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Abstract

Human falls are a serious health issue for elderly and disabled people living alone. Studies have shown that if 
fallers could be helped immediately after a fall, it would greatly reduce their risk of death and the percentage 
of them requiring long-term treatment. As a real-time automatic fall detection solution, vision-based human 
fall detection technology has received extensive attention from researchers. In this paper, a hybrid model based 
on YOLO and ST-GCN is proposed for multi-person fall detection application scenarios. The solution uses 
the ST-GCN model based on a graph convolutional network to detect the fall action, and enhances the model 
with YOLO for accurate and fast recognition of multi-person targets. Meanwhile, our scheme accelerates the 
model through optimization methods to meet the model's demand for lightweight and real-time performance. 
Finally, we conducted performance tests on the designed prototype system and using both publicly available 
single-person datasets and our own multi-person dataset. The experimental results show that under better 
environmental conditions, our model possesses high detection accuracy compared to state-of-the-art schemes, 
while it significantly outperforms other models in terms of inference speed. Therefore, this hybrid model based 
on YOLO and ST-GCN, as a preliminary attempt, provides a new solution idea for multi-person fall detection 
for the elderly.

DOI:  10.9781/ijimai.2024.09.003

A Hybrid Multi-Person Fall Detection Scheme Based 
on Optimized YOLO and ST-GCN
Lei Liu1, Yeguo Sun2*, Xianlei Ge3

1 School of Computer Science, Huainan Normal University, Huainan (China)
2 School of Finance and Mathematics, Huainan Normal University, Huainan (China)
3 School of Electronic Engineering, Huainan Normal University, Huainan (China)

* Corresponding author: yeguosun@126.com

Received 21 July 2023 | Accepted 3 June 2024 | Early Access 26 September 2024 

I. Introduction

The elderly population is growing faster than any other age group, 
and as of October 2022, 10% of the world's total population will 

be over 65 years old [1]. Related studies predict that the total number 
of older adults will increase to 1.5 billion by the end of 2050 [2]. 
Older people's physical, cognitive, and motor skills decline with age. 
Falls are a significant challenge for them, and they can significantly 
reduce the life expectancy of older adults. Approximately 35% of 
people (65 years and older) fall once or more yearly [3]. In addition 
to old age, other factors such as environment, physical action, and 
cardiovascular disease can contribute to falls. It is a significant source 
of physical injuries, and these injuries usually require hospitalization 
for long-term treatment [4]. Each year, 37.3 million falls require 
medical care and 650,000 falls result in death [5]. In Fig.1, medical 
investigations have shown that timely treatment after a fall can 
reduce the risk of death by 80% and significantly improve the survival 
rate of older adults. Therefore, rapid detection of fall events is of 
great significance [6]. Accurate human action recognition methods 
and model optimization techniques are vital to achieving this goal. 

However, there are also problems, such as significant differences in 
the structure and performance of each different model, low support 
for multi-person action recognition, and low real-time system 
performance [7]. This paper proposes a hybrid human fall detection 
framework based on YOLO and ST-GCN for multiple people for 
the elderly fall detection scenario in real time. Two optimization 
algorithms accelerate the model to improve real-time performance 
and accuracy of the model.

Fig. 1.  Elder fall and timely treatment.



- 2 -

International Journal of Interactive Multimedia and Artificial Intelligence

The primary advantages of the scheme are summarized as follows:

• We attempt to recognize human actions using skeletons and 
propose a hybrid model based on YOLO and ST-GCN to improve 
adaptation to multi-person fall detection scenarios.

• We accelerate the proposed hybrid model by using two model 
optimization algorithms to reduce the model size and improve the 
scheme’s overall real-time performance.

• We construct our own fall detection test dataset for multi-person 
fall detection, and analyze the causes of miss and false detection 
in the fall detection model and provides references for subsequent 
research.

The rest of this paper is organized as follows: Section 2 reviews 
the research related to human fall detection and model optimization. 
Section 3 presents the proposed scheme’s overall design framework 
and each component’s functions, including the details of the hybrid 
model and the model optimization algorithm. Section 4 presents the 
construction method of the multi-person fall detection test dataset and 
gives the experimental protocol and results to verify the effectiveness 
and feasibility of the proposed scheme. Finally, the paper discusses the 
conclusions and directions for future work.

II. Related Work

Human fall detection is an independent human action recognition 
research direction, and researchers have proposed various methods for 
different technical characteristics. We focus on two issues: the design 
of a human fall detection model for multi-person and the optimization 
scheme of the model.

A. Human Fall Detection
In Fig.2, multi-person fall detection can be seen as an extension 

of single-person fall detection technology, and fall detection belongs 
to the human action recognition research field. Currently, three main 
fall detection methods exist 1) Environmental-device fall detection 
approaches. Detection is based on the environmental noise formed 
when the human body falls, such as sensing changes in object 
pressure and sound to detect falls [8]. This method has a high false 
alarm rate and cost, which is rarely used. 2) Wearable-sensor fall 
detection approaches. Falls are detected using accelerometers and 
gyro-scopes [9]. This method requires a long time to wear sensors, 
which not only affects the comfort of human life but also increases 
the burden on the body of the elderly. The false alarm rate is high in 
complex environments. 3) Computer-vision fall detection approaches 
[10]. It can be divided into two categories: the traditional machine 
vision method extracts fall features, has low hardware requirements 
but is susceptible to environmental factors such as background and 
light changes, and has poor robustness. The other category is artificial 
intelligence methods, which use camera image data to train and infer 
convolutional neural networks. This type of solution has the features 
of high recognition accuracy, no perception, and low cost.

