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Abstract

Breast cancer (BrC) stands as the predominant cancer among women, resulting in a substantial global mortality 
toll each year. Early detection plays a pivotal role in diminishing mortality rates. Manual diagnosis of BrC is 
time-intensive, intricate, and prone to errors, emphasizing the necessity for an automated system for timely 
detection. Various imaging methods have been investigated, underscoring the crucial need for accurate detection 
to prevent unwarranted treatments and biopsies. Recent years have witnessed substantial exploration and 
enhancement in the application of DL for efficiently processing medical images. This study aiming to create an 
effective and resilient DL framework for BrC detection and classification. The steps are contrast enhancement 
and augmentation, a hybrid CNN network ‘BrC-DeepRBNet’ is introduced that is built from scratch and 
incorporates several design elements including residual blocks, bottleneck architecture, and a self-attention 
mechanism. This framework is employed to construct two networks, one comprising of 107 layers and the other 
with 149 layers. Moreover, the network capitalizes on the benefits offered by batch normalization (BN) and group 
normalization (GN), utilizes ReLU and leaky ReLU as activation functions, and integrates Max pooling layer into 
its architecture in a series of residual-bottleneck blocks. Further, for feature fusion horizontal approach is used 
and optimization is done using generalized normal distribution optimization (GNDO). The selected features are 
further classified using neural network classifiers. The introduced framework achieved the highest classification 
accuracy at 97.05% with publicly available BUS dataset. A detailed ablation study is presented that demonstrates 
the superior performance of the presented approach, surpassing various pre-trained models (i.e. AlexNet, 
InceptionV3, ResNet50, and ResNet101) and existing BrC detection and classification techniques.
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I. Introduction

BREAST cancer (BrC) poses a significant risk to the well-being and 
lives of women. It ranks as one of the most widespread forms of 

cancer affecting women on a global scale. Statistics presented by the 
American Cancer Society pertaining to the year 2022 confirmed that 
287,850 invasive BrC cases, and 51,400 non-invasive BrC cases were 
diagnosed among female in US out of which, 43,250 women have 

passed away. In 2023, 297,790 new cases of BrC will likely be diagnosed 
among women in the US, resulting in an anticipated 43,170 fatalities. 
BrC makes up an estimated 19% of all types of cancer diagnoses and 
accounts for approximately 30% of all reported instances of cancer in 
the female demographic [1]. However, early detection of this ailment is 
vital in facilitating the timely administration of suitable treatment [2], 
[3]. The origin of BrC can be traced back to the irregular and excessive 
growth of cells within the breast tissue, resulting in the development 
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of diverse forms of lesions. Benign anomalies usually lack harmful 
characteristics and typically do not necessitate a biopsy. Nevertheless, 
they undergo monitoring via mammographic examinations due to 
the potential risk of infiltrating adjacent tissue or exerting harmful 
pressure on essential structures like blood vessels and nerves. On 
the contrary, malignant anomalies, which are inherently unstable, 
are closely associated with BrC. Whenever a suspicious anomaly is 
detected during a mammogram, its seriousness is invariably confirmed 
through a biopsy procedure [4]. 

The most effective method for identifying BrC is through medical 
imaging analysis [4], [5]. This diagnostic process involves the use 
of various imaging modalities, including digital mammography 
[6], ultrasound (US) [7], magnetic resonance imaging (MRI) [8], 
and infrared thermography [9]. Among these, mammography and 
ultrasound are recognized as the primary modalities for medical 
imaging that are utilized for the purpose of identifying BrC in early 
stage [3].  But mammography effectiveness is reduced when dealing 
with dense breasts. However, ultrasound remains unaffected by breast 
density and offers a radiation-free, non-invasive, cost-efficient, and 
rapid method for BrC detection [10], [11].

The manual analysis and diagnosis of BrC from these modality 
images demand specialized expertise, prove to be arduous, time-
consuming, resource-intensive, and susceptible to errors, in addition 
to incurring substantial costs [12], [13].  Hence, computer-aided 
diagnosis systems (CADs) that rely on convolutional neural networks 
(CNNs) provide significant support to medical practitioners in the 
identification of anomalies through automated feature extraction 
and classification techniques [10], [14]. These CNN models exhibit 
distinctive qualities including automated feature extraction, proficiency 
in capturing high-level features, and the capacity for transfer learning 
[15]. Through the utilization of CNN-based CAD systems, accuracy 
in detection is notably heightened, offering radiologists assistance 
in the swift assessment of suspicious lesions [16]. Consequently, 
this diminishes the occurrence of interpretational errors by reducing 
instances of false positives and false negatives, ultimately contributing 
to an enhancement in patient survivability rates [17], [5].

However, designing a credible CAD system to classify BrC based 
on medical modality images is intricate due to the inherent challenges 
posed by the blurriness and low contrast prevalent in these images 
[18]. The existence of variations among distinct cases and the limited 
availability of publicly accessible BrC datasets, coupled with the 
complication of segregating irrelevant features, contribute to the 
complexity [3]. Despite the numerous CAD systems that have been 
formulated by researchers, which involve the integration of diverse 
medical image modalities and the utilization of various deep learning 
methodologies for BrC detection, there is an ongoing need for further 
exploration and experimentation. The areas primed for enhancement 
encompass refining pre-processing methodologies, advancing 
techniques for model training and feature extraction, optimizing 
computational efficiency, and, most significantly, elevating the 
accuracy of the system.

So, the objective of this study is to present an innovative framework 
intended for the efficient identification and categorization of BrC. 
This framework employs ultrasound images as input and delivers 
a diagnostic result that classifies the observations into benign or 
malignant categories. The major contributions of our work include:

• To design a hybrid CNN network ‘BrC-DeepRBNet’ build from 
scratch, incorporating diverse architectural components such 
as residual blocks, bottleneck architecture, and a self-attention 
mechanism.

• Build two networks based on the framework and trained using 
contrast-enhanced augmented images.

• Fusion of two feature vectors generated from presented networks 
using horizontal features fusion approach.

• Feature optimization using GNDO approach. 

• A detailed ablation study is performed that demonstrates that our 
approach outperforms existing methods in terms of improvement 
in accuracy of 97.05%.

The organization of this paper is as follows: Section II encompasses 
an exploration of the relevant literature. The detailed explanation of 
the introduced model is provided within Section III. The outcomes and 
subsequent discourse are presented in Section IV. Finally, Section V 
contains the ultimate conclusions drawn from the study.

