, each performing
a convolution operation on the image using a 3x3 kernel size, followed
by batch normalization. The output of each block is normalized and
then passed through the ReLU activation function before being sent to
the next block. A residual block is formed by stacking two consecutive
convolutional blocks, and skip connections are used to connect the
activations.

Additionally, max pooling is performed after each block to down
sample or pool the feature map before passing it to the next layers,
creating a down sampled or pooled feature map. This flow is illustrated
in Fig.4.

To classify images based on predictions, our ResNet model utilizes
max pooling to reduce the spatial dimensions, followed by flattening
the feature vector into a linear vector. This linear vector is then passed
through a dropout layer to consider only relevant features before
being fed into the linear layer. The linear layer performs a linear
transformation to obtain the class probabilities vector. The predicted
class is determined by selecting the class with the highest probability.
This process is depicted in the classifier block shown in Fig. 4.

- 6 -

International Journal of Interactive Multimedia and Artificial Intelligence

Input images
(3 x 220 x 220)
Batch size : 64

Con v2d (3, 64, kernel_size= (3, 3))

Batch Normalization BatchNorm2d (64)

ReLU

Con v2d (128, 128, kernel_size= (3, 3))

Batch Normalization BatchNorm2d (128)

ReLU

Con v2d (128, 128, kernel_size= (3, 3))

Batch Normalization BatchNorm2d (128)

ReLU

Con v2d (64, 128, kernel_size= (3, 3))

Batch Normalization BatchNorm2d (128)

ReLU

Maxpool2d (kernel size=2, stride=2)

Con v2d (64, 128, kernel_size= (3, 3))

Batch Normalization BatchNorm2d (128)

ReLU

Maxpool2d (kernel size=5, stride=5)

Con v2d (512, 512, kernel_size= (3, 3))

Batch Normalization BatchNorm2d (128)

ReLU

Con v2d (512, 512, kernel_size= (3, 3))

Batch Normalization BatchNorm2d (512)

ReLU

Con v2d (256, 512, kernel_size= (3, 3))

Batch Normalization BatchNorm2d (512)

ReLU

Maxpool2d (kernel size=11, stride=11)

Residual Block 1

Classifier
MaxPool2d (kernel_size=2, stride=3)

Fla�en

Dropout (p = 0.2)

Linear (in_features = 512,
out_features = 46)

Residual Block 2

Fig. 4. Resnet 9’s architecture.

B. Resnet 50
ResNet-50 [31] is a CNN with 50 layers, and it is a widely used

architecture in computer vision applications. ResNet, short for
Residual Networks, is a common neural network that has enabled
the training of deep networks with hundreds of layers. In the ResNet
architecture, denoted as the Residual Neural Network, the labels “50
layers,” “101 layers,” and “152 layers” correspond to the collective count
of convolutional layers integrated into the network. These numerical
designations, encapsulated within square brackets like [3, 4, 5, 6], [3, 4,
23, 8], and [3, 8, 36, 3], signify the arrangement of convolutional layers
within distinct segments of the ResNet structure.

One of the challenges faced by CNNs is the “Vanishing Gradient
Issue,” where gradients significantly diminish during back propagation,
leading to minimal weight updates. To address this problem, ResNet
introduces a solution known as “SKIP CONNECTION.”

A skip connection is a direct connection that bypasses certain
layers in the model. This skip connection alters the output. When a
skip connection is not used, the input ‘X’ is multiplied by the layer
weights, and a bias term is added, followed by the activation function
F () to obtain the output as:

F (w*𝑥 + b (equivalent to F(X)) (1)

However, with the skip connection technique, the output becomes:

F(X) + X (2)

Before training the model, preprocessing steps are applied to the
images. This involves padding and cropping the images to a size of
(224,224) to ensure uniformity.

The images are also adjusted through normalization. The standard
deviation of each channel is divided by the means of the image tensors
before subtracting them.

This normalization ensures that values from any one channel do
not disproportionately influence losses and gradients during training.

To classify images based on predictions, our ResNet model utilizes
max pooling to downs ample the feature map, followed by flattening
the resulting feature vector into a linear vector. A dropout layer is
applied to retain only relevant features before passing them to a linear
layer, which performs a linear transformation to obtain the class
probabilities vector. The predicted class is determined based on the
maximum probability.