 In vision-based human fall detection schemes, human information 
from multiple modalities can be used as features of the model, such 
as appearance, depth, optical flow, and human skeleton [11]. Among 
them, the human skeleton node usually complements other class 
of modal features, which can convey important information and 
performs better in model accuracy and robustness [12]. Human 
skeletal node data mainly contains two dimensions of information, 
the temporal dimension and the spatial dimension [13]. In this case, 
the temporal dimension is information about the nature of the action 
being performed and how it is being performed. We review approaches 
to such modeling, most of which rely on RNN (Recurrent Netural 
Network) or convolutional neural network (CNN). WRNNs are neural 

networks designed to process each time step of a time series one after 
the other, thus allowing the processing of variable length sequences. 
They maintain an internal state that captures the temporal context of 
the signal. RNNs are mostly based on long short term memory (LSTM) 
or gated recurrent units (GRU). Since the memory unit remembers 
values at arbitrary time intervals, it enables LSTMs to efficiently 
capture short-term and long-term temporal dependencies. In fact, 
LSTM have been widely used in human action-related problems, such 
as in action recognition [14], [15]. GRU, on the other hand, uses fewer 
parameters, and therefore less memory and lower computational cost 
[16], and therefore trains faster than LSTM. However, as shown by 
Weiss et al [17], LSTM outperforms GRU because it can easily perform 
unbounded counting, while GRU cannot. Thus, LSTM seems to be 
more accurate than GRU on longer sequences. In conclusion, the 
choice between LSTM and GRU depends on the data being processed 
and the application being considered.

On the other hand, spatial dimensionality, which is used to learn 
spatial correlation information in skeletal data [13], is modeled by 
three main categories: spatially- structured architecture (SSA), CNN, 
and graph convolutional network (GCN). 

Among them, SSA relies on network architectures built around 
the human skeleton to help the model learn spatial correlations and 
allow the network to compute functions that essentially encode 
human skeletal features. These methods segment the skeleton into 
body parts and process the corresponding data in parallel network 
branches or hierarchical structures. In parallel approaches, the main 
distinction is usually related to the goal task, which determines the 
architecture of each branch [18]. Hierarchical approaches, on the 
other hand, model the human skeleton in layers, which can be either 
top-down or bottom-up [19], [20]. CNN is another type of architecture 
that relies on 2D convolution, i.e., in both the spatial and temporal 
domains. For this reason, the graph structure of the human skeleton 
is spread along the spatial dimension. CNN is particularly effective 
in learning spatial correlations in structurally regular data such as 
images. However, learning the spatio-temporal dynamics of human 
joints remains a challenge for CNNs because the graph structure of 
the human skeleton cannot be meaningfully flattened along a single 
dimension. The researchers have made some optimizations for this as 
well [21], [22]. 

Finally, as an extension of CNN, GCN have shown substantial 
performance advantages [23]. The GCN-based action recognition 
algorithm models human skeletal nodes as spatial-temporal 
relationships. It uses graph coarsening and partition design to 
enable GCN to process non-Euclidean data as efficiently as the 
human skeleton nodes and can achieve significant performance [24]. 
Generally, GCNs follow two major branches: Spectral GCN and Spatial 
GCN [25]. Spectral GCN implements graph con-volution for human 
skeleton-based action recognition by converting the graph from the 
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Fig. 2.  Human fall detection method.
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time domain to the frequency domain using the eigenvalues and 
eigenvectors of the graph Laplacian matrix [26] at the cost of extensive 
computation. Therefore, several measures are needed to reduce the 
computational cost of feature decomposition. In contrast, Spatial GCN 
has a lower computational cost and better performance, which has 
led to their more comprehensive application [27]. Therefore, most 
GCN-based approaches in human action recognition have focused 
on Spatial GCN. Human action is a continuous process, so time is 
crucial for representing human actions. Since Yan et al. proposed a 
spatial-temporal graph convolutional network (ST-GCN) in 2018, it 
has become a research hotspot [28]. Researchers have also proposed 
various improved versions of ST-GCN schemes. Peng [29] constructed 
a graph-based search space to explore the spatial-temporal 
connectivity relationships between nodes for action recognition. Shi 
[30] proposed that the adaptive learning graph structure is trained and 
updated along with the model parameters, which are better adapted to 
the action recognition task. Zhang [31] made the action recognition 
network more robust by introducing an attention mechanism. Cai 
[32] constructed a dual-stream model that combines the human pose 
skeleton and joint-centered lightweight information to capture the 
local delicate motions around each joint to improve the accuracy of 
action recognition. 

In the multi-person fall detection scheme, [33], [34] used Long 
Short Term Memory (LSTM) for real-time multi-person fall detection 
and solved problems such as multi-person occlusion by using multiple 
cameras. Xu [35] improves the recognition accuracy for multiple 
users by using multiple trackers. Saturnino [36] proposes a hybrid 
fall detection model based on YOLO and SVM to improve the model’s 
performance for multiple human targets detection.

Overall, the GCN-based schemes have higher inference accuracy 
in continuous actions sequences due to the inclusion of spatial and 
temporal feature information. However, compared to other schemes, 
GCN-based schemes generally have larger model sizes and do not 
have special treatment for multi-person scenarios, which is the issue 
we focus on.

B. Model Optimization
With the rise of Edge AI, more and more intelligent application 

scenarios occur at the edge end. In particular, some applications with 
high real-time requirements require the system to respond promptly 
in the production environment of the data [37]. How-ever, there is a 
significant contradiction between the vast scale of AI models and 
the constrained resources of edge devices [38]. While continuously 
improving the performance of Edge AI devices, accelerating the model 
inference rate through model optimization techniques is also the key 
to solving this problem [39], [40]. Among them, efficient network 
architecture design and model compression are typical approaches [41].

The modules are connected in the efficient network architecture 
design approach by creating a compact neural network structure and 
carefully designing the topology [42]. The goal is to achieve efficient 
deep learning models with acceptable accuracy while ensuring small 
model structure (low memory) and low computational complexity 
(high speed). For example, MobileNet and MobileNetV2 use deeply 
separable convolutional modules. In contrast, separable convolution 
with residuals/reverse residuals is its basic building block, significantly 
reducing the parameter size and achieving higher accuracy [43]. 
Similar examples of building blocks of efficient neural networks to 
reduce parameters and improve efficiency include ShuffleNetV1 and 
ShuffleNetV2 [44].