II. Literature Review

Numerous research studies on BrC diagnosis utilizing different 
datasets have resulted in the development of various approaches, which 
are discussed in this section. Sagar et al. [19] introduced an ensemble 
fuzzy rank model for BrC detection that leverages four base models 
namely VGG-Net, DenseNet, Xception, and Inception by pre-training 
the initial layers with ImageNet and fine-tune the last five layers 
of each model using BU dataset. Each model produces a confidence 
score which is then combined utilizing fuzzy ensemble technique 
considering uncertainty as well to get fuzzy-ensemble score on basis 
of which final prediction is made. The presented ensemble model 
accuracy is 85.23% which is suboptimal. Gupta et al. [20] presented 
a new transfer learning based approach that utilizes pre-trained 
ResNet50 and feature extraction is done by addition of custom layers 
at the front of the model. The attained accuracy, recall and precision 
with BU dataset is 97.8, 97.68, and 99.21% respectively. Ahila et al. [21] 
presented a CAD system that involves image enhancement through 
sigmoid filter and de-speckling through IDAD. After segmentation is 
done by using hybrid approach utilizing k-Means with FCM algorithm. 
In feature selection texture and morphological features are joined into 
one feature vector and reduced through PCA approach. In this work 
NN is joined with Haar wavelet theory and GWO algorithm is applied 
to fine-tune its parameters attaining accuracy of 98%, respectively. 
Adyasha et al. [22] experimented five hybrid CNNs that are based on 
combination of various CNN models. The approach takes leverage 
of each individual model and utilizes probability- weight value and 
threshold value by empirically attempting various values and choosing 
the optimal one. The hybrid network ShuffleNet-ResNet performs 
superior with accuracy of 96.52 for anomaly and 93.18% for malignity 
detection for BU dataset. Yuhao et al. [23] offered a HoVer-Transformer 
model which employs the prior understanding of malignant and 
non-cancerous tumors and connects CNN with the transformer. The 
model uses patch embedding, vertical strip embedding, and horizontal 
strip embedding to obtain the within- and between-layer spatial 
knowledge. There are four stage modules in the model, whereas 
every stage module contains various HoVer-Trans blocks, 1 Conv 
block, and one pool layer. The model generates explainable attention 
maps and attains better performance. Nasim  et al. [5] introduced a 
new DL method in which the Inception-V3 architecture is altered 
by shifting Inception modules to residual ones, adjusting module 
count, and modifying hyperparameters. However, the obtained 81% 
accuracy falls below optimal levels. Lyu et al. [2] introduced a novel 
system for BrC diagnosis based on a Hierarchical Extreme Learning 
Machine (H-ELM), comprising two phases. In the initial phase, an 
ELM sparse auto-encoder is employed for feature extraction, while in 
the subsequent phase, the extracted features undergo scattering by a 
randomly generated matrix. The final classification is performed by an 
original single-layer ELM. The approach is prominent for low resource 
consumption and a brief 5.31(s) training time but presents drawback 
with lower accuracy of 86.13% using BUS images.
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III. Proposed Methodology

The work presented a novel BrC classification approach, illustrated 
in Fig. 1. At first, a hybrid approach is used to enhance contrast of 
images on which data augmentation is applied. After that, the 
presented hybrid CNN architecture BrC-DeepRBNet incorporating 
residual blocks, bottleneck architecture, and a self-attention 
mechanism is created from scratch and trained with the original 
augmented images in addition to contrast-enhanced augmented ones. 
The horizontal concatenation approach is used to fuse the extracted 
features that were obtained from two deep networks. The fused vector 
that is obtained is subjected to selection and optimization using the 
Generalized Normal Distribution approach. For the final classification, 
neural network classifiers are fed with these optimized features. 

A. Data Preparation
This study utilizes the BUS dataset for validation, comprising 780 

images with an average size of 500 × 500 pixels. The dataset encompasses 
three categories: normal-133 images, malignant-210 images-, and 
benign-487 images [11]. The BUS database images have weak and 
low contrast, which could lead to misclassification concerns [24]. To 
overcome this, we used a novel method for contrast enhancement 
based on segmented histogram equalization (HE) and concatenation 
of HSV and RGB channels to improve image quality as described in 
Algorithm 1. Recognizing the inadequacy of the dataset for training 
a deep learning model, data augmentation is applied which helps 
minimizing overfitting problem, elevate dataset diversity, and boost 
the model robustness [3], [25]. The contrast-enhanced BUS images are 
subjected to numerical computations such as vertical flip, horizontal 
flip, and 90-degree rotation. Fig. 2 depicts some sample images of the 
process. These calculations are iterated until each class reaches 8000 
images, resulting in a post-augmentation dataset of 24,000 images. 

B. Presented BrC-DeepRBNet Architecture 
The presented hybrid CNN network ‘BrC-DeepRBNet’ is presented 

in this section. It is widely acknowledged that deeper DL models 
enhance network’s ability to classify by capturing intricate and vital 
deep features [10], [26]. However, deeper networks pose computational 
complexities and can suffer from the vanishing gradient issue [3]. 
Nevertheless, the elements comprising BrC-DeepRBNet presented in 
this study are deliberately selected to enhance the accurate and efficient 
detection of BrC from ultrasound images, despite the network’s depth.

The proposed network is adept at processing images with a 
resolution of 227 by 227 pixels. It is meticulously crafted from the 
scratch, incorporating various architectural components, including 
residual blocks [27], bottleneck architecture [28], and a self-attention 
mechanism [29]. Furthermore, the network leverages the advantages 
of batch normalization (BN) and group normalization (GN), employs 
ReLU and leaky ReLU as activation functions, and incorporates Max 
pooling layer. This thoughtful combination of architectural components 
and normalization techniques contributes to the network’s robustness 
and efficacy in detecting BrC in ultrasound images.

The details of main architecture components are as under:

1. Residual Blocks
The integration of residual blocks within CNNs aids in effective 

training of deep networks by addressing issues related to vanishing 
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Fig. 1.  Presented methodology for BrC classification. 

Algorithm 1. Hybrid Contrast Enhancement approach
I (a, b) ← Input image  
Ienh (a, b) ← Output image  
H ← histogram of I1
𝝁𝑯 ← 𝐦𝐞𝐚𝐧 𝐢𝐧 𝐭𝐞𝐧 𝐬𝐢𝐭𝐲 𝐯𝐚𝐥𝐮𝐞 
N ← number of histogram bins
𝝌 ← transformed image
𝑻 ← lookup table transformation
       I = 1 to N   // for all images
Step 1: I1 = histeq (I) //apply HE
Step 2:   //Histogram Mean calculation
Step 3: 𝑯 𝒍𝒐𝒘 ≤ 𝝁𝑯  // Histogram into subsets based on Mean
            𝑯 𝒉𝒊𝒈𝒉 > 𝝁𝑯 

Step 4: 𝜾𝒍𝒐𝒘 = 𝐡𝐢𝐬𝐭𝐞𝐪(𝑯 𝒍𝒐𝒘) //Apply HE to each subset
            𝜾𝒉𝒊𝒈𝒉 = 𝐡𝐢𝐬𝐭𝐞𝐪(𝑯 𝒉𝒊𝒈𝒉)
Step 5: 𝜾𝒑 = 𝜾𝒍𝒐𝒘 + 𝜾𝒉𝒊𝒈𝒉  //Merge Sub-Images
Step 6: 𝝌 = 𝑻(𝐈𝟏, 𝜾𝒑)  //Apply Intensity Transformation on I1  based  
                                       on 𝜾𝒑

Step 7: (𝓱,𝓼,𝓿) = 𝒓𝒈𝒃𝟐𝒉𝒔𝒗(𝝌) // RGB to HSV conversion
Step 8: 𝝌𝟏, 𝝌𝟐, 𝝌𝟑  // Get RGB Channels of 𝝌
Step 9: 𝐈𝒆𝒏𝒉 = 𝒄𝒂𝒕(𝓿, 𝝌𝟏, 𝝌𝟐) //Concatenate Channels to get 𝐈𝒆𝒏𝒉
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gradients. This network component adds a shortcut connection, which 
bypass all layers within the main path by directly channeling the input 
to the block’s output represented mathematically in Equation (1).

