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Abstract

The music industry is now more complex and competitive than ever before. In recent years, the search for 
collaborations with other artists has become a common strategy for musicians to maintain their presence in 
the sector. Besides, existing music streaming services such as Spotify have exposed large data feeds that can 
be used to develop innovative services within the realm of music. In this context, the present work introduces 
PRESTO, a novel recommendation system to suggest musicians for new collaborations with other artists by 
means of an ensemble of Graph Neural Networks. The system is fed with a heterogeneous graph representing 
the time evolution and the stationary aspects of a musician’s career. Finally, the proposal has been evaluated 
with a dataset comprising more than 200,000 artists, with an average F1 score above 0.75.
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I. Introduction

In the music scene, collaboration among artists is considered one of 
the most impressive driving factors that guide the production of new 

songs. These artistic collaborations allow creating songs spanning 
multiple genres and styles, and therefore reaching a wider audience. In 
that sense, there are studies that already highlight the unexpected and 
complementary ideas that emerge during a musical collaboration [1]. 
Hence, the search for collaborations with other artists have become 
a common strategy in most musicians’ careers to maintain their 
presence in the complex and competitive music market [2].

As a matter of fact, the work in [3] discusses how BTS (Korean 
Boy Band) benefits from collaborations with Western artists. Other 
studies present a social network used by rappers and analyze how rap 
music is structured according to rapper collaborations [4]. Moreover, 
some recent studies report that some artists saw an increase of at 
least 10% in their Spotify streams when they participated in crossover 
collaborations from 2012 to 2023 [5]. From the fans’ perspective, some 
experts emphasize that collaborations, whether big or small, help 
artists grow beyond their fanbase and cross borders [6]. Indeed, some 
studies have noted that musical collaborations already accounted 
for over 40% of the songs in the Billboard Hot 100 songs by 2020 [7]. 
Additionally, other works state that the number of collaborations in 
that same ranking increased by a factor of 5 from 1988 to 2018 [8].

At the same time, the digital era has brought the opportunity to 
listen to any kind of music from a vast number of musicians through 
many different streaming services such as Spotify, YouTube, or Apple 
Music. In fact, Spotify includes more than 11 million artists in its 
catalogue1 whereas Apple Music claims that its catalogue comprises 
around 5 million recording artists2.

These streaming services represent a wealth of interesting data 
sources, motivating an emerging line of research within the data 
science community. Some of the analyses in this line have mainly 
followed a user-centric view, focusing on solutions for end-users, 
such as music recommendation [9], [10] or sentiment analysis [11]. 
Regarding the analysis of musical collaborations, these artist-centric 
proposals usually follow two prominent lines of research, namely (1) 
exploratory analyses of the main factors that have influenced previous 
collaborations among musicians [12], [13] and (2) approaches for hit-
song prediction that take into account some collaboration features 
among the involved artists [14].

Nevertheless, few works have exploited such data to help 
musicians discover other artists whose genres or styles may fit with 
their own and lead to new songs. One possible reason for this scarcity 
of works might be the fact that the corpus of end users is much larger 

1 https://www.demandsage.com/spotify-stats/
2 https://artists.apple.com/support/1124-apple-music-insights-royalty-rate
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than that of musicians, making this market much more appealing 
for the development of applications. In fact, the aforementioned 
music streaming services give access to a large catalogue of artist 
information that could be used to perform such a music compatibility 
task in the form of innovative recommendation systems for artists 
and music companies.

In this context, the present work introduces PRESTO, a graPh 
neuRal nEtwork for muSical collaboraTions recOmmendation. This 
graph-based approach captures the relationships among the involved 
actors in a more natural way than other deep learning solutions such 
as recurrent neural networks or multi-layer perceptrons. As Fig. 1 
shows, the system is fed with existing songs created by artists either 
individually or collaboratively, along with other features related to 
these songs and the artists themselves, such as the danceability of the 
song or the artist’s popularity. Based on this information, PRESTO 
suggests new collaborations among pairs of artists who have not 
worked together before. As such, PRESTO has been designed to help 
musicians find suitable partners to produce new tracks.

A’s song 1

B’s song 1

C’s song 1

F’s song 1 D’s song 1 D’s song 2

A’s song 2

Colaborative
song AB

Colaborative
song AF

Colaborative
song FD

Artist A

Artist F Artist D

Artist B

Heterogeneous graph
of musical creations

Artist D

Artist C

Suggested
collaboration

Artist C

PRESTO

Fig. 1. Overview of PRESTO. The system takes as input the existing 
collaborations and songs of musicians and recommends unseen collaborations 
among them (like the one between Artist C and Artist D in the image).

The design of this system relies on the hypothesis that the career 
of a musician usually follows some type of evolution regarding 
their songs. For example, a well-known Hollywood composer, Hans 
Zimmer, emerged in 2017 as a headliner of the Coachella Festival, 
one of the most popular rock and pop music festivals3. Hence, an 
artist feature-based recommendation must consider not only which 
previous collaborations the artist has been involved in but also when 
they occurred, that is, the artist’s evolution in musical terms. This 
calls for a hybrid deep learning architecture combining different types 
of convolutional and recurrent layers to capture the static and time-
evolving features of artists.