Unlike the efficient network architecture design approach, the model 
compression method aims to modify a given neural model to reduce 
its storage and computational costs [45]. In Fig. 3, the neural network-
based model compression methods include pruning, quantization, 

low-rank factorization, and knowledge distillation. Among them, 
pruning is one of the powerful techniques to remove unimportant 
components from the model [46]. Pruning is flexible and efficient 
in removing layers, neurons, connections, or channels, reducing the 
model by removing redundant parts. The purpose of quantization is to 
reduce the number of bits required for the model parameters to reduce 
the cost of storage and computation of the model parameters. Most 
processors use 32 or more bits to store the parameters of a deep model, 
which are stored in 16 or 8 bits after processing by quantization [47]. 
Knowledge distillation and low-rank factorization are also famous and 
influential in compressing depth models [48], [49].

Model Compression Techniques

Deep Neural Network
Traditional Machine Learning

(SVM, Decision Tree, Random Forests, KNN)

Low-rank
Factorization

Knowledge
Distillation

�antization Pruning

Fig. 3.  Model compression method.

III. The Proposed Scheme

In Fig. 4, the traditional human action recognition scheme based 
on human skeletal nodes includes human posture estimation and 
human motion recognition. In the human pose estimation phase, the 
human skeletal node is extracted by human pose detection systems 
such as Microsoft Kinect and OpenPose and then handed over to the 
human action recognition model for processing. As mentioned earlier, 
ST-GCN is based on spatial-temporal information of human skeleton 
nodes and performs well in long action recognition, so our paper will 
use ST-GCN in the action recognition phase. ST-GCN generally uses 
OpenPose to extract skeleton nodes, but OpenPose usually extracts 
skeleton node information of multiple people from the global level at 
one time. This method has problems such as poor target recognition 
accuracy and poor interference resistance between skeleton nodes. In 
response, this paper optimizes the multiple human target detection 
process by adding the object detection model YOLO before the human 
pose estimation phase. The scheme starts with YOLO processing the 
original real-time video to generate multiple independent human 
detection boxes. Then each box is handed over to the human pose 
estimation model. Finally, the extracted human bones are processed 
by ST-GCN separately. The system’s detection accuracy for multiple 
human targets can be improved by incorporating YOLO. In addition, by 
adopting a detection scheme based on small image blocks, the system 
dramatically reduces the computational load of the pose estimation 
model. Finally, this paper will accelerate the model inference rate 
through model optimization techniques.

A. Multi-Person Detection With YOLO
YOLO is an object detection model that uses a prediction method 

based on the whole frame [50]. After scanning an image only once, 
YOLO can detect all target information, including category and 
location, and performs well in object detection tasks. The latest version 
of the YOLO series is YOLOv7, which is currently the fastest object 
detection model [51]. Previous versions of YOLO have also differed 
significantly regarding network structure, parameter size, and model 
performance. Among them, the YOLOv5 version has a more balanced 
performance in all aspects and is widely used in various application 
scenarios. Unlike previous versions, YOLOv5 implements a series 
of network architectures, namely YOLOv5n, YOLOv5s, YOLOv5m, 
YOLOv5l, and YOLOv5x. These five models are similar in structure. 
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The number of convolution kernels in the convolution process can 
be varied by changing the depth multiplier and the number of C3S 
in BottleneckC3 (Bottleneck CSP structure with 3 CBS modules) and 
the width multiplier. It allows for combinations between different 
network depths and widths to achieve a balance between accuracy 
and efficiency, as shown in Table I. 

In the latest YOLOv5 series, the model size is 3.87MB for YOLOv5n 
and 14.1MB for YOLOv5s. They are low-cost target detection models 
suitable for deployment on mainstream mobile or edge devices. In the 
COCO data set, YOLOv5n was used for object detection, 26.4% of the 
images had missing person detection, and the time of each image was 

6ms on average. YOLOv5s was used for target detection, and 13.8% of 
the images were missing people detection, and the average time of each 
image was 7ms. To ensure fall detection accuracy, YOLOv5s is chosen 
as the base model in this paper for optimization and improvement. 

Fig. 5 shows the network framework of YOLOv5s-6.0, which consists 
of four parts: 1) Convolutional network-based Backbone network, 
which mainly extracts image feature information. 2) Head detection 
head, main prediction object box, and prediction object category. 3) 
The Neck layer between the trunk network and the detection head. 
4) The prediction layer outputs the detection results and predicts the 
object detection frame and label category.

Human Action Recognition Scheme Based on
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Our Scheme

Human Pose Estimation

ActionRealtime Video

Action
Recognition

• Stand
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Embedded Device

Fig. 4.  The main framework of multi-person fall detection scheme.

TABLE I. Comparison of YOLOv5 Series Model

Methods YOLOv5n YOLOv5s YOLOv5m YOLOv5l YOLOv5x

Depth multiple 0.33 0.33 0.67 1.00 1.33

Width multiple 0.25 0.50 0.75 1.00 1.25

C3-n (True) 1,2,3,1 1,2,3,1 2,4,6,2 3,6,9,3 4,8,12,4

C3-n (False) 1 1 2 3 4

Convolution kernels 16,32,64,128,256 32,64,128,256,512 48,96,192,384,768 64,128,256,512,1024 80,160,320,640,1280

Params (MB) 3.90 14.10 40.80 89.30 166.00

Speed (ms) 6 7 14 25 47

 1. Input

Focus CBS

CBS CBS

CBS

CBS CBS
CBS MaxPool MaxPool MaxPoolSPPF

Focus
CBS

CBS

CBS

CBS

CBS CBS

X

2�X

CBS add

CSP1_1

CSP1_X =

= =

=

=

CSP2_X =

CBS CBS

CBS

CBS

CBS

Concat

Concat

Concat Concat

Slice

Slice

Slice

Slice

Concat

Concat Conv

Conv BN SiLU Res
unit

Res
unit

Conv

Conv

Concat

Concat

CSP1_1

CSP2_1

CSP2_1

CSP2_1

CSP2_1

SPPFCBS CSP1_2 CBS CSP1_3

 2. Backbone 3. Neck 4. Predictin

上采样

上采样

Fig. 5.  Illustration of YOLOv5s‘s network.