C. InceptionNet V3
Inception-v3 is a CNN consisting of 48 layers. It is known for its

effective architecture design and parameter reduction techniques.
The network incorporates three different kinds of Inception modules:
Inception A, Inception B, and Inception C. These modules combine
both convolutional layers and pooling layers in a parallel fashion to
capture distinctive features while reducing the number of parameters.
To achieve parameter reduction, small convolutional layers such as
3×3, 1×3, 3×1, and 1×1 are employed within the Inception modules.
The model also includes symmetric and asymmetric components like
convolutions, average pooling, max pooling, concatenations, dropouts,
and fully connected layers. Batch normalization is utilized to a great
extent, ensuring improved training stability. Softmax is employed to
compute the loss during training.

InceptionNet V1 serves as the foundation for subsequent versions,
including Inception-v3. Each version builds upon the previous one,
introducing iterative improvements. In the case of Inception-v3,
notable modifications include factorization into smaller convolutions,
spatial factorization using asymmetric convolutions, the incorporation
of auxiliary classifiers, and efficient grid size reduction. For our
specific implementation, we adjusted the number of output channels
in the final layer from 1,000 to 98, as our network had fewer classes
compared to the original Inception-v3 model. The original model
was designed for a dataset with 1,000 classes. InceptionNet performs
exceptionally well on large datasets, and expanding our dataset can
enhance the model’s accuracy in comparison to other models [32].

IV. Database Description

This section of the paper includes a description of datasets that
are available publically for the handwritten MODI script [30]. System
performance is analyzed on the benchmark database from the IEEE
data port (https://ieeedataport.org/documents/handwritten-modi-
characters). The dataset for handwritten MODI script comprises 46
classes, with 10 classes for vowels and 36 classes for consonants.
Each class contains 90 images, resulting in a total of 4140 images. To

- 7 -

Article in Press

prepare the dataset for training and testing, it was split into a ratio
of 80:20, generating 3336 training images and 834 testing. images.
During training, a batch size of 32 was utilized, along with other hyper
parameters including weight decay, gradient clipping, and the Adam
optimizer as the optimization function with a specified learning rate.

In this research, there was employed multifarious data augmentation
methods to improve the diversity as well as robustness of the dataset
utilized for model training. These techniques include but not limited
to, image rotation, vertical and horizontal flipping, random cropping
and zooming, brightness and contrast adjustment. Arbitrary rotation
of pictures by a certain degree is also done to simulate alterations in
image perspective.

Images were mirrored vertically or horizontally to augment the
dataset with additional variations. Arbitrary zooming and cropping
were applied to introduce changes in image scaling and composition.
Brightness and contrast levels were adjusted to simulate different
lighting conditions.

V. Experimental Results and Discussion

All the mentioned CNN models were trained with different values
of hyper parameters to get optimal results. The performances of these
CNN models are d iscussed in this section.

A. ResNet9
Data augmentation techniques were utilized to enhance the

generalization and training effectiveness of the model. The images
were converted into tensors using the PyTorch framework for training
purposes.

The model underwent training for 50 epochs, resulting in a training
accuracy of 97.32%. The accuracy progression throughout the epochs
is illustrated in Fig. 5. Additionally, the model’s loss consistently
decreased over time.

Subsequently, the trained model was evaluated using the test
dataset images, yielding a test accuracy of 98.92% shown in Fig. 6.

B. ResNet50
The ResNet-50 model underwent training for 29 epochs to achieve

optimal accuracy on the dataset. The training accuracy obtained was
99.94%, while the testing accuracy reached 91.91%.

Fig. 7 illustrates the relationship between the model accuracy and
the number of epochs, showcasing how the accuracy improves over
time. On the other hand, Fig. 8 showcases the model loss throughout
the epochs, demonstrating a gradual decrease in loss.

C. InceptionNet V3
The Inception V3 model underwent training for 50 epochs. The

training accuracy achieved was 78.6%, while the testing accuracy
reached 86%.

Loss vs. No. of epochs

lo
ss

epoch

0

0 10 20 30 40 50

training
validation

1

2

3

4

6

5

Fig. 6. ResNet 9 Loss Plot.

Accuracy vs. No. of epochs
ac

cu
ra

cy

epoch

0.0

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

Fig. 5. ResNet 9 Accuracy Plot.

Model Accuracy

A
cc

ur
ac

y

epoch

0.4

0.5

0 5 10 15 20 25

0.6

0.7

0.8

0.9

1.0

train

validation

Fig. 7. ResNet 50 Accuracy Plot.

Model Loss

Lo
ss

epoch

0.0

0.5

0 5 10 15 20 25

1.0

1.5

2.0

2.5
train

validation

Fig. 8. ResNet 50 Loss Plot.

