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Abstract

Students’ interactions with exercises can reveal interesting features that can be used to redesign or effectively 
use the exercises during the learning process. The precise modeling of exercises includes how grades can 
evolve, depending on the number of attempts and time spent on the exercises. A missing aspect is how a precise 
relationship among grades, number of attempts, and time spent can be inferred from student interactions 
with exercises using machine learning methods, and how it differs depending on different factors. In this 
study, we analyzed the application of different machine-learning methods for modeling different scenarios by 
varying the probability of answering correctly, dataset sizes, and distributions. The results show that the model 
converged when the probability of random guessing was low. For exercises with an average of 2 attempts, the 
model converged to 200 interactions. However, increasing the number of interactions beyond 200 does not 
affect the accuracy of the model.
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I. Introduction

The learning content utilized in teaching and learning is crucial 
because it is a valuable tool for enhancing students’ understanding 

and influencing their cognitive and metacognitive capacities. However, 
its usefulness may be limited if learning content remains stagnant and 
cannot be expanded. Smart learning content (SLC) included advanced 
features, such as adaptive personalization, sophisticated feedback 
forms, user authentication, learner modeling, data aggregation, and 
learning analytics [1]. SLC can improve student engagement and 
success by providing personalized learning experiences that are 
adapted to individual needs and preferences [2].

Depending on the type of content, we can have different types of 
student interaction. One type of content is related to tests in which 
students can make different attempts to solve problems, for example, 
multiple responses or fill-in-the-blank exercises. Probabilistic 
approaches, such as the Item Response Theory (IRT), have been 
utilized to model educational tests. This method allows the estimation 
of item characteristics, such as difficulty, discrimination, and guessing, 
using student interactions [3]. Some authors have also used content 
modeling to estimate additional content parameters. For example, 
some models help infer the skill acquired by students after using 
educational materials [4].

In this work, we focus on exercises and understanding such as any 
activity task that should be solved by a student at some time, after 

many attempts, and in which the student can achieve a grade for 
each attempt. Examples of types of exercises include multiple choices, 
multiple responses, and a drag&drop, but also an open problem in 
which automatic evaluation is not possible, and a teacher should grade 
it by looking at different steps and a long text.

An exercise can be better characterized by establishing a clear 
relationship between the number of attempts, time spent, or grades. In 
the results of the systematic literature review [5], these three exercise 
characteristics were the next most frequently used in different studies 
after excluding the three used by the IRT: difficulty, discrimination, 
and guessing. For example, Moreno-Marcos et al. [6] used grade, 
time, and number of attempts to identify behavioral patterns, such as 
persistence, efficiency, and constancy, within an intelligent tutoring 
system. Also, Feng et al. [7] calculated indicators of the activities 
carried out by students, including the average number of attempts for 
each question, time spent on the activities, and number of finished 
activities, among others.

The term "learning curve" in the field of education pertains to 
the speed at which a student acquires a specific skill or set of skills. 
Learning curves can be used to track a learner’s advancement 
by evaluating their performance over time, identifying areas of 
strength and weakness, and determining the most effective means of 
supporting learning [8]. In the plots of this theory, the 2D graphs relate 
performance (the grade obtained) to the learning effort (the number of 
attempts), and performance to the time employed.
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Different studies have analyzed these three characteristics 
independently in models for educational exercises; however, we 
identified a gap when using these three characteristics simultaneously 
in a model and analyzed how they relate to each other. The redesign 
and use of exercises can be improved by understanding the relationship 
between these indicators. The focus of this study was to use machine 
learning techniques to infer the relationships among these parameters 
based on student interactions with exercises.

To evaluate these exercise models, we needed a significant number 
of interactions performed by students in those exercises. One posible 
solution is to use simulated students. Previous studies have used 
different simulated students [9], [10], [11] to recreate different student 
learning situations. The use of simulations in this work does not 
attempt to replicate the real student’s behavior, but to test the models 
in different predefined scenarios of student behavior so that we can 
know, for example, the number of interactions necessary for different 
cases. To evaluate the accuracy of machine-learning algorithms, 
different metrics can be used, such as precision, recall, F1, Root Mean 
Square Error(RMSE) default without normalization, and Area Under 
the Curve(AUC) [12].

This study aimed to analyze the possibility of using machine 
learning methods to infer these exercise indicators using student 
simulations. We propose the following research questions:

• Is it possible to obtain a time-grade-attempt model in exercises 
that are sufficiently accurate using traditional machine learning 
algorithms?