- 5 -

Article in Press

In Fig. 6, this paper obtains video data from the camera and processes 
each image frame. After YOLO processing, the system will detect 
multiple human targets. These objects will be given to the human 
pose estimation model as independent image blocks to extract human 
skeleton nodes. Since the entire image does not need to be searched 
during the skeleton node extraction phase, it can be directly based on 
the independent image block containing the human object, which will 
significantly improve the inference speed and accuracy of the model.

Original Image

Human
Detection Box

Person 1 Person 2 Person 3 Person 4 Person N

...... Other
Person

Fig. 6.  Human detection box in YOLO.

B. Multi-Person Fall Detection With ST-GCN
ST-GCN pioneered the application of GCN in human action 

recognition based on skeletal nodes. In Fig. 7, the input to ST-GCN 
is a joint coordinate vector of a graph node that is obtained based on 
one graph node and two graph edges. The graph nodes are the skeletal 
nodes, and the graph edges are the spatial and temporal edges of the 
skeletal nodes. One of these is the spatial edge between the different 
skeletal nodes, representing the skeletal constraint information of 
the human action. The other category is the temporal edges, which 
are connected between the same skeletal nodes at different moments 
and represent the temporal constraint information of the human 
action. These data extract high-level features through the spatial-
temporal graph convolution operation. Then the corresponding action 
classification is obtained as the output using the SoftMax classifier. ST-
GCN integrates the temporal and spatial information of skeletal nodes 
in human actions and performs well in long-action recognition. In this 
paper, we use ST-GCN for human action recognition.

Input Video
STGCN

Action Type

Running

Pose
Estimation

Action
Recognition

...

Fig. 7.  Illustration of ST-GCN.

The principle and processing flow of the multi-person fall detection 
method designed in this paper is similar to that of the single-person 
scheme. In Fig. 8, YOLO identifies multiple human targets from video 
images and sends them to the human pose estimation model for 
processing in the form of a human image detection frame. The human 
posture estimation model extracts bone nodes from each image 
detection box and further generates a continuous bone image sequence, 
and ST-GCN will use this for action recognition. Such a scheme that 
separates the object detection part from the action recognition makes 
our scheme able to improve the recognition accuracy and speed of the 
whole system for the actions of multiple people just by adopting the 
object detection model similar to YOLO.

ST-GCN is a human action recognition model based on skeleton 
nodes, which can be extracted using OpenPose. OpenPose is a 
convolutional neural network based on Caffe, a real-time 2D multi-
person pose estimation model developed by Carnegie Mellon University 
(CMU) [52]. It is a bottom-up human pose estimation model which can 
realize the pose estimation of human movement, facial expression, and 

finger movement. It is suitable for single and multi-person scenarios, 
with excellent recognition effects and fast recognition speed. Fig. 9(a) 
shows that OpenPose commonly uses the skeletal model containing 25 
nodes. Dot 0 represents the nose; Dot 15 to 18 represents the left and 
right eyes and ears; Dot 1 represents the neck; Dot 2 to 7 represents the 
left and right shoulders, elbows, and wrists; Dot 8 represents the center 
of the buttocks, dot 9 to 14 represents the left and right hips, knees and 
ankles; Dot 19 to 24 represents the left and right nodes of the feet, 
toes, and heels. To improve the processing efficiency of the model, we 
simplified the skeletal node structure, deleting one hip center node, 4 
facial nodes, and 6 feet nodes. Finally, our skeletal model contains only 
14 nodes, as shown in Fig. 9(b).
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Fig. 9.  Illustration of skeleton node structure.

Fig. 10 shows the simplified human skeleton nodes extracted by 
OpenPose. It can be seen that this method can accurately identify 
bone nodes in different scenarios. Both (a) and (b) are RGB images, 
and (c) is the depth image. Among them, the illumination condition of 
(a) is poor, and the illumination condition of (b) is better. After each 
frame, OpenPose will generate a 3*14 skeleton node matrix M. The 
M3*14 stores 14 skeleton nodes, and each node data contains a set of 
(X, Y) image coordinate information and the confidence Score of the 
node. The higher the value of the Score, the higher the accuracy of the 
predicted skeleton node.

(a) (b) (c)

Fig. 10. Skeleton extraction in different scenes.
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Skeleton Node

Extraction Model
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Fig. 8.  The main framework of our scheme.
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There are many kinds of fall detection datasets based on RGB images 
[53]. Standard lightweight datasets include the Multiple Cameras Fall 
Dataset (MCFD), Le2i Fall Detection Dataset (Le2i FDD), and the 
University of Rzeszow Fall Detection (URFD) Dataset. The details are 
shown in Table II. MCFD [54] contains 24 action sequences recorded 
by 8 cameras from different angles. The same subject performed 
the fall action and Activities of Daily Living (ADL), recording ten 
action types. Le2i FDD [55] used a single RGB camera, and 9 subjects 
performed 3 types of fall actions and six different ADLs. The videos 
were captured in 4 different environments (home, coffee room, office, 
and lecture hall). Actions are carried out in various factors such as 
light, clothing, the color of the dress, texture of clothing, shadows, 
reflections, camera view, etc. FDD [56] was recorded from 8 different 
viewpoints in 5 rooms. The study had five participants, including 
2 males and 3 females. The actions performed by the participants 
included standing, sitting, lying down, bending over, and crawling, 
which were recorded at a rate of 30 images per second. URFD [57] was 
produced by the Interdisciplinary Center for Computational Modeling 
at Rzeszow University. The video sample contains 70 action sequences 
recorded at 30 frames per second. The dataset recorded falls and ADL, 
such as standing, bending, and lying down. The environment has 
adequate lighting. Although these datasets only contain single-person 
samples, since the fall detection model for multiple people designed in 
this paper is based on the single-person action recognition method, it 
can be used as a training dataset for ST-GCN.