To do so, the proposed system is based on a heterogeneous graph to 
model the relationships among artists, songs, music genres, their latent 
features and their temporal evolution. Next, an ensemble of different 
types of Graph Neural Networks (GNNs) are used to anticipate future 
relationships by means of a link-prediction approach. To feed the 
model, we have used a large dataset from Spotify and Last-FM that 
includes collaborations among multiple artists covering a 17-year 
period. Then, the predicted new links can be used as recommended 
pairwise collaborations among artists to better define the future 
development of an artist’s career.

The remainder of the paper is structured as follows. Section II gives 
an overview of existing trends and techniques for analyzing music 
streaming data. Then, Section III introduces the data extraction and 
curation process from the target feeds. Section IV describes the inner 
architecture of PRESTO. Then, Section V presents the evaluation of 

3 https://www.theatlantic.com/entertainment/archive/2017/02/howhans-
zimmer-became-a-rockstar/516912/

the proposed recommender. Lastly, Section VI summarizes the main 
conclusions and potential future research lines motivated by this work.

II. Related Work

The analysis of streaming music data has been the subject of different 
lines of research within the field of music-related recommendation 
systems [15]. First, there are works that have focused on analyzing 
the built-in song recommenders included in platforms such as Spotify 
or Apple Music from different points of view. For instance, authors in 
[16] evaluate the satisfaction level of the Spotify recommender among 
different users, whereas the work in [17] outlines the gender bias of 
some of these recommendation systems.

Another prominent course of action has been the development 
of ad-hoc recommendation systems to suggest new songs based on 
listeners’ preferences or contextual factors. In that sense, the usage of 
deep learning techniques is remarkable due to their ability to extract 
latent factors from music items in an isolated or sequential manner 
[18]. Hence, graph neural networks (GNNs) have been proposed to 
analyze hypergraphs capable of encoding complex relationships 
among listeners and songs [19]. A similar GNN approach with an 
attention mechanism was proposed in [20].

Regarding other types of neural networks, a bidirectional gated 
Recurrent Neural Network (RNN) was applied in [21] to detect the 
current physical activity of a user and then suggest a new music file 
whose tempo better fits the intensity of the activity. A Multilayer 
Perceptron (MLP) is the core architecture of T-RECSYS [22], a 
hybrid song recommendation tool that combines content-based and 
collaborative filtering.

Concerning Convolutional Neural Networks (CNNs), they have 
been applied in [23] to capture the listener’s mood based on their facial 
expression, suggesting new songs accordingly. CNNs have also been 
applied in the context-aware system described in [24] for background 
music recommendation in a smart home. Beyond deep-learning, other 
models such as Hidden Markov models have also been proposed for 
music recommendation [25].

All the aforementioned works focus on providing recommendations 
to end users. From an artist’s perspective, an important line of research 
in the music sector has been the Hit Song Science [26], whose goal 
is to predict the popularity of a song before it hits the market. Some 
works in this field rely on Machine Learning models for this task. Thus, 
the work in [27] analyzes songs’ audio features (such as rhythm and 
instrumentation) and metadata to discover past successful music trends 
and then replicate them for future songs. The authors in [28] add a 
sentiment analysis of the lyrics to the study of audio features for a more 
accurate prediction. Both works utilize and compare logistic regression, 
Naive Bayes and Random Forest models in the analysis, obtaining an 
accuracy of around 50% for all models. Neural networks have also been 
applied in this context. For instance, the authors of [29] define an MLP 
that combines low- and high-level features of a song along with its 
release date to provide an estimate of its peak position in the charts. 
Similarly, MLPs have been used for pairwise hit-song prediction to 
forecast which song will be more popular between a given pair [30].

Concerning recommender systems for suggesting collaborations 
among artists, the authors in [12] perform an analysis on a graph 
modeling the collaborations among 2,152 artists. Based on different 
centrality and similarity metrics, they extracted three different 
collaboration clusters representing diverse, regular, and absent 
collaborations. Another study focused on identifying the main factors 
that guide the composition of collaborative songs [13].

Our approach also intends to provide a novel recommendation 
service for music artists. However, unlike previous work, PRESTO 



- 3 -

Article in Press

focuses on recommending collaborations among musicians to work 
together on new songs. That is, our approach could be regarded as a 
first step before hit-song predictors are applied. Hence, it also goes 
beyond the exploratory works for musical collaborations described 
above. To the best of our knowledge, this is the first attempt to develop 
this type of recommender following a deep-learning approach.

III. Composition of the Heterogeneous Music Graph 
for PRESTO

This section describes the datasets used for developing PRESTO 
along with an explanatory analysis of them. Next, the creation of a 
heterogeneous music graph used to train PRESTO is explained.

A. Datasets
The development of PRESTO relies on two different raw music 

feeds. On the one hand, we have used the Top 200 daily rankings 
released by Spotify, which contain the 200 most played songs across 
69 different countries per day4. By means of an ad-hoc crawler, daily 
rankings were extracted for each country for a two-year period from 
July 17, 2020, to October 11, 2022. As a result, 14,816 unique songs 
were extracted from 2,569 artists. On the other hand, we have also 
processed the Last-FM (LFM) 2b dataset [31]. This dataset comprises 
2,378,113 Spotify tracks from 266,479 artists covering a 15-year period 
(February 18, 2005 – March 20, 2020) in Last.fm, a well-known online 
music service. It is important to note that these tracks differ from 
those in the Top-200 ranking feed mentioned earlier. 