 (1)

Where RBip and RBop denote the initial input and resultant output. 
Equation (2) denotes the residual function fun(RBip ) encapsulating the 
applied transformation within the block. Mathematically, it is defined 
by Equation (2).

 (2)

ω1 and ω2 represent trainable weights, while σ denotes the activation 
function.

Thus, this component promotes feature reuse from preceding 
layers, augments information flow, accelerates training convergence, 
and elevates overall network performance.

2. Bottleneck Architecture
The bottleneck architecture commences with an initial convolution, 

referred to as the “bottleneck” layer, wherein the input tensor 
undergoes a 1x1 convolution operation characterized by a reduced 
number of filters compared to the previous convolutional layers. After 
the bottleneck layer, an intermediate 3x3 convolutional layer with 
an increased number of filters is applied to capture intricate data 
patterns. The final 1x1 convolution layer, featuring a larger number 
of filters in contrast to the bottleneck layer. This final convolutional 
operation effectively expands the channel dimensions while 
transforming the feature representations.

Thus, this component is employed to streamline computational 
complexity, enhancing the training dynamics of deep networks.

3. Self-Attention Mechanism
Self-attention, a distinctive type of attention mechanism, applied to 

each channel of feature map separately to create Query (Q), Key (K), 
and Value (V) vectors as defined in Equation (3).:

 (3)

In each channel t, learnable weight matrices 𝕎Q, 𝕎k, and 𝕎v are 
used to compute Q, K, and V, where 𝕏t is the input feature map.

Equation (4) refers that these vectors are pivotal in computing 
attention scores (𝒜 k) using Q-K dot product scaled by the square 
root of the dimensionality of the Key vectors dk, which guides the 
model’s emphasis on particular elements within the same sequence. 
Mathematically, it is defined in Equation (4). 

 (4)

Equation (5) represent the output for each channel (𝒪k) which is 
obtained by weighted summation of Value vectors using attention 
scores. Equation (6) depicts the further processing of 𝒪k by a linear layer 
with trainable weights (𝕎o,t) to get final output of each channel 𝒪 k.

 (5)

 (6)

The incorporation of self-attention mechanisms in CNNs showcases 
adaptability and efficacy across diverse applications, rendering it a 
valuable inclusion to model architectures [30]. 

This presented ‘BrC-DeepRBNet’ takes leverage of each architectural 
component and is utilized to create two networks.

a) Architecture of Presented 6 Block BrC-DeepRBNet
The first network configuration comprises of 10.9M total learnable 

and 107 layers consisting of six residual-bottleneck blocks (6block-
RB), encompassing two parallel residual-bottleneck (PRB) blocks and 
four single residual-bottleneck (SRB) blocks.

As illustrated in Fig. 3, the initial layer of the network presented 
functions as the input layer, enabling the processing of images 
sized at 227 × 227×3 as input. Following the input layer, there are 
Convolution layers with a filter size of 3×3 and a stride of 2, and 
ReLU layers preceded by series of residual-bottleneck (RB) blocks. 
Within each RB block, the feature map inherited from the preceding 
layer is processed through the main bottleneck architecture path as 
described in section 3.2.2, where 3 convolution layers along with batch 
normalization and ReLU activation functions are applied. The network 
incorporates a shortcut connection, which enables the merging of 
feature representations learned within the main path with the original 
input, achieved through an element-wise addition operation. The 
outcome of the addition operation yields a feature map, which is then 
subjected to processing through a Convolution layer with a 3×3 filter 
size and a stride of 2, pursued by a ReLU layer and a maxpool layer. 
This resulting feature map serves as the output of the RB block and 
is subsequently transmitted to the next layer in the network. Finally, 
at the culmination of the sequence of residual-bottleneck blocks, a 
flatten layer, a single self-attention layer, two fully connected layers 
and a softmax activation function layer is placed. The feature vector 
is extracted from fully connected layer having dimension of N×2048.

Table I offers additional specifics regarding the showcased network 1.

b) Architecture of Presented 8 Block BrC-DeepRBNet
The second network is deeper and more complex as compared 

to 6 block BrC-DeepRBNet. It comprises of 149 layers with 12.6M 
total learnable and has eight residual-bottleneck blocks (8block-RB), 

A

B

C

D

E

Fig. 2. Sample images (a) Original images, (b) Contrast enhanced images, (c) 
Horizontal flip image, (d) Vertical flip image, (e) 90-degree rotation.
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encompassing four (PRB) blocks and four (SRB) blocks. 

As illustrated in Fig. 4, the subsequent setup of network2 closely 
resembles that of network1, yet several modifications have been 
implemented. Specifically, the convolution layer now incorporates a 
2×2 filter size. Normalization is achieved through the utilization of a 
GN layer instead of BN, and the activation function is replaced with 
leaky ReLU as opposed to ReLU. Additionally, the feature vector is 
extracted from the self-attention layer, possessing a dimensionality of 
N×2048.

For further details on the specifics of network2, Table II provides 
comprehensive information.

C. Feature Fusion
Feature fusion enables the amalgamation of varied feature vectors, 

leading to a fused feature set characterized by more comprehensive, 
discriminative, and robust feature representations [3]. Consider two 

vectors U and V, each characterized by the dimension N × 2048 where 
N denotes the number of rows. These dimensions are derived by 
employing two deep residual-bottleneck networks. The fusion of these 
vectors is accomplished using the horizontal concatenation approach, 
resulting in a new vector τ with dimensions N × (KU + KV ), where KU 
and KV represent the number of columns in vectors U and V, respectively. 
Equation (7) represents this process in mathematical terms.