In Fig. 11, the positions of the cameras of the dataset can be 
classified into three types depending on the application scenario. 
Among them, the height of the camera position in 10(a) is about 45 
degrees of the elevation angle of the human line of sight. The device’s 
height in 10(b) is about the waist of the human body. The equipment of 
10(c) is located at the top of the ceiling. Generally, scheme (a) is more 
commonly used [58], [59]. Still, to avoid the influence of the impression 
model on action recognition due to the camera position factor, the 
samples of the training data set in this paper will be obtained from 
FDD and URFD [60]. We augment the original dataset with examples 
from these two datasets using image data augmentation methods such 
as symmetry inversion, motion blur, brightness change, and image 
rotation. After expansion, FDD contains 1084 groups, URFD has 847 
groups, the sample resolution is 640*480.

We mix the two augmented datasets, on the one hand, to ensure 
a sufficient number of samples and, on the other hand, to increase 
sample diversity and avoid overfitting. In Table III, we extract a certain 
amount of fall action and non-fall action training samples from each 
dataset to form the Mix-Dataset of this paper for model training.

(a) (b) (c)

Fig. 11.  Camera location.

TABLE Ⅲ. The Dataset Composition

Dataset Fall Action (Groups) Non-Fall Action 
(Groups)

FDD 550 300

URFD 380 270

Mix Dataset 930 570

The Mix Dataset samples are all images that can be directly used 
to train CNN-based and RNN-based fall detection models. However, 
the GCN-based scheme processes the action sequence data based 
on time series, and the images need to be further processed into the 
kinetics-skeleton format required by ST-GCN. The kinetics-skeleton 
converts a sequence of skeletal actions into a list VList = {V1, V2, ...…Vn}. 
Each Vk represents one image, which consists of three parts. 
Vk = {frame_index=k, skeleton {pose[p1, p2, ……pm], score[s1, s2,……sp]}}. 
Fig. 12(a) shows that the frame_index represents the frame number 
in the action sequence. The pose represents the point information in 
the transformed graph vector of the current skeleton node, which 
indicates the state of the skeletal node. The score represents the edge 
information in the transformed graph vector of the current skeleton 
node and indicates the state between skeleton nodes. Fig. 12(b) is the 
label information of this skeleton sample. In our paper, we set n = 150, 
m = 35, and n = 17. It is expressed as 300 frames per training sample, 
about 10 seconds per video calculated with 30 frame/s.

(a) (b)

Fig. 12.  Kinetics-skeleton node format.

TABLE II. Comparison of Fall Detection Datasets

Dataset Type Number of samples Remark

MCFD Video
Total 24 videos
1) 14 fall videos 

2) 10 non-fall videos

1) Each video contains eight videos from different 
perspectives

Le2i FDD Video
Total 191 videos, totaling 75911 frames
1) 132 fall videos, totaling 43745 frames

2) 59 non-fall videos, totaling 32166 frames

1) 1 overhead camera angle
2) Coffee-Room and Home scenes are 

labeled
3) Lecture-Room and Office scenes are unlabeled

FDD RGB Image
Depth Image

Total 22636 images
1) 4212 fall images

2) 18424 non-fall images

1) 8 overhead camera angles
2) 5 different rooms

URFD
RGB Image

Depth Image
Video

Total 70 videos, totaling 14539 frames
1) 30 fall data sets, totaling5990 frames

2) 40 daily activity data sets, totaling 8549 frames

1) 2 camera angles are parallel to the ground and directly 
above the ceiling

2) 1 camera angle records average activity data, and the 
position is parallel to the floor
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C. Model Optimization
To further improve the real-time performance of the proposed scheme, 

we use two methods to optimize the model. In particular, we optimize 
the YOLO by enhancing the model network structure and use the AI 
acceleration framework-TensorRT to reoptimize the YOLO and ST-GCN.

1. Optimized Design of YOLO
The CSPDarkNet53 backbone network used in YOLOv5s is a Cross 

Stage Partial Network (CSPNet) introduced in Darknet53 [23] to 
extract sufficient depth feature information. To enable the YOLO with 
a more robust feature extraction capability, we used MobileNetV3 to 
attempt to achieve a coordinated balance of lightweight, accuracy, and 
efficiency. MobileNetV3 is a light backbone network that performs 
better on the edge and mobile side [61].

MobileNet (i.e., MobileNetV1) is a lightweight CNN, which is more 
suitable for deployment on the edge devices. It can use Depthwise 
Separable Convolution (DSC) to vary the computation of convolution 
to reduce the number of network parameters to balance accuracy and 
efficiency. MobileNetV2 adds two new modules: Reverse Residuals 
(IR) and Linear Bottlenecks (LB). The IR module can make the model 
have better feature transmission capability and deeper network layer. 
Meanwhile, MobileNetV2 uses LB module instead of the non-linear 
module, thus reducing the loss of the model on low-level features. 
MobileNetV3, released in 2019, combines some of the structures from V1 
and V2 and removes the more computationally expensive network layer 
from the V2 architecture. It achieves low resource consumption while 
guaranteeing almost no loss of accuracy by introducing the lightweight 
attention structure of Squeeze and Excitation Networks (SE-Net) [62].