Next, we fused both feeds by removing duplicates, resulting in a 
single dataset D comprising 1,354,932 tracks, 259,698 unique artists 
and 2,166 music genres covering a 17-year period from February 18, 
2005, to October 11, 2022. The artists included in this dataset will be 
represented as the set 𝒜, the genres as 𝒢 and the songs as 𝒮 in the 
following sections. 

Finally, for each song in 𝒟, we extracted 10 features (represented 
as ℱs from now on) from the Spotify Developer Platform (SDP)5. 
These features are related to the song’s audio properties (loudness, 
speechiness and instrumentalness), context (liveness and acousticness) 
and mood (danceability, valence, energy, and tempo), along with 
its release date as the tenth feature6. Moreover, for each individual 

4 https://charts.spotify.com/charts/overview/global
5 https://developer.spotify.com/discover/
6 We assumed that the release date of a song corresponded to that of the album 
on which it appeared.

artist, we extracted 3 features (represented as ℱa), namely 1) their 
number of followers on Spotify, 2) associated music genres, and 3) 
popularity score. This last score ranges from 0 to 100 and is computed 
mathematically by Spotify.

B. Exploratory Study of the Data
In order to define a heterogeneous graph that properly captures 

the relationships between the different elements involved in the 
recommendation process, namely artists, songs, and genres, we 
performed an exploratory study on the aforementioned dataset whose 
main findings are stated next. These three elements not only allow us 
to capture the artists involved in a collaboration but also the features 
of these collaborations.

1. Evolution in the Number of Collaborations
To begin with, we split 𝒟 into two disjoint groups, namely songs 

with a single artist and songs with multiple singers. Fig. 2 shows the 
evolution of the number of tracks of these two groups during the 
whole period of study. As observed, the number of collaborative tracks 
steadily increases throughout the whole period of study. However, this 
steady increment is not observed for tracks with a single artist, where 
a slight decline has been noted since 2012. This is consistent with the 
findings of previous works that reported an increase in this type of 
collaborations in the worldwide music market [32].

2. Distribution of Music Genres
We also studied the discrepancy between the music genres of an 

artist and those of the musicians they have collaborated with. Fig. 
3a shows the connections among genres by considering the artists 
individually. As observed, many artist labeled as pop are frequently 
also labeled with the indie, punk or rock genres as well. Moreover, the 
alternative genre is usually collocated with the rock genre.

Fig. 3b shows a similar graph but showing the connections between 
genres based on the collaborations among artists. From this graph, it 
can be seen that pop artists frequently collaborate with other rap or 
hip-hop artists. Similarly, another strong connection occurs between 
rap and hip-hop artists. This makes sense due to the conceptual 
similarities between these genres.

Lastly, Fig. 4 shows the Shannon Entropy [33] of the distribution of 
genres in the labeling of each artist individually and in the collaboration 
among musicians. It can be observed that the highest entropy occurs 
in less common, rare, or local genres such as honky-tonk, iranian or 
party. However, the entropy of the most well-known genres is very 
low. For example, the entropy of the pop, rock and hip-hop genres was 
0.1219, 0.1304 and 0.0301, respectively. This low entropy in most of 
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Fig. 2. Evolution in the number of tracks per year in the dataset based on their number of artists. The red line shows the collaborative tracks, whereas the blue 
line shows the tracks featuring a single artist.
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the common genres reveals that artists with similar genres tend to 
collaborate more frequently. Therefore, the resulting heterogeneous 
graph should incorporate this genre feature in some manner.

3. Distribution of Songs’ Audio Features
Another analysis explored the differences in terms of audio features 

between the songs an artist creates solo and those performed with 
other musicians. Fig. 5 shows the average variation in the 9 audio 
features between songs created by a single artist and songs in which 
the same artist has collaborated with other musicians.
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Fig. 5. Average variation of the audio features of an artist’s songs when they 
are created in a collaborative manner with respect to the tracks that are 
created by the artist solo.

As observed, the variations tend to be very small in almost all 
features. Notably, the highest shift occurs in the instrumentalness 
feature, where collaborative songs tend to have a value only 0.08 
lower than solo songs. This finding reveals that the audio features of 
the songs created by an artist solo must be taken into account when 
recommending collaborations due to their similarities with the ones 
they could create with other musicians. Indeed, these features encode 
latent features that could be used to measure the similarity among 
artists in order to assess a potential collaboration.

4. Evolution of the Songs’ Audio Features
One important assumption of this work is that the recommendation 

of potential collaborations is not solely defined by previous 
collaborations or the songs that an artist has created, but is also affected 
by the temporal evolution of such compositions. In order to evaluate 
the evolution of a musician’s career in terms of audio features, we 
compose a timeseries  for each artist 𝑎 and song feature 𝑓,𝑓 ∈ ℱs. In 
this manner, each sequence describes the evolution of the artists’ audio 
features over time, based on their songs. Note that this sequence could 
be obtained by sorting the songs based on their release date. Then, 
we applied the Augmented Dickey-Fuller Test [34] on each sequence. 
The null hypothesis of this test states that the time series contains 
a unit root and thus it is non-stationary. The alternative hypothesis 
is that the time series does not contain a unit root, indicating that 
it is stationary. Fig. 6 shows the distribution of stationary and non-
stationary timeseries per feature according to this test.