• How does the accuracy of the models vary for different types of 
exercises?

• What is the minimum number of interactions required to stabilize 
an exercise model with acceptable accuracy?

• How do different forms of student behavior modify the results 
obtained in the previous research questions?

This paper extends our paper [13]. We analyzed a model design for 
educational exercises using grade, number of attempts, and time spent. 
We tested different machine learning algorithms using simulated data 
for each variable using normal distributions. The paper is structured 
as follows: Sections I and II of this paper (Introduction and Related 
Work) include ideas from [13] but extend it with new ideas and 
references as the research questions have been extended to analyze 
the effect of changing the probability of answering correctly, dataset 
sizes and different distributions. Subsection III-A presents an overview 
of the extended paper [13] and takes ideas, results, and analysis from 
[13] but has been rewritten to try to increase clarity; Subsection III-B 
includes a new analysis of the respective metrics evaluated, the same 
visualizations with another dataset, and a new analysis of model over-
fitting, while Sections IV, V, and VI are new and analyze the behavior 
of this proposed model in different scenarios. Section IV presents 
the simulations for different types of questions, dataset sizes, and 
distributions, Section V shows the results obtained in the simulations, 
Section VI presents a discussion of the results obtained, and Section 
VII presents the conclusions and future work.

II. Related Work

Smart learning environments (SLEs) are learning environments 
capable of enhancing education by using adaptive technologies [14]. 
The content available to the learner and the knowledge acquired by 
the learner is part of this environment. Content should be constructed 
based on the learner’s previous experience by identifying their needs 
and learning styles [15]. Content modeling is relevant for learning 
because it allows for the redesign and improvement of teachers’ 
content, thus helping students’ learning.

In content modeling, probabilistic models take advantage of content 
parameters to understand and represent the learning materials. These 
models can be evaluated through simulations or real scenarios to provide 
insights into their effectiveness and adaptability in intelligent learning 
environments. The following subsections indicate the application 
of probabilistic models, the importance of parameters, simulations 
employed, and critical consideration of the number of interactions in 
optimizing these models to improve educational outcomes.

A. Probabilistic Models
Among the studies in which probabilistic methods are used, the 

most frequently used algorithm is IRT [16] [17] for modeling items 
in tests. IRT can estimate exercise parameters such as difficulty, 
discrimination, and guessing, based on the interactions made by 
the students in the questionnaires. For example, IRT was used to 
provide individual learning paths for students, which can alleviate 
disorientation and cognitive overload in learners based on the difficulty 
of course materials and their ability to improve learning efficiency and 
effectiveness [18]. The authors suggest that additional research and 
testing is required to thoroughly assess its effectiveness and potential 
limitations. Abbakumov [19] used a modified version of IRT to estimate 
the difficulty levels of items and address the cold-start problem using 
an application developed at the Higher School of Economics University. 
Consequently, learner motivation can be maintained, frustration and 
stress can be reduced, and learning outcomes can be improved. The 
author did not indicate any limitations but promised further work to 
evaluate the efficacy of the proposed model using real student data 
and to optimize the model’s performance on topics with a medium 
level of difficulty, which typically has regression coefficients that are 
relatively inconsequential.

Artificial intelligence algorithms, such as regression, random forest, 
and neural networks, have been used to determine the parameters of 
Item Response Theory (IRT) and to evaluate the accuracy of these 
models [20] [21] [22]. In a study [23], a regression algorithm was used 
to measure difficulty and discrimination in multiple-choice questions. 
The results were compared to those obtained using IRT to estimate the 
same parameters. In addition, Lehman et al. [24] analyzed the emotions 
that students experience during conversation-based evaluations.

Another type of content modeling has been applied to discussion 
forums. Capuano et al. [25] used neural networks to classify students’ 
answers in the forums and to detect the confusion perceived by 
students when participating in the discussion in real-time. The 
suggested approach can potentially enhance interactivity and support 
for students in Massive Open Online Courses (MOOCs). However, the 
authors acknowledge that additional research is necessary to assess 
the effectiveness of this approach thoroughly. Neural networks were 
used in discussion forums to detect feelings produced by a forum 
for students in MOOCs [26]. The linguistic-feature-based confusion 
classifier performed well on the evaluated metric F1-score, allowing 
real-time detection of message confusion. A limitation of the study 
was false negatives because teachers would not be able to identify 
messages in need of urgent intervention.