In Fig. 13, we replace the backbone of YOLOv5s with the feature 
extraction network of MobileNetV3. In the YOLOv5s, three different 
sizes of feature maps can be obtained after three down-sampling, and 
then feature fusion is performed. The locations of the three down-
samplings are identified with a,b,c. We choose the output of the 
last three down-samplings of the MobileNetV3 feature extraction 
network as an alternative. Specifically, the feature extraction 
network of MobileNet3 contains 13 sampling modules Module [0-12]. 
Among them, Module[4] is the penultimate third down-sampling, so 
Module[0-3] is used as MobileNet1, whose down-sampling position is 
identified with 1; Module[9] is the penultimate third down-sampling, 
so Module[4-8] is used as MobileNet2, whose down-sampling position 
is identified with 2; and, finally, Module[9-12] as MobileNet3, whose 
down-sampling position is identified with 3. The results of these three 
down-samplings will be used for subsequent processing in YOLOv5s.

Conv Conv ConvCSP CSP CSP CSP SPFFConv Conv Conv
Concat

Backbone
YOLOv5s

MobileNetV3

MobileNet1 MobileNet2

a

1 2 3

b c

MobileNet3

Concat

Concat

Fig. 13.  Depthwise separable convolution framework.

DSC consists of Depthwise Convolution (DW) and Pointwise 
Convolution (PW) [63], as shown in Fig. 14, and the parameters and 
computational effort of DSC are significantly reduced compared to 
traditional convolution. A comparison of the computational effort 
between the two is shown in (1). W1 and W2 are the computational 
costs of DSC and the standard conventional convolution, respectively. 
The size of the convolution kernel for MobileNetV3 feature extraction 
is mainly 5×5. Therefore, the computational cost of DSC is about 1/25 
of the traditional conventional convolution.

 (1)

The Fig. 15(a) is the residual network structure, and Fig. 15 (b) is 
the reverse residual network structure. Reverse residual networks 
use point convolution to expand the number of channels, then deep 
convolution in higher layers, and finally, use point convolution to 
shrink the channels. Reverse residual networks improve the gradient 
propagation of features with the help of residual connections, making 
the network layer deeper. The network uses minor input and output 
dimensions, significantly reducing the network’s computational 
consumption and parameter size. In addition, the reverse residual 
network is CPU and memory efficient for inference and enables the 
construction of flexible mobile-side models, making it suitable for 
edge side applications.

(a) (b)

Fig. 15.  Residual network and reverse residual network.

MobileNet includes two hyperparameters, α, and β. Where α 
represents the width factor, which can be adjusted to α times the 
original convolution kernel by adjusting the number of convolution 
kernels, and β represents the control input image size. In this paper, 
the amount of computation after adjusting α using DSC in (2).

 (2)

By adjusting the α, the calculation effort and model volume can 
be directly reduced to 1/α2, which significantly reduces the model’s 
number of parameters and computational effort with minimal loss of 
accuracy. We set α=0.5, and the optimized model is YOLOv5s-opt. In 
this paper, SSD, Faster-RCNN, YOLOv4, YOLOv5s, and Yolov5s-opt are 
tested on the COCO dataset, and the results are shown in Table Ⅳ. It 
can be seen that the optimized YOLOv5s-opt reduces the parameter 
size by 50% and improves the frame rate by 15% compared with 
YOLOv5s.

2. Optimized Design of ST-GCN
In this paper, TensorRT will be used to optimize ST-GCN. It is an 

AI optimization and deployment framework designed by NVIDIA for 
GPU [64]. In Fig. 16, it is both an inference optimization engine and a 
runtime execution engine. It provides optimal support for the model’s 
inference at the graphics optimization, operator optimization, memory 
optimization, and Int8 calibration levels. Specifically, it benefits from 
the fact that after training the neural network, TensorRT can compress, 

1) Input feature
map D2 *NF

3) Ouput feature
map 1

5) Ouput feature
map 2

4) Pointwise
convolution kernel

1 � 1 � M

2) Depthwise
convolution kernel

 D2 *NK

Fig. 14.  Depthwise separable convolution framework.
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optimize, and deploy the network at runtime without the overhead of a 
framework. It can also improve the latency, throughput, and throughput 
of the network through combining layers, kernel optimization selection, 
as well as performing optimization and conversion to optimal matrix 
math methods based on a specified precision.

Layer & Tensor Fusion

Kernel Auto-TuningPrecision Calibration

Trained Neural
Network

Dynamic Tensor
Memory

Multi-Stream
Execution

Optimized
Inference
Engine

Fig. 16.  Model optimization processing flow of TensorRT.

The operation of TensorRT consists of two main phases, Build, and 
Deployment. The Build phase involves the conversion of the model 
from another model form to a TRT form. During the model conversion, 
the inter-layer fusion and accuracy calibration of the optimization 
mentioned above is completed. The output of this step is an optimized 
TRT model for the specific GPU platform and network model, serialized 
to disk or memory in the form of a plan file. The plan file from the 
previous step is first deserialized, a Runtime Engine is created, and the 
inference task can then be executed. The YOLO and ST-GCN are built in 
the PyTorch framework and converted into TRT models using ONNX 
intermediate conversions [65], as shown in Fig. 17. After optimization, 
the model can reduce the model’s parameters by 16%.

Convert original model
to ONNX format

Import ONNX model

Create model optimization
inference builder

Create a network definition
through the builder

Use the ONNX parser to parse
the input network model file

Set model optimization parameters

Create inference engine
through builder

Serialize the inference engine
and save it locally

Fig. 17. The optimization process of YOLO and ST-GCN.

IV. Experiments and Discussions

Experimental hardware: CPU: 11th Gen Intel Core (TM) i7-11700 
@2.50 GHz. Memory: 16GB; GPU: NVIDIA GeForce GTX 1080 Ti. GPU 
Acceleration Library: CUDA 11.0.3, CUDNN 8.2.1. OS: Windows 10 
(64-bit). Software tools: OpenCV 4.1.1, Pytorch 1.7.0, TensorRT 7.1.3.

A. Dataset
The fall test datasets in this paper are divided into two types: 

single-person and multi-person. Among them, the original single-
person dataset was selected from the publicly available dataset Le2i 
FDD with 155 human fall videos, which include 95 ADL videos and 60 
fall videos. Each fall action had a complete fall process containing the 
other action to fall. 