 (7)

This approach entails the combining of features from distinct 
feature vectors through their concatenation along the horizontal 
dimension (columns), contingent upon the condition that the number 
of rows in both feature vectors are same. The resulting fused vector 
has dimension N×4096.
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Fig. 4. The detailed structure of presented 8 block BrC-DeepRBNet.
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Fig. 3.  The detailed structure of presented 6 block BrC-DeepRBNet.
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TABLE I. Characteristics of the Presented 6 Block BrC-DeepRBNet

S.No Layer type No of filter Filter size
1 Image input

2 Conv2D+ReLU 32 3×3

3 Conv2D+ReLU 64 3×3

4 2DMaxPool 3×3

--First PRB block--
5 BN+Conv2D+ReLU 32 1×1

6 BN+Conv2D+ReLU 64 3×3

7 BN+Conv2D+ReLU 64 1×1

8 BN+Conv2D+ReLU 32 1×1

9 BN+Conv2D+ReLU 64 3×3

10 BN+Conv2D+ReLU 64 1×1

11 Addition(S.No 4, S.No 7, S.No 10)

12 Conv2D+ReLU 128 3×3

13 2DMaxPool 3×3

--Second PRB block--
14 BN+Conv2D+ReLU 256 1×1

15 BN+Conv2D+ReLU 128 3×3

16 BN+Conv2D+ReLU 128 1×1

17 BN+Conv2D+ReLU 256 1×1

18 BN+Conv2D+ReLU 128 3×3

19 BN+Conv2D+ReLU 128 1×1

20 Addition(SNo 13, S.No 16, S.No 19)

21 Conv2D+ReLU 256 3×3

22 2DMaxPool 3×3

--1st SRB block--
23 BN+Conv2D+ReLU 512 1×1

24 BN+Conv2D+ReLU 256 3×3

25 BN+Conv2D+ReLU 256 1×1

26 Addition(S.No 22, S.No 25)

27 Conv2D+ReLU 512 3×3

28 2DMaxPool 3×3

--2nd SRB block--
29 BN+Conv2D+ReLU 512 1×1

30 BN+Conv2D+ReLU 256 3×3

31 BN+Conv2D+ReLU 256 1×1

32 Addition(S.No 28, S.No 31)

33 Conv2D+ReLU 1024 3×3

--3rd SRB block--
34 BN+Conv2D+ReLU 1024 1×1

35 BN+Conv2D+ReLU 512 3×3

36 BN+Conv2D+ReLU 1024 1×1

37 Addition(S.No 33, S.No 36)

38 Conv2D+ReLU 2048 3×3

--4th SRB block--
39 BN+Conv2D+ReLU 1024 1×1

40 BN+Conv2D+ReLU 512 3×3

41 BN+Conv2D+ReLU 2048 1×1

42 Addition(S.No 38, S.No 41)

43 Conv2D+ReLU 2048 3×3

44 2DMaxPool 3×3

45 Flatten Layer

46 Self-attention layer

47 FC Layer

48 FC Layer

49 Softmax

TABLE II. Characteristics of the Presented 8 Block BrC-DeepRBNet

S.No Layer type No of filter Filter size
1 Image input
2 Conv2D+leakyReLU 32 2×2
3 Conv2D+leakyReLU 64 2×2
4 2DMaxPool 3×3

--First PRB block--
5 GN+Conv2D+ leakyReLU 32 1×1
6 GN+Conv2D+ leakyReLU 64 3×3
7 GN+Conv2D+ leakyReLU 64 1×1
8 GN+Conv2D+ leakyReLU 32 1×1
9 GN+Conv2D+ leakyReLU 64 3×3
10 GN+Conv2D+ leakyReLU 64 1×1

   11 Addition(S.No 4, S.No 7, S.No 10)
12 Conv2D+ leakyReLU 64 2×2
13 2DMaxPool 3×3

--2nd PRB block--
14 GN+Conv2D+ leakyReLU 32 1×1
15 GN+Conv2D+ leakyReLU 64 3×3
16 GN+Conv2D+ leakyReLU 64 1×1
17 GN+Conv2D+ leakyReLU 32 1×1
18 GN+Conv2D+ leakyReLU 64 3×3
19 GN+Conv2D+ leakyReLU 64 1×1
20 Addition(S.No 13,S.No 16, S.No 19)
21 Conv2D+ leakyReLU 64 2×2
22 2DMaxPool 3×3

--3rd PRB block--
23 GN+Conv2D+ leakyReLU 32 1×1
24 GN+Conv2D+ leakyReLU 64 3×3
25 GN+Conv2D+ leakyReLU 64 1×1
26 GN+Conv2D+ leakyReLU 32 1×1
27 GN+Conv2D+ leakyReLU 64 3×3
28 GN+Conv2D+ leakyReLU 64 1×1
29 Addition(S.No 22, S.No 25, SNo 28)
30 Conv2D+ leakyReLU 128 2×2
31 2DMaxPool 3×3

--4th PRB block--
32 GN+Conv2D+ leakyReLU 256 1×1
33 GN+Conv2D+ leakyReLU 128 3×3
34 GN+Conv2D+ leakyReLU 128 1×1
35 GN+Conv2D+ leakyReLU 256 1×1
36 GN+Conv2D+ leakyReLU 128 3×3
37 GN+Conv2D+ leakyReLU 128 1×1
38 Addition(SNo 31, S.No 34, S.No 37)
39 Conv2D+ leakyReLU 256 2×2
40 2DMaxPool 3×3

--1st SRB block--
41 GN+Conv2D+ leakyReLU 512 1×1
42 GN+Conv2D+ leakyReLU 256 3×3
43 GN+Conv2D+ leakyReLU 256 1×1
44 Addition(S.No 40, S.No 43)
45 Conv2D+ leakyReLU 512 2×2
46 2DMaxPool 3×3

--2nd SRB block--
47 GN+Conv2D+ leakyReLU 1024 1×1
48 GN+Conv2D+ leakyReLU 512 3×3
49 GN+Conv2D+ leakyReLU 512 1×1
50 Addition(S.No 46, S.No 49)
51 Conv2D+ leakyReLU 1024 2×2

--3rd SRB block--
52 GN+Conv2D+ leakyReLU 1024 1×1
53 GN+Conv2D+ leakyReLU 512 3×3
54 GN+Conv2D+ leakyReLU 1024 1×1
55 Addition(S.No 51, S.No 54)
56 Conv2D+ leakyReLU 2048 2×2

--4th SRB block--
57 GN+Conv2D+ leakyReLU 1024 1×1
58 GN+Conv2D+ leakyReLU 512 3×3
59 GN+Conv2D+ leakyReLU 2048 1×1
60 Addition(S.No 56, S.No 59)
61 Conv2D+ leakyReLU 2048 2×2
62 2DMaxPool 3×3
63 Flatten Layer
64 Self-attention layer
65 Flatten layer
66 FC Layer
67 FC Layer
68 Softmax
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D. Generalized Normal Distribution Optimization 
GNDO [31], [32], inspired by normal distribution theory, is 

characterized by a random variable, denoted as ℛ, conforms to a 
probability distribution governed by two critical variables: location 
parameter α signifying the mean value, and scale parameter β denoting 
the standard variance of random variables. Equation (8) expresses the 
associated probability density function of ℛ.

 (8)

The structure of GNDO is straightforward, incorporating 
information sharing strategies that encompass local exploitation 
and global exploration. Local exploitation is grounded in the 
established generalized normal distribution model, directed by the 
current mean position and optimal position. On the other hand, 
global exploration entails interactions with three randomly selected 
individuals. A comprehensive elucidation of the two learning 
strategies is provided below:

1. Local Exploitation
Local exploitation encompasses the quest for improved solutions 

within the present positions of individuals across the search space. 
Equation (9) depicts the creation of a generalized normal distribution 
model for optimization which is facilitated by the correlation between 
the distribution of individuals in the population and a normal 
distribution.