- 8 -

International Journal of Interactive Multimedia and Artificial Intelligence

Fig. 9 illustrates how training and validation accuracy and the
number of epochs are related, providing insights into how accuracy
evolves during training. Additionally, Fig. 10 showcases the training
and validation loss throughout the epochs, demonstrating the gradual
decrease in loss.

TABLE IV. Training and Testing Accuracy

Technique used
Number of

Epochs
Training
Accuracy

Testing
Accuracy

ResNet-9 50 97.32% 98.92%
ResNet-50 29 99.94% 91.91%
InceptionNet V3 50 78.6% 86%

The models demonstrated significant performance levels. ResNet-50,
trained over 29 epochs, achieved a training accuracy of 99.94% and
a testing accuracy of 91.91%. Inception V3, after its training process,
recorded a training accuracy of 78.6% and a testing accuracy of 86%,
as presented in Table IV. Meanwhile, in our experiments, ResNet-9
yielded a training accuracy of 97.32% and a testing accuracy of 98.92%

VI. Conclusion and Future Scope

The work in this paper focuses on utilizing deep learning models,
specifically Residual Networks and Inception V3, for MODI script
character recognition. The training process involved fine-tuning
various hyperparameters to obtain the desired outcomes. However,
challenges such as a limited image dataset, similarities between classes,
word continuity, and the cursive nature of the MODI script remain
significant obstacles in handwritten MODI character recognition.
To address these challenges, future work can focus on augmenting
the dataset to avoid inter-class misclassification and improve CNN
invariance qualities. Additionally, there is potential for enhancing
recognition accuracy and expanding the scope to include word and line
recognition. Segmenting text in the MODI script poses a considerable
challenge due to the absence of word or sentence stopping symbols,
making it an area for future investigation.

References

[1] V. Kanchan and S. Sakhare, “Review of Character Recognition Techniques
for MODI Script,” Indian Journal of Science and Technology, vol. 16, no. 26,
pp. 1935-1946, 2023. doi: 10.17485/IJST/v16i26.485.

[2] K. Sadanand, L. Prashant, R. Ramesh and L. Pravin, “Impact of zoning
on Zernike moments for handwritten MODI character recognition,” 2015
International Conference on Computer, Communication and Control (IC4),
Indore, India, 2015, pp. 1-6, doi: 10.1109/IC4.2015.7375516.

[3] S. Joseph and J. George, “Handwritten Character Recognition of MODI
Script using Convolutional Neural Network Based Feature Extraction
Method and Support Vector Machine Classifier,” 2020 IEEE 5th
International Conference on Signal and Image Processing (ICSIP), Nanjing,
China, 2020, pp. 32-36, doi: 10.1109/ICSIP49896.2020.9339435

[4] A. Pandey, “Proposal to Encode North Indic Number Forms in ISO/
IEC 10646,” 2007. [Online]. Available: https://api.semanticscholar.org/
CorpusID:215863507

[5] S. Joseph and J. George, “Feature Extraction and Classification
Techniques of MODI Script Character Recognition,” Pertanika Journal of
Science and Technology, vol. 27, pp. 1649-1669, 2019. Available: https://api.
semanticscholar.org/CorpusID:260481222.

[6] K. Sadanand, P. Borde, R. Ramesh, and P. Yannawar, “Offline MODI
Character Recognition Using Complex Moments,” Procedia Computer
Science, vol. 58, pp. 516-523, 2015, doi: 10.1016/j.procs.2015.08.067.

[7] D. Besekar, “Recognition of numerals of MODI script using morphological
approach,” International Referred Research Journal, ISSN 0974-2832, pp.
0974-2832, 2011

[8] D. Besekar, “Special Approach for Recognition of Handwritten MODI
Script’s Vowels,” in National Conference “MEDHA 2012”, vol. 1, no. 1,
pp. 48-52, September 2012. [Online]. Available: /proceedings/medha/
number1/8679-1023/.

[9] D. Besekar and R. Ramteke, “Feature extraction algorithm for handwritten
numerals recognition of MODI script using zoning-based approach,”
International Journal of Systems, Algorithms and Applications, vol. 2, pp.
1-4, 2012

[10] S. Ramteke and G. Katkar, “Recognition of Off-line Modi Script: A Structure
Similarity Approach,” International Journal of Research in Engineering, IT
and Social Science (IJREISS), vol. 2, no. 11, pp. 2250-0588 2013. [Online].
Available: https://api.semanticscholar.org/CorpusID:16802396

[11] S. Kulkarni and P. Borde, “Analysis of orthogonal moments for
recognition of handwritten MODI numerals,” VNSGU Journal of Science
and Technology, vol. 4, pp. 36-43, Jul. 2015.