In Fig. 18, the scenes include 3 types: home, office, and pantry. The 
home scene (a) is a living room scene, including sofas, dining tables, 
stairs, chairs, table lamps, and other accessories, and contains a variety 
of lighting conditions. The office scene (b) includes tables and chairs 
with a more regular and balanced light distribution. The pantry scene 
(c) includes sofas, tables, tea sets, etc. The light is more frequent and 
evenly distributed. The video resolution is 320×240.

(a)

(b)

(c)

Fig. 18. Original single-person fall detection test dataset.

To experiment more effectively, we created our multi-person 
fall dataset (MPFDD), which has two scenarios for 2 to 5 persons, 
respectively. The original dataset consisted of 220 videos divided into 
indoor and outdoor scenes. It consists of 80 ADL videos and 140 fall 
videos. The indoor scene is the action room scene, which includes 
chairs, tables, computers, and other accessories. The outdoor scene is 
open, with tables and chairs as the main accessories. Both scenes of 
2-person and 3-person have good lighting conditions, but it is no need 
in 4-person and 5-person. In addition, the 2-person scene includes 
20 ADL videos, 10 fall videos with 1-person, and 10 fall videos with 
2-person. The 3-person scene have 20 ADL videos, 10 fall videos 
with 1-person, 10 fall videos with 2-person, and 10 fall videos with 
3-person. The 4-person scene have 20 ADL videos, 10 fall videos with 
1-person, 10 fall videos with 2-person, 10 fall videos with 3-person, 
and 10 fall videos with 4-person. The 5-person scenes have 20 ADL 
videos, 10 fall videos with 1-person, 10 fall videos with 2-person, and 
10 fall videos with 3-person, 10 fall videos with 4-person, 10 fall videos 
with 5-person. The video resolution is 1060×510. In Fig. 19, we show 
some of the videos in the original MPFDD.

Similar to the train dataset, the original single-person dataset and 
multi-person dataset were expanded using image data augmentation 
techniques. The main data augmentation algorithms we use include 
symmetric flipping, adding Gaussian noise, motion blur and brightness 
contrast transformation. 

In Fig. 20, (a) represents the original video, and (b)-(e) represent 
the effects after being processed by the above four data augmentation 
algorithms, respectively. We do not process every original video with all 
four image data augmentation algorithms. In particular, we do not use 
the brightness contrast transform algorithm for videos that are not very 
bright. In the end, we get the expanded dataset, which consisted of a total 
of 1044 videos, which included 413 ADL videos and 631 fall videos. 

B. Evaluation Metric
In classification tasks, the confusion matrix is often used to show 

the results predicted by the model. In this case, the actual classes are 
represented by the columns of the matrix, while the rows indicate the 
predicted classes [66]. For each class, the matrix displays true positive 

TABLE IV. Performance Comparison of Object Detection Models

Model Params (MB) FPS (frame/s)

SSD 100 67

Faster-RCNN (ResNet50) 109 42.9

YOLOv4 (CSPDarkNet53) 24.5 31.5

YOLOv5s (CSPDarkNet53) 14.1 61.5

YOLOv5s-opt (ours) 7.2 70.2
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(TP), false positive (FP), false negative (FN), and true negative (TN) 
values. Where TP is the number of fall targets correctly detected. FP 
is the number of targets that were falsely detected by falls. FN is the 
number of samples where falls were not detected. TN is the number 
where no falls were correctly detected. The confusion matrix can 
calculate many model evaluation metrics, including precision, recall, 
accuracy, and F1 score [43], as shown in (3), (4), (5) and (6). In addition, 
there is the criterion FPS which measures the real-time performance 
of the model. It indicates the number of images processed per second. 
In this paper, the models are evaluated according to the above criteria.

 (3)

 (4)

 (5)

 (6)

C. Results and Analysis
Fig. 21 shows the results of the proposed scheme for multi-person fall 

detection. There are various fall detection schemes, mainly including 
CNN-based method, RNN-based method, GCN-based method, and 
some other types of methods. We select two typical methods in each 
type of scheme to compare with our proposed scheme. The comparison 
results are shown in Table Ⅴ. Among them, Carlier [67] and Zhang [68] 
use CNN-based methods.  Kareem [69] and Yadav [70] use RNN-based 

methods. Zheng [71] and Lee [72] use GCN-based methods. The above 
methods are all estimate human skeleton nodes as features. In addition, 
Maheswari [73] and Kiran [74] are representatives of two other types 
of schemes. Maheswari uses the human body as the entire modeling 
object and the settlement results of HOG and SRMAR as features for 
detection. Kiran extracts human behavioral features at different stages 
through a combination of multiple CNNs, and introduces SVM models 
for inference of the results. We also use an optimization scheme based 
on ST-GCN, so it is also incorporated. Miss detection represents the 
number of samples in the fall video that fails to detect fall action, and 
false detection represents the number of samples in the fall test video 
that detect non-fall action as a fall action.

In Table Ⅴ and Fig. 22, we can see that: 1) the CNN-based scheme is 
low in terms of accuracy, while the RNN- and GCN-based schemes are 
relatively high, but the former has an advantage in terms of frame rate. 
This is because the CNN-based scheme uses prediction based on the 
spatial information of a single skeletal node. In contrast, the latter two 
are based on processing a sequence of skeletal nodes with additional 
temporal information. As a result, the former is less computationally 
intensive and faster, while the latter has higher detection accuracy 
for predicting long movements. 2) Our scheme performs better in all 
metrics compared to other schemes. Our scheme has a less obvious 
advantage in terms of accuracy since various optimized versions of 
pose estimation models have been proposed in recent years to improve 
the accuracy of extracting skeletal nodes. The scheme represented by 

2-person
scene

3-person
scene

4-person
scene

5-person
scene

Fall Activity
(5 persons)

Fall Activity
(4 persons)

Fall Activity
(3 persons)

Fall Activity
(2 persons)

Fall Activity
(1 person)

ADL

Fig. 19.  Original Multi-person fall detection test dataset (MPFDD).