 (9)

 represents the trail vector of the individual indexed at k at time t. 
The details of three parameters (αk , βk , γ) are as under:

2. Generalized Mean Position 
Equation (10) represents computation of the generalized mean 

position of the kth individual (αk ). 

 (10)

where  denotes the current optimal position, while μ is 
indicative of the mean position in the present population. Equation 
(11) shows its computation.

 (11)

In this context,  , encapsulates crucial insights pertaining to 
the global optimal solution. Each individual  gravitates towards 

 with the aim of augmenting the probability of discovering 
superior solutions. If , becomes ensnared in local optima, all 
individuals persist in converging towards it, resulting in premature 
convergence. To overcome this, we introduce the mean position μ of 
the current population. The evolving nature of μ across generations 
significantly enhances solution refinement. Its incorporation into the 
local exploitation strategy mitigates the risk of falling into local optima, 
thereby increasing the overall potential for discovering better solutions.

3. Generalized Standard Variance 
Equation (12) refers βk which functions as a random sequence to 

enhance local search capabilities by facilitating localized exploration 
around αk.

 (12)

where, a greater distance between the individual , and both the 
mean position μ and the best individual  results in a random 
sequence with more pronounced fluctuations. This indicates that 
individuals with lower fitness values have an increased probability of 

discovering improved solutions when exposed to a highly fluctuating 
random sequence. Conversely, individuals with higher fitness values 
benefit from random sequences with weaker fluctuations, thereby 
augmenting their chances of attaining superior solutions.

4. Penalty Factor 
Equation (13) refers computation of the penalty factor γ which 

enhances the random nature of the βk. The resulting variances are 
consistently positive, broadening its overall search capability.

 (13)

where p, q, ℛ1, and ℛ2 are random values within the range of 0 to 1.

5. Global Exploration
Equation (14) refers the global exploration aspect within GNDO 

that involves the selection of three individuals at random:

 (14)

Equation (15) and Equation (16) states the computation of trail 
vectors v1 and v2:

 (15)

 (16)

Where, three distinct random integers ℝ1, ℝ2, ℝ3, chosen from the 
range of 1 to T, satisfy the condition ℝ1 ≠ ℝ2 ≠ ℝ3 ≠ k. In Equation 
(14) the local learning term represents solution ℝ1 sharing information 
with k while the global information sharing, individual k receives 
information from ℝ2 and ℝ3. ℛ3 and ℛ4 are numbers at random from 
a standard normal distribution that expand the search space in GNDO, 
and ∈, an adjust parameter, is a randomly generated value between 0-1 
that balances these local and global sharing strategies. 

6. GNDO for Optimization
In GNDO, the population initializes using Equation (17):

 (17)

Where Q are design variables. ℛ5 is random number in range 0-1. 
The lth design variable Eis bounded by  and . If the kth individual 
doesn’t achieve a better solution through local or global strategies, a 
screening mechanism is implemented to introduce improved solutions 
into the next generation’s population, expressed by Equation (18):

 (18)

IV. Experimental Results and Analysis

A. Dataset and Experimental Measures
The deep learning framework introduced in this study is subjected 

to evaluation and testing using an augmented BUS images dataset, as 
outlined in Section 3. The dataset undergoes a 50:50 split into training 
and testing sets. For critical medical datasets, selecting a larger test 
set allows for a more thorough evaluation of the model’s ability to 
generalize to unseen data, offering more reliable insights into its 
performance. In the k-fold cross-validation procedure, the value of k 
is set to 10. The hyperparameters for the training process are defined 
as follows: epochs = 100, learning rate = 0.0001, mini-batch size = 32, 
momentum = 0.6, and the chosen loss function is cross-entropy.
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To obtain classification results, various neural network classifiers 
are employed, such as the wide neural network (W-NN), medium neural 
network (M-NN), bilayered neural network (B-NN), trilayered neural 
network (T-NN), and narrow neural network (N-NN). The performance 
metrics considered include Sensitivity, Precision, F1-Score, Matthews’s 
correlation coefficient (MCC) [33], accuracy, and computation time.

B. Experimental Setup
The simulations are executed using MATLABR2023a on a system 

with a configuration comprising 16GB RAM, 512 SSD, 8GB graphics 
card, and an Intel Core i7 10th Gen CPU. This thorough evaluation 
underscores the robustness and reliability of the proposed deep 
learning framework.

C. Numerical Results 
The following experiments have been conducted to validate the 

methodology presented in this exposition:

1. Classification employing deep features extracted from six block 
deep residual-bottleneck network applied to contrast-enhanced 
images.

2. Classification employing deep features extracted from eight block 
deep residual-bottleneck network applied to contrast-enhanced 
images.

3. Classification outcomes following the application of feature fusion 
through a horizontal concatenation approach.

4. Classification outcomes after the implementation of optimization 
using Generalized Normal Distribution on the fused vector.

1. Experiment 1:
This experiment displays classification outcomes by utilizing six block 

deep residual-bottleneck network on contrast-enhanced augmented BU 
dataset as indicated in Table III that result in 2048 deep features extracted 
from FC layer. These features are then inputted into different neural 
network-based classifiers to assess classification accuracy. It is evident 
that M-NN classifier excels with an accuracy of 98.20%, recall (98.02%), 
precision (98.34%), F1-Score (98.18%), and MCC of 96.38, supported by 
the accompanying CM as depicted in Fig. 5 (a). Furthermore, B-NN 
classifier requires 558.67 (s) for computation, while the N-NN classifier 
completes training in 362.89 (s), showing faster processing.

TABLE III. Classification on Contrast-Enhanced Images Utilizing Six 
Block Deep Residual-Bottleneck Network

Classifiers Sen (%) Pre (%) F1-S (%) MCC Acc (%) Time(s)
W-NN 97.98 98.17 98.07 96.15 98.15 1338.2

M-NN 98.02 98.34 98.18 96.38 98.20 529.12

B-NN 97.72 97.90 97.81 95.63 97.83 658.67

T-NN 97.88 97.66 97.77 95.53 97.83 727.51

N-NN 97.88 97.83 97.85 95.70 97.95 462.89

2. Experiment 2:
The experiment demonstrates classification outcomes employing 

eight-block deep residual-bottleneck network on contrast-enhanced 
augmented BU dataset as listed in Table IV, extracting 2048 deep 
features from the self-attention layer. These features are subsequently 
used to assess classification accuracy with various classifiers. The 
W-NN demonstrated superior performance, attaining 95.50% accuracy 
along with other metrics, including precision (96.67%), recall (94.33%), 
F1-score (95.48%), and MCC (91.10) supported by the accompanying 
CM as depicted in Fig. 5 (b). These metrics are also computed for 
other classifiers. Computation times are documented for all classifiers, 
revealing that the M-NN exhibited a shorter duration of 91.51 (s), 
whereas T-NN incurred the lengthiest time of 611.81 (s).