[12] S. Anam and S. Gupta, “An approach for recognizing Modi Lipi using
Ostu’s binarization algorithm and Kohenen neural network,” International
Journal of Computer Applications, vol. 111, no. 2, pp. 29–34, Feb. 2015, doi:
10.5120/19511-1128.

[13] M. Deshmukh, M. Patil, and S. Kolhe, “Off-line handwritten Modi
numerals recognition using chain code,” in Proceedings of the Third
International Symposium on Women in Computing and Informatics, Kochi,
India, 2015, pp. 388–393, doi: 10.1145/2791405.2791419.

[14] S. Chandure and V. Inamdar, “Performance analysis of handwritten
Devnagari and MODI Character Recognition system,” 2016 International
Conference on Computing, Analytics and Security Trends (CAST), Pune,
India, 2016, pp. 513-516, doi: 10.1109/CAST.2016.7915022.

[15] S. Gharde and R. Ramteke, “Recognition of characters in Indian MODI
script,” 2016 International Conference on Global Trends in Signal Processing,
Information Computing and Communication (ICGTSPICC), Jalgaon, India,
2016, pp. 236-240, doi: 10.1109/ICGTSPICC.2016.7955304

[16] R. Maurya and S. Maurya, “Recognition of a Medieval Indic-Modi Script

Lo
ss

epoch Number

0.75

1.00

0 10 20 30 40 50

1.25

1.50

1.75

2.00

2.25

2.50
training set
test set

Fig. 9. Inception V3 Loss Plot.

Lo
ss

Epoch Number

0.40

0.45

0 10 20 30 40 50

0.50

0.55

0.60

0.65

0.70

0.80

0.75

training set
test set

Fig. 10. Inception V3 Accuracy Plot.

https://api.semanticscholar.org/CorpusID:215863507
https://api.semanticscholar.org/CorpusID:215863507
https://api.semanticscholar.org/CorpusID:260481222
https://api.semanticscholar.org/CorpusID:260481222
https://api.semanticscholar.org/CorpusID:16802396

- 9 -

Article in Press

using Empirically Determined Heuristics in Hybrid Feature Space,”
International Journal of Computer Sciences and Engineering, vol. 6, no. 2,
pp. 136-142, Feb. 2018, doi: 10.26438/ijcse/v6i2.136142.

[17] S. Joseph, J. George, and S. Gaikwad, “Character Recognition of MODI
Script Using Distance Classifier Algorithms,” in ICT Analysis and
Applications, S. Fong, N. Dey, and A. Joshi, Eds. Singapore: Springer
Singapore, 2020, pp. 105–113.

[18] S. Joseph and J. George, “Handwritten Character Recognition of MODI
Script using Convolutional Neural Network Based Feature Extraction
Method and Support Vector Machine Classifier,” 2020 IEEE 5th
International Conference on Signal and Image Processing (ICSIP), Nanjing,
China, 2020, pp. 32-36, doi: 10.1109/ICSIP49896.2020.9339435

[19] S. Sawant, A. Sharma, G. Suvarna, T. Tanna and S. Kulkarni, “Word
Transcription of MODI Script to Devanagari Using Deep Neural
Network,” 2020 3rd International Conference on Communication System,
Computing and IT Applications (CSCITA), Mumbai, India, 2020, pp. 18-22,
doi: 10.1109/CSCITA47329.2020.9137781

[20] J. Solley and J. George, “Efficient Handwritten Character Recognition of
MODI Script Using Wavelet Transform and SVD,” in Data Science and
Security, D. S. Jat, S. Shukla, A. Unal, and D. K. Mishra, Eds. Singapore:
Springer Singapore, 2021, pp. 227–233, doi: 10.1007/978-981-15-5309-7_24

[21] S. Joseph, A. Datta, O. Anto, S. Philip, and J. George, “OCR System
Framework for MODI Scripts using Data Augmentation and
Convolutional Neural Network,” in Data Science and Security, D. S. Jat, S.
Shukla, A. Unal, and D. K. Mishra, Eds. Singapore: Springer Singapore,
2021, pp. 201-209, doi: 10.1007/978-981-15-5309-7_21

[22] P. Tamhankar, K. Masalkar, and S. R. Kolhe, “Character Recognition of
Offline Handwritten Marathi Documents Written in MODI Script Using
Deep Learning Convolutional Neural Network Model,” in Recent Trends
in Image Processing and Pattern Recognition, K. C. Santosh and B. Gawali,
Eds. Singapore: Springer Singapore, 2021, pp. 478–487, doi: 10.1007/978-
981-16-0507-9_40

[23] K. Mahajan and N. Tajne, “An Ancient Indian Handwritten Script
Character Recognition by Using Deep Learning Algorithm,”
EFFLATOUNIA: Multidisciplinary Journal, vol. 5, no. 2, pp. 123-134, Oct.
2021.