One person Multi-person

Fall Activity
(5 persons)

Fall Activity
(4 persons)

Fall Activity
(3 persons)

Fall Activity
(2 persons)

Fall Activity
(1 person)

Fig. 21.  Multi-person fall detection.

One person

Multi-person

(a) (b) (c) (d) (e)

Fig. 20.  The dataset expansion operation.
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[72] uses a two-stream algorithm (2s-AGCN) that can model both 
first-order and second-order information, significantly improving the 
recognition accuracy. In comparison, the overall testing performance 
of both [73] and [74] can reach over 70%, and the inference speed of 
these two methods is also higher, mainly due to the smaller scale of 
the model. The model structure used in [74] is relatively simple, and 
the ability of CNN to extract deep-seated human motion features is 
limited, and it cannot integrate temporal and spatial information of 
motion, so its inference accuracy is low. In summary, our method can 
achieve good performance and speed trade off.

The second and third columns of Table Ⅴ show that all schemes in 
the experiment have miss detection and false detection. We analyzed 
the reasons for these situations. In the experiment, we found that the 
causes of miss detection and false detection in the multi-person scene 
are similar to those in the single-person scene. We mainly use the 
video display effect of single-person scenes to simplify the analysis 
content and process. The comparison model includes [67], [69], [71], 
ST-GCN, and ours.

1.0

0.9

0.8

0.7

0.6

0.5
5.0 7.5 10.0 12.5 15.0

FPS (frame/s)

F1

17.5 20.0 22.5 25.0

Optical-Flow based CNN [57]
VARNN + CNN [58]
Optimized RNN [59]
ConvLSTM [60]
Optimized GCN [61]
2s-AGCN [62]
HOG+SRMAR [63]
CNN+SVM [64]
ST-GCN
Ours

Fig. 22.  Multi-person fall detection.

In Fig. 23, the main reasons for miss and false detection can be 
summarized into four categories, and the red "□" represents the human 
position in the video. 1) The part of the human body is close to the edge 
of the image, resulting in the partial loss of the part of the human body 
image, which is not conducive to the extraction and discrimination 
of human skeleton features. In (a), most of the head and upper body 
of the tester are outside the image range, and all test models fail to 
detect them. 2) Due to the uneven distribution of light in the scene, the 
gradient features of the human body are not apparent, which affects 
the extraction of skeletal nodes. In (b), the clothes of the tester and 

the ambient background were red, and the ambient luminance was 
insufficient. Although all test models could detect the human target, 
the extracted skeletal states deviated severely from reality. 3) Skeletal 
feature extraction failed due to partial or complete occlusion of the 
human body parts. This is similar to the first case, where the occlusion 
can be a stationary accessory or a moving person in the scene. In (c), 
the test person’s head and the right half of the body are obscured by 
the table, and all test models fail to detect. 4) Due to the perspective 
effect of the camera, when the test tester falls in a direction parallel to 
the direction of the camera’s vision and when the head is further away 
from the camera than the feet, the tester’s skeletal state is projected 
onto the image in a state of action similar to ADL, which leads to miss 
detection. In (d), the tester is in a semi-slumped state parallel to the 
camera’s vision direction, with the skeleton showing a state similar to 
sitting and bending, and all test models fail to detect it.

In the multi-person scene, it is more evidence that some human 
targets fail to be detected due to mutual occlusion between human 
bodies. As shown in Fig. 24, the red "□" represents undetected human 
targets. In short, the main reason for the miss and false detection is 
the inaccurate extraction of human skeleton node features caused by 
various environmental factors, which will provide a clear research 
direction for our further work.

V. Conclusions and Future Scope

To improve the quality of life of the elderly, we propose a fall 
detection scheme based on human skeleton nodes. This scheme 
is a hybrid model based on YOLO and ST-GCN, which can support 
multiple fall detection. We also use model optimization technology to 
accelerate the proposed model, further reduce the scale of the model 
and improve the inference speed. The experimental results show that 
in a good testing environment, this scheme has high detection accuracy 
and obvious real-time advantages. Therefore, as an attempt at a hybrid 
model for multi person fall detection, this scheme has some reference 
value for subsequent research. Our scheme also has problems because 
the detection cannot be recognized due to uneven light distribution, 
blocked human body parts, and unique fall direction. To improve the 
detection accuracy of the proposed model, the following aspects will 
be studied in future work:

• Study of light adaptive compensation algorithms. Incorporate it 
into a fall detection system to increase the system’s resistance to 
light changes.

• Study of multi-camera detection methods. Try using multiple 
cameras for fall detection from various angles to solve the 
occlusion problem.

TABLE Ⅴ. Performance Comparison of Different Algorithms

Paper Method Miss 
Detection

False 
Detection Precision (%) Recall (%) Accuracy (%)

[67] Optical-Flow based CNN 64 25 75.9 74.3 74.7

[68] VARNN+CNN 41 29 78.0 77.2 78.0

[69] Optimized RNN 40 19 81.8 80.1 81.4

[70] ConvLSTM 35 14 82.4 81.6 82.2

[71] Optimized GCN 43 20 82.9 80.4 81.1

[72] 2s-AGCN 19 14 86.5 85.7 86.2

[73] HOG+SRMAR 44 29 79.5 78.0 79.2

[74]  Multi-CNN+SVM 57 45 73.5 71.2 72.0

-- ST-GCN 36 31 81.2 79.8 80.8

-- Ours 28 17 84.3 82.7 83.8
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• As there is no publicly available public dataset dedicated to the 
abnormal action of the elderly, such data is missing from our test 
dataset MPFDD. In future work, we will gradually collect data 
on the abnormal action of the elderly through cooperation with 
relevant medical institutions and elderly care institutions. We will 
also improve the fall experiment by adding more human actions 
and test scenarios to optimize the proposed scheme’s shortcomings 
further.
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