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Abstract

In recent years, with the advancement of deep learning, person re-identification (Re-ID) has become increasingly 
significant. The existing person Re-ID methods primarily focus on optimizing network architecture to enhance Re-
ID task performance. However, these methods often overlook the importance of valuable features in distinguishing 
Re-ID tasks, leading to reduced model efficacy in complex scenarios. As a solution, we utilize the attention 
mechanism to develop the lightweight multiscale Attentional Squeeze-and-Excitation Network (MASENet) that 
can distinguish between significant and non-significant features. Specifically, we utilize the SEAttention (SE) 
module to amplify important feature channels and suppress redundant ones. Additionally, the Spatial Group 
Enhance (SGE) module is introduced to enable networks to enhance semantic learning expression and suppress 
potential noise autonomously. We conduct comprehensive experiments on Market1501, MSMT17, and VeRi-
776 datasets and cross-domain experiments on MSMT17 Ñ Market1501 to validate the model performance. 
Experimental results prove that the proposed MASENet achieves competitive performance across all experiments.
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I. Introduction

Person re-identification (Re-ID) is to determine whether pedestrian 
images extracted from different cameras or different video clips 

taken from the same camera are the same person. In recent years, 
person Re-ID has become a pivotal element within intelligent 
surveillance systems and has received significant attention from 
the computer vision community. Previous works [1]–[4] have made 
significant progress in the person Re-ID task. Most approaches 
still utilize a backbone model initially designed for generic image 
classification tasks [5]. Recent works [6] illustrate that using different 
architectures leads to model performance differences. Yet, some 
works for neural architecture search are still designed based on the 
traditional neural architecture search (NAS) methods employed for 
general classification tasks [7], [8]. The traditional NAS is associated 
with high computational costs and lacks generality. Also, the non-
compatibility between the search scheme and actual world training 
schemes results in suboptimal performance in person Re-ID.

Aiming at the above problems, the MSINet [9] employs a twin 
comparison mechanism to eliminate the class binding between the 
training and validation sets. This mechanism offers more suitable 
supervision for neural architecture search in person Re-ID. It achieves 

compatibility between the search and real-world training schemes 
and improves the task’s performance. Additionally, a multiscale 
interaction module is devised to facilitate mutual enhancement among 
multiscale features. Yet, person Re-ID is a complex and challenging 
task. The MSINet fails to adequately address scenarios where crucial 
feature channels have a more pronounced impact on the task. We 
draw inspiration from the multiscale interaction network (MSINet). 
Meanwhile, we propose incorporating an attention mechanism to 
guide the network in prioritizing the more influential feature channels. 
Concurrently, we empower the architecture to suppress insignificant 
feature channel information.

In this study, we construct the multiscale Attentional Squeeze-and-
Excitation Network (MASENet) by incorporating the Squeeze-and-
Excitation (SE) attention module and Spatial Group Enhance (SGE) 
module. We enhance the ability of the network to capture details 
in complex scenes, suppress background noise, and adjust features 
through attention mechanisms to focus on key features. Specifically, 
the contributions of this work can be summarized as follows:

• The MASENet is proposed to concentrates on the more essential 
feature information in person Re-ID. The MASENet can acquire 
more meaningful insights about pedestrians rather than being 
influenced by noise-disturbing features.
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• An SE module is adopted to learn each feature channel’s 
significance autonomously. Meanwhile, an SGE module is 
introduced to generate an attention factor for each spatial position 
within each semantic group.

• With only 2.5M model parameters, extensive experiments 
conducted on several public datasets have verified that the 
proposed model surpasses existing methods in detection accuracy.

II. Related Work

With the advancement of deep learning, person Re-ID tasks have 
garnered increased attention within the domain of computer vision 
[10]. Researchers have proposed numerous methodologies in the realm 
of person Re-ID to enhance performance. Among these, the attention 
mechanism has gradually emerged as a crucial element in Re-ID.

A. Person Re-Identification
The objective of person Re-ID is to ascertain whether images of a 

person depict the same individual. The same or different cameras can 
capture these images at different times. There has been widespread 
research on person Re-ID based on deep learning [11]–[15]. Methods 
in deep learning for the person Re-ID task generally fall into 
two categories: designing more efficient networks and acquiring 
additional prior knowledge. Luo et al. [16] suggested a baseline 
that relies solely on the global features of ResNet50 to fulfill task 
performance requirements.