TABLE IV. Classification on Contrast-Enhanced Images Utilizing 
Eight Block Deep Residual-Bottleneck Network

Classifiers Sen (%) Pre (%) F1-S (%) MCC Acc (%) Time(s)

W-NN 94.33 96.67 95.48 91.10 95.50 129.6

M-NN 94.05 96.04 95.04 90.19 95.10 91.51

B-NN 93.77 95.25 94.51 89.11 94.55 590.5

T-NN 93.05 94.64 93.84 87.79 93.90 611.81

N-NN 93.05 95.71 94.36 88.91 94.45 321.06
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Fig. 5. Confusion matrix using contrast-enhanced images of presented  
(a) 6 block BrC-DeepRBNet, (b) 8 block BrC-DeepRBNet.

3. Experiment 3:
Table V displays the results following feature fusion by applying 

horizontal concatenation approach on both original augmented and 
enhanced augmented images using both presented deep networks. 
The feature vector as result of feature fusion has dimension N×8192 
which are then fed to classifiers. Across all classifiers, B-NN attains 
the highest accuracy at 97.15% but its training time is 334.1(s). W-NN 
and M-NN secure the second-highest accuracy of 97.05% with training 
time of 289.08 (s) and 135.07 (s), while T-NN achieves the third highest 
accuracy at about 96.8%. The values of various metrics of B-NN can be 
validated using confusion matrix as shown in Fig. 6 (a).

TABLE V. Classification Outcomes of Feature Fusion

Classifiers Sen (%) Pre (%) F1-S (%) MCC Acc (%) Time(s)

W-NN 96.63 97.40 97.01 94.05 97.05 289.08

M-NN 96.95 97.05 97.0 94.0 97.05 135.07

B-NN 96.85 97.39 97.12 94.25 97.15 334.1

T-NN 96.47 97.13 96.80 93.63 96.80 492.39

N-NN 96.43 96.47 96.45 92.90 96.50 211.28

4. Experiment 4:
In this experimental setup, feature optimization is conducted on 

fused features, resulting in feature vector of dimension N×3929. The 
obtained accuracies with various classifiers align with those achieved 
during the feature fusion phase as depicted in Table VI. W-NN achieves 
the highest accuracy 0f 97.05%, with a prediction time of 221.6 (s). The 
values of various metrics of W-NN can be validated using confusion 
matrix as shown in Fig. 6 (b). M-NN and N-NN are the second 
classifiers with the highest accuracy of 96.95% along with prediction 
time of 73.06 (s) and 75.88 (s). Thus, when evaluating the combined 
performance in terms of accuracy and prediction time, M-NN stands 
out as the optimal choice among the considered approaches. 
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TABLE VI. Classification Outcomes of Optimization Using GNDO on 
the Fused Vector

Classifiers Sen (%) Pre (%) F1-S (%) MCC Acc (%) Time(s)

W-NN 96.88 97.19 97.03 94.08 97.05 221.6

M-NN 96.92 96.95 96.94 93.88 96.95 73.06

B-NN 96.57 96.70 96.64 93.28 96.60 173.11

T-NN 96.17 96.73 96.45 92.93 96.50 192.04

N-NN 96.92 96.92 96.92 93.85 96.95 75.88
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Fig. 6. Confusion matrix of presented (a) feature fusion approach, (b) GNDO 
based optimization.

D. Ablation Studies
Ablation studies are performed in which proposed networks are 

compared with pre-trained models on basis of performance, followed 
by time comparison and comparison with SoA. The selected models 
include AlexNet, InceptionV3, ResNet50, and ResNet101. Fig. 7 
illustrates an accuracy comparison, demonstrating that the proposed 
6-block BrC-DeepRBNet and 8-block BrC-DeepRBNet architectures 
achieved superior performance with accuracies of 98.2 and 95.5% 
using contrast-enhanced images. The accuracy of remaining pre-
trained networks was 93.2, 92.3, 94.9, and 95.3%, respectively.
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Fig. 7.  Analysis of presented networks with pre-trained models.

Furthermore, several optimization algorithms such as PSO, Jaya 
Optimization, Whale Optimization, and Ant Lion Optimization 
were replaced in Fig. 1 with GNDO optimization to assess their 
impact on accuracy. The results depicted in Fig. 8 indicate that 
GNDO optimization achieves higher accuracy compared to the other 
optimization approaches.

The time-based comparison in Fig. 9 and Tables V, VI demonstrates 
how feature selection using GNDO maintains almost consistent 
accuracy with feature fusion step while cutting down on computation 
time drastically.
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Fig. 8.  Analysis of GNDO with other optimization techniques.
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Fig. 9.  Comparison of intermediate steps over time BUS dataset.

As demonstrated in Table VII, the same BUS dataset has been 
studied in recent methods that combined a variety of DL techniques 
with distinct pre- and post-steps to elevate classification accuracy. In 
this regard, Sahu et al. [14] achieved maximum accuracy of 94.62%. 
On the same dataset, our presented  approach outperforms these 
previously presented methods with an accuracy of 97.05%.

TABLE VII: Comparison With SoA

Reference Year Methods Acc (%)

Lyu et al. [2] 2023
Hierarchical extreme learning machine 

(H-ELM)
86.13

Meng et al. [34] 2023
RMTL-Net

ResNet-101 along with regional 
attention (RA) block.

91.02

Mo et al. [23] 2023 HoVer-Transformer model 85.50

Sagar et al. [19] 2023 Fuzzy ensemble based model 85.23

Islam et al. [35] 2024
EDCNN: integrates MobileNet and 

Xception
87.82

Sahu et al. [14] 2024 AlexNet, ResNet, and MobileNetV2 94.62 

Proposed Methodology 97.05

V. Conclusion

This paper presents a novel framework for BrC detection and 
classification. The framework involves enhancing original images, 
augmenting both original and enhanced images, and introducing the 
‘BrC-DeepRBNet’ hybrid CNN model for efficient feature extraction, 
fusion, and GNDO-based feature selection. These selected features are 
classified using neural network classifiers. In experiments on the BUS 
dataset, an enhanced accuracy of 97.0% was achieved.

The noteworthy advancements of this research can be outlined as 
follows: 

https://ieeexplore.ieee.org/author/37088873522
https://www.sciencedirect.com/topics/computer-science/residual-neural-network
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• A rapid and adaptive DL based feature extraction model is presented 
that incorporates residual structures, bottleneck architecture, and 
attention mechanisms to effectively capture intricate statistical 
patterns in digital images. 

• The utilization of the GNDO approach in feature selection 
ensures the preservation of fusion accuracy while simultaneously 
minimizing computational costs.

Furthermore, we performed detailed comparison, and results show 
that the presented approach outperforms conventional and existing 
DL techniques in terms of precision, recall, F1-score, and accuracy.