(a) Distribution of genres per artist. (b) Distribution of genres per collaboration.

Fig. 3. Analysis of the distribution of genres per artist and collaboration. The nodes represent the subset of the most frequent music genres, and the width of each 
edge is proportional to the frequency of each pair of genres.

ac
ou

st
ic

af
ro

he
at

al
te

rn
at

iv
e

am
bi

en
t

an
im

e
bl

ue
gr

as
s

bl
ue

s
br

ea
kb

ea
t

br
it

is
h

ca
nt

op
op

ch
ill

cl
as

si
ca

l
cl

ub
co

m
ed

y
co

un
tr

y
da

nc
e

da
nc

eh
al

l
di

sc
o

du
b

du
bs

te
p

ed
m

el
ec

tr
o

el
ec

tr
on

ic
em

o
fo

lk
fo

rr
o

fr
en

ch
fu

nk
ga

ra
ge

ge
rm

an
go

sp
el

go
th

gr
in

dc
or

e
gr

oo
ve

gr
un

ge
gu

it
ar

ha
pp

y
ha

rd
co

re
ha

rd
st

yl
e

hi
p-

ho
p

ho
nk

y-
to

nk
ho

us
e

id
m

in
di

an
in

di
e

in
du

st
ri

al
ir

an
ia

n
j-

id
ol

j-
po

p
j-

ro
ck

ja
zz

k-
po

p
ki

ds
la

ti
n

la
ti

no
m

al
ay

m
an

do
po

p
m

et
al

m
et

al
co

re
m

pb
op

er
a

pa
go

de
pa

rt
y

pi
an

o
po

p
po

w
er

-p
op

pu
nk

r-
n-

b
re

gg
ae

re
gg

ae
to

n
ro

ck
ro

ck
ab

ill
y

ro
m

an
ce sa
d

sa
ls

a
sa

m
ba

se
rt

an
ej

o
si

ng
er

-s
on

gw
ri

te
r

sk
a

sl
ee

p
so

ul
so

un
dt

ra
ck

s
sp

an
is

h
st

ud
y

sw
ed

is
h

ta
ng

o
te

ch
no

tr
an

ce
tu

rk
is

h

Genre

En
tr

op
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 4. Entropy per music genre based on their distribution per artist and musical collaborations.



- 5 -

Article in Press

Features

da
nc

ea
bi

lit
y

en
er

gy

ke
y

lo
ud

ne
ss

m
od

e

sp
ee

ch
in

es
s

Stationary
Non-stationary

ac
ou

st
ic

ne
ss

in
st

ru
m

en
ta

ln
es

s

liv
en

es
s

va
le

nc
e

te
m

po

R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 6. Distribution of the features timeseries  based on their seasonality 
according to the Dickey-Fuller test with a p-value of 0.01.

As observed in this figure, the rate of non-stationary timeseries was 
rather high in almost all features, with a rate close to 50%. This reflects 
that, in many cases, musicians tend to evolve over time as the audio 
features of their songs do not remain static. Hence, the recommender 
system should consider this variation in evolution patterns as a relevant 
latent feature for establishing connections between musicians.

5. Impact of the Artists’ Popularity
Regarding the artists’ collected features, we computed the Pearson 

correlation between the popularity of an artist and their number of 
followers. This was done to determine whether a positive or negative 
relationship exists between these features. The obtained value was 
rather low, 0.2066. Moreover, Fig. 7 shows the distribution of the 
artists’ popularity across different collaborative songs in the dataset.

Artist popularity
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Fig. 7. Collocation of the artists popularity based on the observed collaborations. 
The y-axis shows the rate (up to 1.0) of artists with a popularity value reflected 
in the xaxis that work together with artists whose popularity level is indicated 
in the legend.

As observed, artists tend to collaborate with other artists who have 
a similar or slightly higher popularity score. For example, the pink bar 
at point 60 in the x-axis of Fig. 7 reflects that 35.4% of the artist with 
a popularity score of 60 collaborated with other artists who had the 
same score. Moreover, 40.3% of the artists with a popularity score of 
100 collaborated with artists whose score was 80. This is consistent 
with the findings stated in the exploratory analysis of musical 
collaborations described in [12], which found that artists’ popularity 
and follower scores were quite similar within each collaboration 
cluster identified in the study.

From this analysis, we concluded that the model should consider 
both popularity and number of followers as artist features due to their 
low correlation and the fact that popularity seems to be a key factor 
guiding potential collaborations with other musicians.

C. Heterogeneous Graph to Model Musical Collaborations
Bearing in mind all the findings stated in the previous sections, we 

eventually defined a heterogeneous graph to capture the relationships 
among the different elements involved in the study. The schema of 
this graph is depicted in Fig. 8. It comprises 4 different relationships 
among artists, their songs and their associated music genres. Note that 
the has and is relationships allow linking an artist and a song with 

their associated music genres, respectively. The creates relationship 
establishes the connection between one or several artists (in case of a 
collaboration) and the song they created as solo or in a collaboration. 
Finally, the collaborates edges define the relations between pairs of 
artists that have collaborated together on one or more songs.