Zhou et al. [4] introduced a lightweight omni-scale network 
(OSNet) to capture various spatial scales and encapsulate multiscale 
collaborative composite features. Likewise, Li et al. [17] explored an 
efficient network architecture through microarchitecture search. They 
introduced the Top-k Sample Search strategy to achieve a cost-effective 
search while avoiding potential local optimal results. Some approaches 
apply body structure and posture information for site detection 
or person normalization. For example, Li et al. [18] utilized Spatial 
Transformer Networks (STN) with spatial constraints to learn and 
locate a person with attitude changes. The FD-GAN [19] is proposed to 
utilize identity-related and posture-independent representations. The 
FD-GAN sidesteps the necessity for additional pose information and 
reduces computational costs. In addition, some approaches [20], [21] 
concentrate on improving network performance by optimizing the loss 
function to enhance its relationship with the instance. For example, 
Gu et al. [22] proposed AutoLoss-GMS to search for an improved loss 
function within the loss function space to aim for efficient and excellent 
person Re-ID. Chen et al. [23] designed a quadruplet loss function and 
proposed a quadruplet deep network. The network incorporates online 
hard negative mining to enhance the model’s generalization ability. 
Alternative methods [24], [25] focus on designing part-based models. 
They aim to emphasize the prominence of the person. Sun et al. [26] 
employed the Multi-Head Self-Attention Module (MHSAM) to address 
background confusion and occlusion challenges. While performance 
has been enhanced, the computational burden remains considerable. 
In this work, we achieve competitive performance with a lightweight 
architecture at a lower computing cost.

B. Attention-Based Person Re-ID
Recent years have witnessed considerable success in attention 

mechanisms in computer vision [27]–[30]. Also, the attention 
mechanism plays an indispensable role in person Re-ID. A body part 
detector is utilized to acquire the characteristics of a person’s body 
parts [31], [32]. The connectivity of key points is utilized to generate 
a mask for human body parts and emphasize the representation of the 
human body [31]. Nevertheless, these methods heavily depend on the 
accuracy of analytical models of the human body or pose estimators. 

For video person Re-ID tasks, multiple methods [33], [34] investigated 
key time series frames using attention mechanisms. Additionally, there 
are methods to map 2D images into 3D spaces, facilitating pedestrian 
matching [35]. [36] introduces a point cloud matching (PCM) strategy 
to calculate the distance of multi-view convergence and allow for 
the differentiation of different individuals. Furthermore, Long Short-
Term Memory (LSTM) is utilized to construct the motion dynamics 
of 3D tasks to simplify person matching [37]. A Reinforced Temporal 
Attention (RTA) based neural network architecture is proposed 
in [38]. It features a Long Short-Term Memory (CNN-LSTM) face-
matching algorithm that utilizes an RGB-Depth conversion method. 
[39] employs the double attention mechanism to optimize and align 
features. This approach tackles the

challenge of blurred vision in real-world scenarios. Chen et al. [40] 
proposed a network, named as ABD-Net. Spatial and channel attention 
are combined in the ABD-Net to directly learn a person’s feature 
information from data and context. In SCSN [41], multiple attention 
models are cascaded to capture diverse cues. However, the complexity 
of cascading architectures poses a challenge in avoiding redundant 
information duplication, which leads to high computational costs. 
Our focus is on enhancing Re-ID’s performance by implementing 
an attention strategy. Simultaneously, we achieve good performance 
without incurring undue computing costs.

III. Methodology

In this section, we delve into the details of the methods and modules 
utilized in the model. We first describe the work accomplished in the 
baseline (MSINet) [9] to facilitate comprehension. Following that, we 
elaborate on the details of the SEAttention (SE) module. Subsequently, 
we describe the Spatial Group Enhance (SGE) module. The structure of 
MASENet is shown in the Fig 1.

A. Baseline

1. Twins Contrastive Mechanism
The NAS is designed to adaptively search for the optimal network 

architecture for given data. In [9], defining the common model variable 
as α and the structure variable as β. In the search space σ, with the 
network layer i, βi can manipulate the weighted value of individual 
operation o. The feature undergoes these operations iteratively. 
Ultimately, the final output is weighted and generated through the soft 
maximum of the operational output. Equation (1) describes the output.