[24] S. Chandure and V. Inamdar, “Handwritten MODI Character Recognition
Using Transfer Learning with Discriminant Feature Analysis,”
IETE Journal of Research, vol. 69, no. 5, pp. 2584-2594, 2023. doi:
10.1080/03772063.2021.1902867

[25] S. Kulkarni and P. Yannawar, “Recognition of Partial Handwritten MODI
Characters Using Zoning,” in Recent Trends in Image Processing and
Pattern Recognition, K. C. Santosh and B. Gawali, Eds. Singapore: Springer
Singapore, 2021, pp. 407–430, doi: 10.1007/978-981-16-0507-9_35.

[26] J. Kondhare, V. Yaduvanshi, R. Patil, and R. Kaldate, “Recognition of
Handwritten Modi Digits and Characters by Using Deep Learning
Algorithm,” International Journal of Emerging Technologies and Innovative
Research, vol. 9, no. 8, pp. 563-572, Aug. 2022. [Online]. Available: http://
www.jetir.org/papers/JETIRFP06101.pdf.

[27] M. Ekbote, A. Jadhav, and D. Ambawade, “Implementing a Hybrid Deep
Learning Approach to Achieve Classic Handwritten Alphanumeric
MODI Recognition,” International Journal of Engineering and Advanced
Technology (IJEAT), vol. 12, no. 1, pp. 1-8, Oct. 2022, doi: 10.35940/ijeat.
A3846.1012122.

[28] V. Pawar, D. Wadkar, S. Kashid, P. Prakare, V. More, and Prof. S. A. Babar,
“MODI Lipi Handwritten Character Recognition Using CNN and Data
Augmentation Techniques,” International Research Journal of Engineering
and Technology (IRJET), vol. 09, no. 06, pp. 2345-2351, Jun. 2022.

[29] C. Chandankhede and R. Sachdeo, “Character Recognition using
MODI script: Facts, Challenges and its future,” TEST Engineering and
Management, vol. 83, pp. 25389–25395, 2020.

[30] S. Jadhav, V. Inamdar, October 12, 2021, “Handwritten MODI Characters
“, IEEE Dataport, doi: https://dx.doi.org/10.21227/z3gg-8b29.

[31] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image
Recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/
CVPR.2016.90.

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking
the Inception Architecture for Computer Vision,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
2016, pp. 2818-2826, doi: 10.1109/CVPR.2016.308.

Kanchan Varpe

Kanchan Varpe is Research scholar in the Computer
Engineering Department at Vishwakarma Institute of
Information Technology, Pune, India. Awarded the
Master of Engineering Degree from Savitribai Phule Pune
University, Sinhgad College of Engineering, Wadgaon,
Pune. Research interests include Natural Language
Processing (NLP), Image Processing, Computer Networks

and Machine Learning.

Dr. Sachin Sakhare

Dr. Sachin R. Sakhare is working as a Professor and Head
of the Computer Engineering Department at Vishwakarma
Institute of Information Technology, Pune, India. He
has 27 Years of experience in engineering education.
He is recognized as PhD guide by Savitribai Phule Pune
University and currently guiding 8 PhD scholars. He is a
life member of CSI, ISTE and IAEngg. He has Published

51 research communications in national, international journals and conferences,
with around 393 citations and H-index 7. He has authored 6 books which is
published by Springer Nature, CRC Press and IGI Global. He worked as a
reviewer of journals published by Elsevier, Wiley, Hindawi, Springer, Inder
science, and IETE. He worked as a reviewer for various conferences organized
by IEEE, Springer, and ACM. He worked as a member of the Technical and
Advisory Committees for various international conferences. Dr. Sachin has
Delivered invited talks at various Conferences, FDP’s and STTP’s as well as to
PG and PhD students. He has guided 26 PG students. He has filed and published
07 patents out of which 01 Indian, 03 Australian and 02 south African patents
are granted.

http://www.jetir.org/papers/JETIRFP06101.pdf
http://www.jetir.org/papers/JETIRFP06101.pdf
https://dx.doi.org/10.21227/z3gg-8b29