Artist

Song

Genre

• Loudness
• Speechiness
• Instrumentalness
• Liveness
• Acousticness
• Danceability
• Valence
• Energy
• Tempo
• Release date

• Popularity
• Number of followers

creates

has

is

collaborates

Fig. 8. Heterogeneous graph to encode the relationships and features between 
artists, songs and music genres. The colored rectangles contain the associated 
features of each song and artist node.

As an illustrative example, if artists A and B collaborate on a song S, 
then the graph will include a collaborates edge between A and B, and 
a creates edge from A to S and from B to S. As detailed in sec. IV, the 
latter type of relationship is the target edge that PRESTO will focus on 
predicting as a result of the recommendation process.

Given the dataset 𝒟, this heterogeneous graph comprises 259,698 
artists, 1.354,935 songs, and 2,166 genres, all represented as nodes. 
Moreover, it comprises 202,759 has relationships, 2,575,996 is, 1,509,557 
creates and 337,910 collaborates ones.

IV. The PRESTO Application

This section describes in detail the architecture of the recommender 
system proposed in this work.

A. Temporal Split of the Heterogeneous Graph
In order to capture the musical evolution of all artists, we split the 

global dataset 𝒟 (see sec A) into 30-day slices. The rationale behind 
this time granularity is that, as Fig. 9 shows, songs in the dataset 𝒟 
tend to be released at a relatively consistent rate from February to 
November. Note that the number of released songs was significantly 
higher in January compared to the other months, whereas it was lower 
in December. To smooth out such outliers, each slice 𝒟i ⊂ 𝒟, i = [1..12] 
comprised the songs with a release date falling within the time range 
from the 15th day of the i-th month to the 15th day of the following 
month. This approach ensured that songs released in January/
December were distributed across two different slices instead of one.

Next, we composed a heterogeneous time graph  (see sec. C) for each 
slice 𝒟i, comprising only nodes, edges, and features related to the songs 
included in the i-th time slice. This allowed us to compose an ordered 
sequence of time graphs  
modeling the musical evolution of the artists during the 200 
consecutive months of the study. For the sake of clarity, Fig. 10 shows 
the different types of edges in the time graph . It is worth noticing 
the different densities of each sub-graph depending on the type 
of edges under consideration. This highlights the need for a model 
capable of handling such diversity in the prediction task.
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(a) Collaborate edges. (b) Produce edges.

(c) Has edges. (d) Is edges.

Fig. 10. Representation of the different edge types of the time graph  
covering the first slice of study (2005/02/15-2005/03/15). The green circles 
represent the artists, the dark purple ones are songs, and the yellowones 
are music genres.

Additionally, we composed an aggregated graph, , comprising 
the nodes, edges, and features related to all the songs from month 0 
(the first month of study) up to the i-th month. Hence, a graph of this 
type represents the static snapshot of the target artists, as it does not 
distinguish when, for example, a particular artist created a song or 
collaborated with another musician.

The conjunction of the time 𝒢t and aggregated  graphs enables 
the provision of both the time-evolving and the static views of the 
artist ecosystem, which form the main hypothesis of this work.

B. Description of PRESTO’s Inner Design
The inner layer structure of PRESTO is shown in Fig. 11. As observed, 

the architecture comprises 3 different layers, each one focusing on 
a different aspect in the processing pipeline and considering the 
heterogeneous nature of the input graphs. 

The first layer takes as input the time and aggregated graph of 
a particular slice,  and . Then, each graph is processed by a 
different graph operator. 

On the one hand,  captures the time evolution of artists’ 
production during the study period. For that reason, we used a 
heterogeneous Recurrent Neural Network (RNN) to handle this 
time-evolving sequence of graphs. More in detail, Gt i is processed 
by a version of the Integrated Graph Convolutional Long Short Term 
Memory for heterogeneous graphs (Hetero Conv-LSTM) model [35]. 
Basically, this version stacks a heterogeneous convolutional operator 
and an LSTM cell for each node type in the input graph, namely artist, 
song, and genre. Equations (1)-(5) refer to the computation of each 
gate for a node type η:

 (1)

 (2)

 (3)

 (4)

 (5)

where , ,  and  are the input, forget, state and output gates of 
the LSTM cell for a node type η at time step i,  and  are 
the weights of the fully connected layers of the node type η,  
are the bias terms of each layer, ⊙ is Hadamard product and σ the 
sigmoid operator. Furthermore, HC refers to a heterogeneous graph 
convolution operator that uses a particular instance of the GraphSAGE 
model [36] for each edge type. Since the input graph  comprises 3 
different node types, the final embedding  is just the concatenation 
of the ,  and . In this manner, it encodes the latent 
representation for each node type (artists, songs and genres) based 
on its temporal evolution. By adopting this heterogeneous approach, 
we allow the HeteroConvLSTM module to learn weights for each 
node and edge type. This is instrumental given the diverse sub-graphs 
comprising , as demonstrated in sec. A.