 (1)

The model parameters are updated based on training results. 
Subsequently, the schema parameters are updated using validation 
results. Since the testing and validation datasets share identical 
categories, Re-ID requires distinct categories to be included in both 
the training and validation datasets. This discrepancy results in 
incompatibility between the search scheme and the actual training 
scheme, potentially leading to suboptimal results. MSINet incorporates 
the Twin Comparison mechanism (TCM). Two independent auxiliary 
memories νtr and νver are employed to reserve training features and 
validation data. In each iteration, the training loss is initially computed 
using the training auxiliary memory to provide data for model 
updates. Given the feature f with the class tag a, the classification loss 
is expressed as Equation (2).

 (2)
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where  represents the memory features associated with the class 
a, and  represents the sum number of classes in the training data. 
The τ means the temperature argument should be set to 0.05 according 
to [42]. After the update, feature f is set to the corresponding memory 
feature by Equation (3).

 (3)

where γ is set to 0.2 [42]. Substituting νver with νtr produces validation 
losses and updates schema parameters. It completes the iteration by 
validating the loss update pattern parameters.

2. Multiscale Interaction Space
While previous Re-ID research has incorporated multiscale features, 

it was primarily designed based on experience. MSINet has devised 
a multiscale interaction space enabling features to interact with one 
another. As depicted in Fig. 1, features traverse two branches with 
different receptive field scales within each cell. To achieve a network 
with low computational complexity, a stack of multiple convolutions 
is employed to set the scale. The Interaction Module acts as a conduit 
for the interchange of features and information between the two 
branches. The IM can execute four operations on an input feature 
(y1, y2): None. It does not involve operations with any parameters, 
yet accurately outputs (y1, y2). Exchange. Considered one of the most 
powerful interactions, it can be directly interchanged between the two 
branches and (y1, y2). Channel Gate. Channel Gate introduces Channel 
attention gates by Multi-Layer Perceptron (MLP) [43], [44], as shown 
in Equation (4):

 (4)

and returns value (G( y1) ⋅ y1, G( y2) ⋅ y2). The MLP consists of two 
fully connected layers with parameters utilized by both branches. This 
enables networks to interact with each other by jointly filtering and 
validating feature channels.

Cross Attention Calculating the correlation between the two 
branches involves exchanging the keys of the branches. Then, the 
correlated activation [45] is converted into a mask and appended 
to the original feature in the right proportion. As depicted in Fig. 1, 
the two branches are fused through summation operations after the 
interaction. It’s crucial to highlight that the additional parameters 
introduced by multiple interaction modules are limited. Each unit 
can be searched in the context of the entire network without being 
impacted. The interactions o that carry the most weight  for each 
layer are saved, thereby shaping the search architecture. After the 
architecture search, the model undergoes training to incorporate 
classification ID loss and triple loss, as shown in Equation (5):

 (5)

where fi is features array, Mi is the relevant classifier weight. The 
triple loss is expressed as Equation (6).

 (6)

where fa, fb, fn are the inlaid features of the anchor. D(fa, fb), D(fa, fn)
represent the Euclidean distance. ρ is the edge argument. [.]+ means 
the max(., 0) function.

B. Structure of SEAttention Module
Learning extensive feature information solely through convolution 

kernels and achieving high performance is quite challenging for 
person Re-ID. Hence, we introduce the SEAttention module. From 
the perspective of feature channel information, SE specifies channel 
interdependencies without significantly increasing the network’s 
depth or width. This technique results in only an increase in the 
number of model parameters. SE does not significantly increase the 
network’s computational complexity. The importance weight of each 
feature channel can be adjusted based on its varying importance to 
the network. The network autonomously learns importance weights 
to enhance crucial feature channels and suppress redundant ones.
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Fig. 1. The design of the proposed MASENet architecture. The MASENet allows for the input of pedestrian or vehicle images. The interaction module facilitates 
the exchange of information between two branches in each cell. The SE module enables the network to focus on useful feature channels, while the SGE enables 
each spatial group to enhance the expression of its learning autonomously.
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Fig. 2. The model structure of the Squeeze-and-Excitation (SE).

As depicted in Fig. 2, the SE module is integrated into residuals 
to accentuate the more significant feature channels. The SE module 
operation is divided into three steps: First, acquire each feature 
channel’s global compression feature through global average pooling. 
Secondly, the new weight value of each feature channel will be derived 
from 0 to 1 via two fully connected layers. Lastly, matrix multiplication 
of the new weight value with the original feature channel will be 
performed using the SE module’s feature channel recalibration 
function. Then, the output of the two branches is weighted and 
combined with the output of the SE module after a 1 × 1 conv.