In the future, we aim to apply Generative Adversarial Networks 
(GANs) for data augmentation. Further, we aim to employ cross-dataset 
validation to assess the generalization capability of our framework, 
also more complex datasets will be used for the experimental process.

Acknowledgment

The authors extend their appreciation to the Deanship of Research 
and Graduate  Studies at King Khalid University for funding this work 
through small group research  under grant number RGP1/71/45.

References

[1] [A. A. C. Society. (2023, 25 Aug, 2023). Cancer Facts & Figures 2023. 
Available: https://www.cancer.org/research/cancer-facts-statistics/all-
cancer-facts-figures/2023-cancer-facts-figures.html 

[2] S. Lyu and R. C. Cheung, “Efficient and Automatic Breast Cancer Early 
Diagnosis System Based on the Hierarchical Extreme Learning Machine,” 
Sensors, vol. 23, p. 7772, 2023.

[3] M. Fatima, M. A. Khan, S. Shaheen, N. A. Almujally, and S. H. Wang, 
“B2C3NetF2: Breast cancer classification using an end‐to‐end deep 
learning feature fusion and satin bowerbird optimization controlled 
Newton Raphson feature selection,” CAAI Transactions on Intelligence 
Technology, vol. 8, pp. 1374-1390, 2023.

[4] M. Nasser and U. K. Yusof, “Deep Learning Based Methods for Breast 
Cancer Diagnosis: A Systematic Review and Future Direction,” 
Diagnostics, vol. 13, p. 161, 2023.

[5] N. Sirjani, M. G. Oghli, M. K. Tarzamni, M. Gity, A. Shabanzadeh, 
P. Ghaderi, et al., “A novel deep learning model for breast lesion 
classification using ultrasound Images: A multicenter data evaluation,” 
Physica Medica, vol. 107, p. 102560, 2023.

[6] J. M. Lewin, “Digital mammography,” Cancer imaging, pp. 455-458, 2008.
[7] Y. Kojima and H. Tsunoda, “Mammography and ultrasound features of 

triple-negative breast cancer,” Breast Cancer, vol. 18, pp. 146-151, 2011.
[8] M. Kriege, C. T. Brekelmans, C. Boetes, P. E. Besnard, H. M. Zonderland, I. 

M. Obdeijn, et al., “Efficacy of MRI and mammography for breast-cancer 
screening in women with a familial or genetic predisposition,” New 
England Journal of Medicine, vol. 351, pp. 427-437, 2004.

[9] X. Yao, W. Wei, J. Li, L. Wang, Z. Xu, Y. Wan, et al., “A comparison of 
mammography, ultrasonography, and far-infrared thermography with 
pathological results in screening and early diagnosis of breast cancer,” 
Asian Biomedicine, vol. 8, pp. 11-19, 2014.

[10] M. Fatima, M. Attique Khan, S. Shaheen, H. M. Albarakati, S. Wang, S. F. 
Jilani, et al., “Breast Lesion Segmentation and Classification using U-Net 
Saliency Estimation and Explainable Residual Convolutional Neural 
Network,” Fractals, 2024.

[11] X. Yu, Q. Zhou, S. Wang, and Y. D. Zhang, “A systematic survey of deep 
learning in breast cancer,” International Journal of Intelligent Systems, vol. 
37, pp. 152-216, 2022.

[12] E. M. El Houby and N. I. Yassin, “Malignant and nonmalignant 
classification of breast lesions in mammograms using convolutional 
neural networks,” Biomedical Signal Processing and Control, vol. 70, p. 
102954, 2021.

[13] D. kaba Gurmessa and W. Jimma, “Explainable machine learning for 
breast cancer diagnosis from mammography and ultrasound images: a 
systematic review,” BMJ Health & Care Informatics, vol. 31, 2024.

[14] A. Sahu, P. K. Das, and S. Meher, “An efficient deep learning scheme to 

detect breast cancer using mammogram and ultrasound breast images,” 
Biomedical Signal Processing and Control, vol. 87, p. 105377, 2024.

[15] K. Atrey, B. K. Singh, and N. K. Bodhey, “Multimodal classification of 
breast cancer using feature level fusion of mammogram and ultrasound 
images in machine learning paradigm,” Multimedia Tools and Applications, 
vol. 83, pp. 21347-21368, 2024.

[16] M. Chegini and A. Mahlooji Far, “Uncertainty-aware deep learning-
based CAD system for breast cancer classification using ultrasound 
and mammography images,” Computer Methods in Biomechanics and 
Biomedical Engineering: Imaging & Visualization, vol. 12, p. 2297983, 2024.

[17] D. Muduli, R. Dash, and B. Majhi, “Automated breast cancer detection in 
digital mammograms: A moth flame optimization based ELM approach,” 
Biomedical Signal Processing and Control, vol. 59, p. 101912, 2020.

[18] K. Atrey, B. K. Singh, and N. K. Bodhey, “Integration of ultrasound 
and mammogram for multimodal classification of breast cancer using 
hybrid residual neural network and machine learning,” Image and Vision 
Computing, vol. 145, p. 104987, 2024.

[19] S. D. Deb and R. K. Jha, “Breast UltraSound Image classification using 
fuzzy-rank-based ensemble network,” Biomedical Signal Processing and 
Control, vol. 85, p. 104871, 2023.

[20] S. Gupta, S. Agrawal, S. K. Singh, and S. Kumar, “A Novel Transfer 
Learning-Based Model for Ultrasound Breast Cancer Image 
Classification,” in Computational Vision and Bio-Inspired Computing: 
Proceedings of ICCVBIC 2022, ed: Springer, 2023, pp. 511-523.

[21] S. Bourouis, S. S. Band, A. Mosavi, S. Agrawal, and M. Hamdi, “Meta-
heuristic algorithm-tuned neural network for breast cancer diagnosis 
using ultrasound images,” Frontiers in Oncology, vol. 12, p. 834028, 2022.

[22] A. Sahu, P. K. Das, and S. Meher, “High accuracy hybrid CNN classifiers 
for breast cancer detection using mammogram and ultrasound datasets,” 
Biomedical Signal Processing and Control, vol. 80, p. 104292, 2023.

[23] Y. Mo, C. Han, Y. Liu, M. Liu, Z. Shi, J. Lin, et al., “Hover-trans: Anatomy-
aware hover-transformer for roi-free breast cancer diagnosis in 
ultrasound images,” IEEE Transactions on Medical Imaging, 2023.

[24] H. Zou, X. Gong, J. Luo, and T. Li, “A robust breast ultrasound 
segmentation method under noisy annotations,” Computer Methods and 
Programs in Biomedicine, vol. 209, p. 106327, 2021.

[25] K. Jabeen, M. A. Khan, M. Alhaisoni, U. Tariq, Y.-D. Zhang, A. Hamza, 
et al., “Breast cancer classification from ultrasound images using 
probability-based optimal deep learning feature fusion,” Sensors, vol. 22, 
p. 807, 2022.