On the other hand, the aggregated graph  is also processed 
by a heterogeneous version of the GraphSAGE model. In brief, 
the embedding generation in this model relies on an incremental 
aggregation of information from neighbors to compose a node 
representation. Thus, Equation (6) shows how the embedding of a 
node v given an edge type ζ at the k-th layer,  v is computed when 
the mean aggregator is applied:

 (6)

where  is the set of neighbors of node v only considering the 
edges of type ζ and Wζ are the operator weights considering the edge 
type ζ. Again, as the input graph  comprises 4 different edge types, 
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the final representation of a node  is calculated as the 
aggregation of its embeddings for each type in the last layer,  

. It is worth mentioning 
that the aforementioned computation considers all the neighbors of a 
node (for a particular edge type) regardless of any temporal constraint. 
Consequently, the embeddings included in the resulting set 
provide a complementary view of the time-based embeddings in  .

Next, the two resulting embeddings from the previous layers are 
aggregated, normalized and passed through a dense layer with a ReLU 
activation function, resulting in the embedding set  (see Fig. 11). 
By means of this set, we fuse the time-dependent and static views of 
the nodes for the downstream layers of PRESTO.

Finally, the global embeddings are processed by a Graph ATtention 
(GAT) layer [37]. This layer incorporates a multi-head attention 
mechanism that allows weighting the neighbors of a node based 
on their importance. Hence, Equation (7) refers to how the latent 
representation of a node v, ϵv giving K attention heads, is computed.

 (7)

where  is the normalization coefficient and Wk is the linear-
transformation weight matrix of the k-th attention mechanism.

By means of this attention mechanism, the model is able to 
learn the importance of the links across the four types of edges. For 
example, it enables giving more importance to the most recent create 
links in case of non-stationary artists (whose behaviour is captured by 
the Conv-LSTM model) or equally-distributed weights across previous 
collaborates edges for stationary artists.

Finally, PRESTO returns a matrix  in which each 
artist a ∈ 𝒜 is defined by a ρ-dimensional vector. On the basis of 
this matrix, we compose a new one  with the score for 
each link between pairs of artists. Equation (8) indicates how such a 
computation is performed.

 (8)

This sigmoid function 𝒞i returns binary labels (0 or 1) for each 
pair of artists, where 𝑐𝑢𝑣 = 1, 𝑐𝑢𝑣 ∈ 𝒞i indicates that artists 𝑢 and 𝑣 are 
recommended to work together (while 0 means no recommendation). 
As explained in the next section, this matrix serves as the basis for the 
final outcome of the recommender system.

C. Generation of the Recommendations
The recommendation procedure of PRESTO can be actually 

considered an edge prediction problem: Given the time-based and 
aggregated graphs at the i-th time period,  and , find a mapping 
function 𝒫 as (9) shows,

 (9)

where  is the set of new collaborations among pairs of artists 
that may occur between the time periods 𝑖 + ∆ and 𝑖 + ∆ + 𝛿, being 
∆ ≥ 1 the time horizon and 𝛿 ≥ 0 the prediction range. The rationale 
for defining an upper time limit on the prediction outcome (𝑖 + ∆ + 𝛿) 
is to ensure that the predicted collaborations are not too temporally 
distant from the input data. Indeed, it would not be very sensible, in 
operational terms, to predict collaborations that may occur in 5, 10 or 
12 years’ time.

Consequently, PRESTO should be trained to generate high scores 
(close to 1) for new collaborations between first-time featured artists 
within the time slices 𝑖 + ∆ and 𝑖 + ∆ + 𝛿. On the other hand, it should 
generate low scores (close to 0) for links that are unlikely to occur 
within this time horizon.

V. Evaluation of the Proposal

This section describes the most important results of the evaluation 
of our proposal following the training goal defined at the end of the 
previous section.

A. Model Parameters
Table I shows the key parameters of PRESTO used in its evaluation. 

The last row of this table shows that the GAT layer generated 
embeddings with 120 features. Hence, the final collaboration matrix 
𝒞𝑖 took ∣𝒜∣ × 120 dimensions. We can also see that a negative edge 
sampling rate of 1.0 was used during training. This means that 
we synthetically generated the same number of negative edges, 
representing non-existing collaborations, as the number of positive 
edges reflecting an actual collaboration among artists. Hence, we 
added to each ground-truth matrix  the same number of non-
existing collaborations (labeled as 0) as true ones, thereby enriching 
the model’s learning process.

TABLE I. Model Parameters for the Experiments

Type Parameter Value

Training Loss
Train-test split
Learning factor
Weight decay

Optimizer
Batch size

Neg. edge sampling rate
Num. of epochs

Binary Cross Entropy (BCE)
80% train, 20% test

0,001
0.0005
Adam

512
1.0
120

Hetero ConvLSTM,
Hetero GraphSAGE

Output size 320

Dense
Input size

Output size
320
320

GAT
Num of heads
Output size

4
120

HeteroConvLSTM

HeteroGraphSAGE

Batch
Normalization 

Dense ReLU GAT

Layer 1 Layer 2 Layer 3

Gi
t

Gi
agg

εi
t

εi

εi
agg

εi
global

Fig. 11. Layer structure of PRESTO.
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In implementation terms, PRESTO was developed using the Python 
3.8 programming language, along with Pytorch Geometric [38] and 
Pytorch Geometric Temporal [39] as the primary third-party libraries.