C. Structure of Spatial Group Enhance Module
Feature representations of objects are generated by convolutional 

neural networks (CNNs) by acquiring semantic sub-features at 
different levels. Yet, the activation of these sub-features is often 
influenced by spatial noise. Therefore, we introduce the SGE [46] 
module to generate attention factors for each spatial position in each 
semantic group, shown in Fig. 1. It helps the module adjust each sub-
feature’s importance and suppress potential noise. Specifically, SGE 
divides feature graphs into groups G along channel dimensions. Each 
individual group has vectors representing each position in space, as 
shown in Equation (7):

 (7)

where C is the number of channels. Within this group space, the 
network can learn the feature representation of the key region. Unlike 
CNN, which struggles to obtain uniformly distributed features, SGE 
utilizes global statistical features through the spatial average function 
to approximate the semantic vectors learned by the group. The 
Equation (8) is as follows:

 (8)

Then, the global features are utilized to generate an importance 
weight value for each feature. This weight value is obtained by (9):

 (9)

It is worth noting that Eq. (9) can be reformulated as shown in 
Equation (10):

 (10)

where δi is the angle between Fg(X) and xi. We apply spatial 
normalization to p to avoid bias amplitude discrepancies between 
samples [47], [48]. It is mathematically expressed Equation (11).

 (11)

where ε is a constant added for numerical stability. To ensure 
that normalization in the network can also represent the identity 
exchange, a pair of parameters φ, λ is introduced into each coefficient  

. The formula for scaling and moving normalized values is shown in 
Equation (12):

 (12)

where the quantity of what φ, λ is the same as the number of 
G. Finally, the original xi is scaled by the generated importance 
coefficients χi through a sigmoid function gate σ(.) over the space, as 
shown in Equation (13):

 (13)

Then, the enhanced feature vectors will be obtained, and the 
element group will be formed with these enhanced feature vectors. 
The specific form is given by Equation (14).

 (14)

IV. Experiments

A. Datasets and Evaluation Metrics
The MASENet is tested on two Re-ID datasets about pedestrians: 

Market1501 [49], MSMT17 [50]. To assess the model’s generalization 
ability, the MASENet is also evaluated on VeRi-776 [51], [52] and 
MSMT17 → Market1501 [49]. For simplicity and convenience, the 
three datasets are named M, MS, and VR. The output evaluation indexes 
are common performance metrics for person Re-ID, including mean 
average precision (mAP) and cumulative matching features (CMC).

B. Comparative Experiments With Other Lightweight Network
We initially contrast MASENet with the recently proposed 

lightweight network by in-domain and cross-domain experiments. 
The results in the table are pre-trained on ImageNet.

In-Domain Test. The initial learning rate is set at 0.065. During 
training, the learning rate is adjusted at epochs 150, 225, and 300. We 
use a Stochastic Gradient Descent (SGD) optimizer with a momentum 
coefficient of 0.9 and a weight decay of 0.0005. The parameters are 
updated using triple loss and cross-entropy loss. The value of p in 
formula (6) is set to 0.3. Adopting the same structure as CDNet [17], 
and the specific experimental results are shown in Table I.

ResNet50 is the most common backbone network for person Re-
ID, but it performs the worst on the three datasets mentioned in this 

TABLE I. The Performance on Re-ID Datasets. The Results Are Pre-Trained on ImageNet in Advance

Method Params
M MS VR MS → M

Rank-1 ↑ mAP ↑ Rank-1↑ mAP ↑ Rank-1 ↑ mAP ↑ Rank-1 ↑ mAP ↑
ResNet50* [16] ∼24M 94.5 85.9 75.5 50.4 94.5 73.6 58.8 31.8
OSNet [44] 2.2M 94.8 84.9 78.7 52.9 95.5 76.4 66.6 37.5
CDNet [17] 1.8M 95.1 86.0 78.9 54.7 - - - -
MSINet [9] 2.3M 95.3 89.6 81.0 59.6 96.8 78.8 74.9 46.2
MSINet-SAM [9] 2.4M 95.5 89.9 80.7 59.5 96.7 79.0 76.3 48.4
MASENet (Ours) ∼2.5M 95.9 89.9 81.9 60.8 95.9 79.5 77.3 50.1