B. Parameters
In exercises, the grade, time spent, and the number of attempts have 

been used in different studies as indicators, as in the work by Feng, 
Heffernan and Koedinger [27]. Verdú et al. [28] proposed a model 
based on genetic algorithms and fuzzy systems to accurately classify 
questions according to their difficulty level in an intelligent tutoring 
system. They used the following parameters in their model: time in 
minutes from the last reading of the question to the delivery of the 
answer, grade obtained for that answer, and number of accesses or 
readings before sending the answer.
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Regarding grade, Uto [29] proposed a model to estimate the 
ability and grade obtained by students in written essays using the 
IRT model with evaluator parameters integrated into a model of the 
topicality of the answers. This model is based on the Latent Dirichlet 
Allocation(LDA) model of responses obtained by students in essays. 
In addition, the final grades for a subject and master’s degree in a 
university online mode were determined using different machine 
learning algorithms such as Naive Bayes, Decision Tree, Random 
Forest, and Neural Networks [30].

In terms of time, Rushkin, Chuang, and Tingle [4] described a 
log-normal model to estimate the slowness of the learners and the 
characteristics of the evaluations, such as discrimination and time 
intensity, using response times in an online course. In addition, Xue, 
Yaneva, Runyon and Baldw [20] predicted difficulty and response time 
for multiple-choice questions using information from each item text in 
the medical examination questions.

We [13] proposed providing more details on exercises based 
on three characteristics: grade of each attempt, time spent in each 
attempt, and number of attempts using the probabilistic method. The 
contribution of this study is to propose a detailed analysis of how 
the three indicators are related using simulations. In addition, they 
proposed different characteristics of the most used exercises, such as 
difficulty, discrimination, and guessing, calculated as parameters using 
IRT. The results demonstrated the accuracy of the machine learning 
algorithms using the proposed model design, indicating that the use of 
simulated students was a limitation of the study.

C. Simulations
Regarding simulation in education, VanLehn et al. [31] found 

three main applications in which simulated students could be used: 
as peers of real students, in instructional pedagogical design, and 
teachers’ learning methods. Various tools have been developed, such 
as SimStudent [32] and Demonstr8 [33], to test different models in a 
simulated environment before testing them in a real environment. 
These tools are helpful for the learning process because they allow 
the evaluation of different conditions required in the evaluated 
models [34].

Moreover, some systems simulate the students during the learning 
process. For example, Graesser [35] proposed an architecture that 
uses a simulation approach to implement pedagogical agents that 
focus on peer learning. Vizcaino [36] described an architecture in a 
collaborative environment that uses simulated students to detect and 
avoid possible scenarios that do not improve collaborative learning.

We propose the use of student simulations to recreate different 
possible scenarios in which the model could be used. Previous studies 
used simulated students to validate the models proposed by the authors. 
For example, Champaign and Cohen [11] proposed an approach for 
selecting content in an intelligent tutoring system based on student 
interactions. A simulated student was used to validate the proposed 
model and attempt to recreate a real-world scenario. However, there 
are clear constraints in creating simulated students that exactly match 
real learners. The researchers determined that their algorithm was 
efficient in choosing relevant educational content for students by 
considering the prior learning experiences of similar peers. Dorcca 
[9] used simulated students to evaluate three strategies in models 
of student learning styles, reducing the number of resources needed 
to validate the proposed approaches, understanding the proposed 
system’s behavior in this scenario, and making necessary changes 
to improve the design. However, simulated students may not fully 
capture real students’ behavior and responses, and the effectiveness of 
adaptive educational systems with simulated students may not always 
be generalizable to real-world settings.

D. Number of Interactions
The number of interactions or runs required in any machine-

learning algorithm is important to identify the performance of any 
proposed model and different studies have been conducted to identify 
the number of interactions or runs needed. For example, Liu et al. [37] 
found that it was necessary to run a Bayesian Network algorithm 
twice. Erickson et al. [38] identified 100 interactions to determine 
the best approach to learning object allocation. Frost and McCalle 
[39] required 25 simulations to determine the best performance 
among groups of learners. Riedesel et al. [40] performed 100 runs of 
simulations within an application to memorize basic techniques for 
students. BEETLE II [41] is a simulation-based physics tutor used to 
foster effective self-explanation in students, requiring 1000 simulation 
runs to find the best performance using the F-score metric.