B. Evaluation Metrics
As seen in sec. C, the edge prediction task can be viewed as a binary 

classification problem. Therefore, we have used the F1 and accuracy 
(ACC) scores to evaluate the actual accuracy of our model. Equations 
(10)-(12) shows how the former is calculated:

 (10)

 (11)

 (12)

where TP, FN and FP refers to True Positives, False Negatives and 
False Positives, respectively.

Equation (13) shows how the ACC is computed:

 (13)

where TN refers to True Negatives.

C. Ablation Study
In order to properly evaluate the suitability of the PRESTO 

architecture, we conducted an ablation study. Specifically, we 
compared the F1 score of our proposal with five variations of the 
model, 1) removing the Conv-LSTM layer (SAGE, Dense, GAT), 2) 
removing the GraphSAGE (Conv-LSTM, Dense, GAT), 3) only using 
the GraphSAGE layer, 4) only using the GAT layer and 5) only using 
the Conv-LSTM layer.

The F1 and ACC results of PRESTO and its variations for different 
configurations of time horizons Δ and scopes δ are shown in Tables 
II and III. It is worth noticing that the PRESTO architecture achieved 
the highest average F1 (0.752) and ACC (0.692) scores, as shown in the 
rightmost column of these tables.

More in detail, observe that PRESTO clearly outperformed the 
other alternatives when the time scope δ was set to 12 months. This 
reflects the model’s ability to better predict long-term relationships 
among artists. For example, our proposal achieved a 0.670 ACC 
when it predicted future relationships that occurred between 24 and 
36 (24+12) months into the future. This score is slightly higher than 
other alternatives such as the one in which the Conv-LSTM layer, and 
therefore the temporal processing, was removed (0.667), or the one in 
which the GraphSAGE layer was not considered (0.663).

Another interesting finding was that the version of the architecture 
without the Conv-LSTM layer (SAGE, Dense, GAT) provided better 
results when the time horizon was set to 12 or 18 months. However, the 
alternative model without the SAGEGraph layer (Conv-LSTM, Dense, 
GAT) provided better results when the time horizon was set between 
18 and 24 months. For example, the former alternative decreased its F1 
score from 0.766 to 0.760 when Δ moved from 12 to 24 months with 
δ = 6, and from 0.750 to 0.737 when Δ changed from 18 to 24 months 
with δ = 12 (see Table II). On the contrary, (Conv-LSTM, Dense, GAT) 
increased its F1 score from 0.729 to 0.785 when Δ moved from 12 to 24 
months with δ = 6, and it also improved its ACC from 0.644 to 0.667 
when Δ moved from 12 to 24 months with δ = 12.

This difference in behavior indicates that the temporal and static 
parts of the model capture different patterns in the relationships 
between artists, their songs, and associated genres. The fact that the 
alternative models, (SAGE, Dense,GAT) and (Conv-LSTM, Dense, 
GAT) also achieved the best results under certain configurations 
indicates that neither the Conv-LSTM nor the GraphSAGE layers 
negatively impact the overall performance of the solution.

Also noteworthy is the fact that the three configurations comprising 
a single layer obtained significantly lower scores than the other models 
with at least 3 layers. This is especially noticeable in the models that 
use only a GraphSAGE or a GAT layer. Indeed, Table III shows that 
the ACC of both models was 0.585 and 0.635 when Δ = 12 and δ = 
6, which are considerably lower than the value obtained by PRESTO 
(0.712). This reflects the suitability of combining a recurrent layer with 
an attention mechanism in our proposed approach.

TABLE II. F1 Scores Obtained in the Ablation Study for Different Configuration of Time Horizons (Δ) and Prediction Ranges (δ) in Monthsa

δ
Δ

12
6
18

24 12
12
18

24 Avg

PRESTO 0.765(±0.03) 0.756 (±0.02) 0.763 (±0.03) 0.739 (±0.01) 0.752 (±0.01) 0.738 (±0.01) 0.752 (±0.02)

SAGE, Dense, GAT 0.766 (±0.03) 0.753 (±0.02) 0.760 (±0.07) 0.735 (±0.01) 0.750 (±0.01) 0.737 (±0.01) 0.750 (±0.03)

ConvLSTM, Dense, GAT 0.729 (±0.02) 0.753 (±0.02) 0.785 (±0.07) 0.723 (±0.01) 0.735 (±0.03) 0.729 (±0.01) 0.742 (±0.03)

SAGE 0.686 (±0.01) 0.704 (±0.03) 0.712 (±0.04) 0.692 (±0.02) 0.691 (±0.03) 0.695 (±0.02) 0.697 (±0.02)

GAT 0.685 (±0.04) 0.707 (±0.05) 0.695 (±0.05) 0.674 (±0.08) 0.701 (±0.06) 0.689 (±0.06) 0.692 (±0.06)

ConvLSTM 0.727 (±0.04) 0.729 (±0.03) 0.732 (±0.03) 0.714 (±0.03) 0.713(±0.04) 0.732 (±0.03) 0.724 (±0.03)
a The best score for each 〈Δ, δ〉 tuple is shown in bold. The standard deviation is shown in brackets.