* represents the results reproduced by the baseline
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article. Additionally, ResNet50 heavily relies on ImageNet pre-training 
operations. Unlike other datasets, the MS dataset presents more 
complex situations, such as background noise and attitude changes. 
The style of the MS dataset is more in line with real-world application 
scenarios. To overcome the challenges of complex scenarios, MASENet 
integrates SE and SGE modules. The SE module adjusts the importance 
of each feature channel adaptively to allow the network to learn and 
emphasize key features. The SGE module produces attention factors 
for each spatial location to adjust subfeature importance and mitigate 
background noise. These introduced modules enhance the network’s 
feature representation ability and capture the detailed elements of 
complex scenes more effectively. Compared to MSINet, the MASENet 
improved mAP and Rank-1 by 1.3% and 1.2%. The results on MS validate 
that MASENet is more effective at handling complex scenarios and 
focusing on more important feature channels than the baseline. OSNet 
[44] and CDNet [17] are recent architectures designed for Re-ID, both 
addressing the issue of multiscale feature fusion. CDNet utilizes the 
traditional NAS scheme for searching. Table II shows the optimal 
interaction within each cell. It shows that the MASENet outperforms 
most lightweight networks.

TABLE II. The Detail About Interaction Operation. N: None; E: 
Exchange; G: Channel Gate; C: Cross Attention

Cell.1 Cell.2 Cell.3 Cell.4 Cell.5 Cell.6

1 2 3 4 5 6 7 8 9 10 11 12

G G E G C G G N G C E C

The model employed for person gender Re-ID is applied to the VR 
dataset for experiments. Table I indicates that in the VR experiment, 
mAP has increased by 1.2%.This case signifies an enhancement in the 
model’s processing capability for generally complex scenes.

Cross-Domain Test. Cross-domain experiments are commonly 
employed to assess the generalization ability of models. MASENet 
is pre-trained with 250 epochs and fine-tuned to prevent overfitting. 
Table 1 demonstrates that ResNet50 is susceptible to image styles. The 
efficient interaction of MSINet can be effectively extended to other 
image domains. To enhance the generalization ability of MSINet, 
[9] introduced the spatial alignment module (SAM) module to align 
spatial correlation between person images. Yet, the performance of 
the proposed network on MS → M shows a substantial improvement 
compared to the MSINet-SAM. The results that mAP and Rank-1 are 
respectively up 1.7% and 1% than MSINet-SAM, further demonstrating 
the significant enhancement the module brings to the model.

C. Comparative Results With State-of-Art Methods
Table III offers additional insight into the supervised performance 

contrast between the proposed MASENet and SOTA methods on M 
and MS datasets. MASENet successfully achieves the objective of high 

precision with reduced computational requirements. The proposed 
method achieved an mAP of 89.9% and a Rank-1 accuracy of 95.9% on 
the Market1501 dataset.

Similarly, on the MS dataset, the proposed method achieves an 
mAP of 60.8% and a Rank-1 accuracy of 81.9%. CARL [53] introduces 
a measure of camera pairing loss for learning. Compared with CARL, 
the proposed method improves mAP and Rank-1 by 0.1% and 0.7% on 
the M dataset. It is worth noting that compared with MS dataset, M 
dataset has a simple style and certain limitations. During the training 
process of MASENet, the advantages brought by further feature 
enhancement may be difficult to fully exert. This situation may result 
in the limited performance improvement of the proposed method in 
the M dataset. Additionally, RGA-SC [54] incorporates a relation-aware 
global attention module. On the MS dataset, MASENet outperforms 
with a 1.6% boost in Rank-1 accuracy and a 4%enhancement in mAP. 
Although MASENet’s Rank-1 performance on the M dataset is slightly 
lower than that of the RGA-SC method, it still demonstrates near-
optimal performance. It verifies the effectiveness of matching top-
ranked predictions.

Evaluation of the challenging MSMT17 dataset reveals that the 
proposed network also possesses the ability to handle challenging 
scenarios.
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Fig. 3. Ablation experiments on (a) Market1501 dataset; (b) MSMT17 dataset.