[26] A. Raza, N. Ullah, J. A. Khan, M. Assam, A. Guzzo, and H. Aljuaid, 
“DeepBreastCancerNet: A Novel Deep Learning Model for Breast Cancer 
Detection Using Ultrasound Images,” Applied Sciences, vol. 13, p. 2082, 
2023.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 
recognition,” in Proceedings of the IEEE conference on computer vision and 
pattern recognition, 2016, pp. 770-778.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual 
networks,” in Computer Vision–ECCV 2016: 14th European Conference, 
Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, 
2016, pp. 630-645.

[29] Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of 
deep learning,” Neurocomputing, vol. 452, pp. 48-62, 2021.

[30] A. Rao, J. Park, S. Woo, J.-Y. Lee, and O. Aalami, “Studying the effects of 
self-attention for medical image analysis,” in Proceedings of the IEEE/CVF 
International Conference on Computer Vision, 2021, pp. 3416-3425.

[31] Y. Zhang, Z. Jin, and S. Mirjalili, “Generalized normal distribution 
optimization and its applications in parameter extraction of photovoltaic 
models,” Energy Conversion and Management, vol. 224, p. 113301, 2020.

[32] A. Chempak Kumar and D. Muhammad Noorul Mubarak, “Classification 
of Esophageal Cancer Using Ensembled CNN with Generalized Normal 
Distribution Optimization Model and Support Vector Machine Classifier,” 
in Congress on Smart Computing Technologies, 2022, pp. 83-111.

[33] D. Chicco and G. Jurman, “The advantages of the Matthews correlation 
coefficient (MCC) over F1 score and accuracy in binary classification 
evaluation,” BMC genomics, vol. 21, pp. 1-13, 2020.

[34] M. Xu, K. Huang, and X. Qi, “A Regional-Attentive Multi-Task 
Learning Framework for Breast Ultrasound Image Segmentation and 
Classification,” IEEE Access, vol. 11, pp. 5377-5392, 2023.

[35] M. R. Islam, M. M. Rahman, M. S. Ali, A. A. N. Nafi, M. S. Alam, T. K. 



- 11 -

Article in Press

Godder, et al., “Enhancing breast cancer segmentation and classification: 
An Ensemble Deep Convolutional Neural Network and U-net approach 
on ultrasound images,” Machine Learning with Applications, vol. 16, p. 
100555, 2024.

Mamuna Fatima

Mamuna Fatima received a Master’s degree in Software 
Engineering from National University of Sciences and 
Technology, Islamabad, Pakistan in 2014 and a Ph.D 
degree in Computer Science from HITEC University, 
Taxila, Pakistan in 2024. She serves as a Lecturer in the 
Department of Computer Science at COMSATS University 
Islamabad, Pakistan. Her primary research focuses on 

medical image processing, computer vision, medical image analysis, and the 
application of deep learning techniques.

Seifedine Kadry

Seifedine Kadry received the bachelor’s degree in applied 
mathematics from Lebanese University, in 1999, the M.S. 
degree in computation from Reims University, France, 
and EPFL, Lausanne, in 2002, the Ph.D. degree in applied 
statistics from Blaise Pascal University, France, in 2007, 
and the HDR degree from the University of Rouen, in 
2017. His current research interests include education 

using technology, system prognostics, stochastic systems, and probability and 
reliability analysis. He is an ABET Program Evaluator.

Muhammad Attique Khan

Muhammad Attique Khan (Member IEEE) earned his 
Master’s and Ph.D. degrees in Human Activity Recognition 
for Application of Video Surveillance and Skin Lesion 
Classification using Deep Learning from COMSATS 
University Islamabad, Pakistan in 2018 and 2022. He 
is currently an Assistant Professor of the Artificial 
Intelligence Department, Prince Mohammad Bin Fahd 

University, Saudi Arabia. Previously, he was affiliated with HITEC University 
Taxila, Pakistan. His primary research focus in recent years is medical imaging, 
COVID-19, MRI analysis, Video Surveillance, Human Gait Recognition, 
Remote Sensing, and Agriculture Plants using Deep Learning. He has above 
320 publications that have more than 14,500+ citations and an impact factor of 
920+ with h-index 72 and i-Index 210. He is also lead and guest editor of several 
special issues in the well reputed journals such as Measurement, IET CAAI 
Transaction, CMC, CSSE, Sustainable Energies, and a few more. Moreover, 
he worked as an Adjunct Professor at Lebanese American University from 
September 2023 to July 2024. 

Omar Alqahtani

Omar Alqahtani received the master’s degree in computer 
science from the University of Denver, Denver, CO, 
USA, and the Ph.D. degree in computer science from the 
University of Colorado Denver, Denver, in 2021.,He is 
an Assistant Professor with the Department of Computer 
Science, King Khalid University, Abha, Saudi Arabia, 
where he also serves as the Program Chair for the 

Computer Science Program. He has authored and coauthored a couple of papers 
in SCI high-impact factor journals and conferences as well. His current research 
projects deal with medical event sequences, Crime Forecasting, and Image 
processing with Deep Learning techniques. His research interests include data 
science related to Big Data, spatiotemporal processing, time-series data, event 
sequence data, and database spatial operators.

Saima Shaheen

Saima Shaheen completed her PhD from NUST in the 
area of software engineering. She is currently working at 
HITEC University, Taxila Pakistan. Her research interest 
include medical imaging, software development, and video 
surveillance. She is actively working in the area of deep 
learning research and reviewers in several reputed journals 
including CAAI Transactions and Mobile Networks. 

M. Turki-Hadj Alouane

M. Turki-Hadj Alouane (Member, IEEE) received the 
Senior Electrical Engineering Diploma degree from the 
National Engineering School of Tunis (ENIT), Tunis, 
Tunisia, in 1989, the M.Sc. degree in systems analysis and 
signal processing, in 1991, and the Ph.D. Diploma degree 
in electrical engineering and the National Tenure Diploma 
degree in telecommunications from ENIT, in 1997 and 

2007, respectively.,She is currently a Professor with the College of Computer 
Science, King Khalid University, Abha, Saudi Arabia. In 1997, she was recruited 
as an Assistant Professor of electrical engineering with ENIT. In 2007, she was 
promoted to an Associate Professor of telecommunications at ENIT. From 2010 
to 2012, she was a Visiting Associate Professor at the Electricity Department, 
Polytechnic School of Tunisia (EPT). Since 2012, she has been a Full Professor 
of telecommunications with the Information and Communication Technologies 
Department, ENIT. She has coordinated internationally sponsored research 
projects. Since 1997, she has led more than 20 research master theses and 8 Ph.D. 
theses. She has authored and coauthored more than 70 papers in impacted journals 
and conferences. Her research interests include signal processing (speech, image, 
and video), machine learning, deep learning, and evolutionary algorithms.


	_Hlk128055553
	_Hlk180178401
	_Hlk180179606
	_Hlk179888485
	_Hlk180188062
	_Hlk180177552
	_Hlk179876167
	_Hlk179879622