TABLE III. ACC Scores Obtained in the Ablation Study for Different Configuration of Time Horizons (Δ) and Prediction Ranges (δ) in Monthsa

δ
Δ

12
6
18

24 12
12
18

24 Avg

PRESTO 0.712 (±0.04) 0.692 (±0.02) 0.715 (±0.04) 0.674 (±0.02) 0.683 (±0.02) 0.670 (±0.02) 0.692

SAGE, Dense, GAT 0.709 (±0.04) 0.691 (±0.03) 0.707 (±0.09) 0.667 (±0.02) 0.681 (±0.02) 0.667 (±0.02) 0.688

ConvLSTM, Dense, GAT 0.657 (±0.05) 0.691 (±0.04) 0.743 (±0.10) 0.644 (±0.02) 0.662 (±0.04) 0.663 (±0.02) 0.677

SAGE 0.584 (±0.04) 0.618 (±0.04) 0.635 (±0.08) 0.604 (±0.04) 0.596 (±0.05) 0.599(±0.02) 0.606

GAT 0.635 (±0.03) 0.640 (±0.06) 0.655 (±0.04) 0.626 (±0.05) 0.638 (±0.05) 0.642 (±0.04) 0.639

ConvLSTM 0.674 (±0.03) 0.669 (±0.04) 0.694 (±0.03) 0.658 (±0.02) 0.658 (±0.03) 0.661 (±0.03) 0.670
a The best score for each 〈Δ, δ〉 tuple is shown in bold. The standard deviation is shown in brackets.
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Lastly, Table IV shows the ACC and F1 scores obtained by other 
recommenders and classifiers within the music industry previously 
discussed in sec. II. As observed, the PRESTO’s values are consistent 
with the evaluation metrics obtained by other solutions in the literature.

TABLE IV. Comparison With Other Music-Related Classifiers and 
Recommenders

Proposal F1 ACC
[24] - 0.863
[27] 0.880 0.995
[28] - 0.520
[29] 0.750 -
[30] - 0.670

PRESTO 0.752 0.692 

D. Prediction Examples
For the sake of completeness, Table V shows some predictive 

outcomes generated by PRESTO during its evaluation. As shown in 
this table, PRESTO was able to predict collaborations between artists 
with significantly different levels of popularity such as the remix 
song Get Together by Madonna and Danny Howells (with a prediction 
horizon of 12 months) or This is love by Will.i.am and Eva Simmons. 
Moreover, it was able to anticipate predictions between musicians 
with similar popularity, such as the song Control Myself by LL. Cool 
J. and Jennifer Lopez or Algo Me Gusta de Ti by Wisin & Yandel and 
Chris Brown. It is important to note that the system predicted this last 
collaboration by considering the songs released between 2009-01-01 
and 2010-01-01, that is, 24 months before the actual release of the song 
(2012-01-01).

Regarding the genres of the predicted collaborations, Table V shows 
examples of Latin tracks (Amigos del Mundo and Bandoleros), hip-hop 
and pop tracks (Live you Life and Chasin’ Papers) or soul songs (Dayglo 
Reflection and American Boy).

VI. Conclusions and Future Work

Music streaming services, such as Spotify, have become a promising 
data source for developing new services and business ideas within the 
music industry. While most of these innovative services are oriented 
towards end-users (i.e., listeners), such as music recommendation 
systems, there is also a market niche for offering value-added services 
to the artists themselves. Particularly, this paper explores how to 
recommend future collaborations between artists. In this context, 
collaborations provide opportunities for achieving new commercial 
success in a competitive music market.

For this goal, we introduced PRESTO, a graph neural network-based 
system for musical collaboration recommendations. By leveraging 
data from existing songs created by artists, PRESTO suggests potential 
collaborations among artists who have not previously worked together. 
In particular, the system utilizes a heterogeneous graph to model the 
relationships among artists, songs, music genres, and their temporal 
evolution. It is trained on 10 song features from two music datasets, 
namely Spotify and LastFM, including audio properties, contextual 
data and mood-related attributes of the songs.

The results show an average F1-score of 0.752, demonstrating the 
system’s ability to predict collaborations within a one-year timeframe. 
Moreover, an ablation study has been conducted to demonstrate that 
the PRESTO architecture outperforms simpler variations of the same 
architecture. As a result, PRESTO could be considered an effective 
tool for providing valuable recommendations for artists and music 
companies, facilitating the production of new tracks and supporting 
artists in their career development.

There are several directions to further improve and expand 
PRESTO. Firstly, we plan to incorporate additional data sources, such 
as the artists’ social media activity. These data could provide a more 
comprehensive understanding of artists’ careers and music styles, 
leading to better recommendations. A second line of future research 
will involve integrating listener feedback on the collaborations 
suggested by PRESTO to enhance the performance of the system over 
time. Lastly, evaluating the real-world impact of PRESTO by measuring 
the outcomes of the recommended collaborations, such as streaming 
numbers, user engagement, and artist success, could provide valuable 
insights for the music industry.
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