TABLE III. The Performance Contrast Between MASENet and SOTA 
Methods on Market1501 and MSMT17 Datasets

Method
M MS

Rank-1 ↑ mAP ↑ Rank-1↑ mAP ↑

Auto-ReID+ [55] 95.8 88.2 80.8 59.5

RGA-SC [54] 96.1 88.4 80.3 57.5

BAT-Net [56] 95.1 87.4 79.5 56.8

SFT [57] 94.1 87.5 79.0 58.3

CARL [53] 95.8 89.2 - -

DRL-Net [58] 94.7 86.9 78.4 55.3

GCN [59] 95.3 85.7 - -

PAT [60] 95.4 88.0 - -

C2F [61] 94.8 87.7 - -

BoT [62] 94.5 85.9 - -

MGN* [63] 95.7 86.9 76.9 52.1

ISP [64] 95.3 88.6 - -

OSNet [44] 93.6 81.0 71.0 43.3

CDNet [17] 95.1 86.0 78.9 54.7

MSINet [9] 95.3 89.6 81.0 59.6

MASENet (Ours) 95.9 89.9 81.9 60.8
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Person Image ResNet OSNet

CDNet MSINet MASENet

Fig. 4. Attention maps are generated from baseline (MSINet), OSNet, CDNet, 
and the proposed MASENet.

The attention maps are shown in Fig. 4. It proves that the introduced 
modules aid in filtering out inconsequential background noise, thereby 
enhancing the model’s focus on the critical features of the pedestrian.

D. Ablation Studies
The performance improvement of MASENet primarily stems from 

the inclusion of SE and SGE modules. In this section, we conduct 
ablation experiments to validate the effectiveness of each module in 
enhancing network performance. The detailed results can be found in 
Table III. Additionally, we visualize the output from the baseline with 
independently introduced SE and SGE modules. As illustrated in Fig 
5, the incorporation of SE and SGE modules effectively accentuates 
personal features while suppressing background noise interference. 
Baseline. Compared with other methods, baseline conducts neural 
architecture searches through twin comparison mechanisms. An 
effective interactive module also enables information exchange between 
two branches. These results, from the Market1501 dataset, with a map 
of 89.6% and Rank-1 with 95.3%, and from the MSMT17 dataset, with 
a map of 59.6% and Rank-1 with 81.0%, illustrate the improvement of 
model performance. However, real-world situations are intricate, and 
background noise can affect the model’s performance in person Re-ID 
tasks. The performance of the baseline on MS suggests that it has not 
experienced significant improvement compared to other methods.

�ery Baseline Baseline+SGE Baseline+SE MASENet

Fig. 5. Visualization of network output. The same sample is selected as in Fig 
4. The baseline refers to MSINet.

SE Module. SE autonomously learns the importance of each 
feature channel in the feature map and assigns a weight value 
to enhance important feature channels. Fig 3 illustrates that SE 
improves the network’s performance on both M and MS datasets. 
In particular, MASENet improves mAP and Rank-1 by 1.1% and 
0.6% on the MS dataset. This demonstrates that the SE’s attention to 
important feature channels effectively enhances the model’s accuracy 
for person retrieval.

SGE Module. SGE generates attention factors for each spatial 
position in each semantic group. This capability empowers the 
network to independently enhance the expression of spatial semantic 
learning and suppress potential noise. Notably, the feature space 
enhancement mechanism proves especially advantageous for 
CMC. However, improvements in mAP are influenced by multiple 
factors, including dataset characteristics and optimization strategies. 
Moreover, the enhancement mechanism of the SGE module might alter 
feature distribution, potentially introducing deviations that impact 
the mAP performance. Overall, the SGE module is considerably more 
effective than the SE module in improving the network’s cumulative 
matching feature.

V. Conclusion

In this work, we proposed a baseline approach for architectural 
search and incorporated the attention mechanism to create MASENet. 
Specifically, we introduce the SEAttention module to improve the 
network’s attention to valuable feature channels. The Spatial Group 
Enhance module is introduced to enhance the expression of spatial 
semantic learning and suppress noise. This equips the network to 
address person Re-ID tasks with more complex backgrounds and 
poses. Experimental results demonstrate that MASENet exhibits 
outstanding performance and generalization ability on both person 
Re-ID and vehicle datasets. In the future, further optimization based 
on the CNN network architecture and SGE module will be explored. 
Additionally, the application of lightweight architecture and the 
enhancement of generalization performance will be pursued to adapt 
to complex Re-ID tasks.
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