In this context, this study contributes to the understanding of the 
minimum conditions necessary to test the proposed exercise model 
using simulations and to recreate the possible conditions in a real 
scenario. In addition, we provide information on the algorithms and 
minimum exercise interactions needed in the content model design so 
that other researchers can use these findings in other content such as 
discussion forums, archives, and wikis, used in any educational system.

III. Base Model for the Characterization of Exercises

Our previous work [13] proposed an exercise model based 
on interactions performed by students using machine learning 
algorithms. The model design was named the base model. We 
selected three characteristics mentioned in related works because 
the authors used them to characterize an exercise. Although these 
variables were used earlier, we aimed to understand better the 
relationship between grade, number of attempts, and time based on 
previous data on user interactions. The time and grade were based 
on the student’s performance in each attempt. Fig. 1 shows the three 
characteristics using scatter plots to represent the grade and time 
for different attempts. The possible values for the three variables are 
graded with values between 0 and 10, time with values between 0 
and n (representing the maximum possible value), and the number of 
attempts between 1 and m (representing the maximum possible value).
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Fig. 1. Characterization of exercises.
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In this study, we used students’ simulations to demonstrate their 
interactions and then trained different intelligence algorithms in 
the base model and three scenarios by modifying the probability of 
answering correctly, size of the data set, and distributions.

A. Simulation Using Base Model
We generated a dataset using a normal distribution with specific 

mean and standard deviation values for each variable including the 
number of attempts, grade, and time. We consider different criteria 
when generating each variable and their relationships. For instance, 
student’s grades on the first attempt followed a normal distribution. 
For subsequent attempts, the same distribution was used but with a 
limit between the grade of the previous attempt and the maximum 
possible grade. However, no further attempts were made if students 
achieved their maximum grades. We used Python programming 
language with stats and random libraries.

Next, we conducted simulations based on three levels of student 
knowledge: easy, medium, and difficult. For each level, we adjusted 
the means and standard deviations of the variables (grade, time, and 
number of attempts) by increasing or decreasing their values in the 
distribution function depending on the level of previous knowledge.

We performed at least 150 simulation runs for an exercise with 
a probability of answering by guessing set at 0% and formed three 
groups of students categorized as low, medium, and high based 
on their previous knowledge. Each group comprised 150 students. 
The mean of the distributions shifted to the left or right depending 
on the student group. Each student group had a minimum of 150 
interactions with the exercise on at least one attempt, and the 
students were allowed to perform multiple attempts. Simulations 
were used to train the model and determine the best curve 
representing the exercise characteristics.

The simulations aimed to recreate possible fictitious cases of 
student interactions but not to replicate real student behavior. Fig. 2 
shows the frequency distribution of the generated variables, which are 
explained as follows:

• Number of attempts: Each student was assumed to have attempted 
at least one exercise. To preserve the randomness of the data, 
a random variable was calculated to establish the number of 
additional attempts that each student performed for that exercise. 
Subsequently, we performed validations for the second attempt, 
in which the obtained grade was randomized using a normal 
distribution, with the minimum value being the grade achieved 
in the previous attempt. Similarly, for the time variable, we set 
the randomness using a normal distribution, considering the 
maximum time obtained in the previous attempt, and ensured that 
the time did not exceed that of the previous attempt. We followed 
the same logic for subsequent attempts, such as the third, fourth, 
and beyond.

• Grade: We defined the students’ grades obtained during the 
simulation from 0 to 10. For each attempt, we established a normal 
distribution, with the mean and standard deviation determined 
based on the three groups of students during the exercise. All 
the students had at least one grade for each exercise, as they had 
attempted it at least once. If students performed multiple attempts 
at exercise, each grade was obtained using a normal distribution 
between the maximum possible value for the exercise and the 
grade obtained on the previous attempt. However, if a student 
achieved their maximum grade, they were not allowed to make 
another attempt during the exercise. In all other situations, the 
new grade depended on students’ number of attempts.

• Time: The exercise time of the trainees was limited from 0 to m 
seconds. The specific value of m depends on the difficulty level 
of the exercise, and in this study, we examined multiple values of 
m. To ensure that the data remained random, we created a normal 
distribution with mean and standard deviation values based on 
the three levels of exercise difficulty. As the number of attempts 
increases, the time variable decreases. However, as the grade level 
increased, the time variable also increased. If a student performs 
multiple exercise attempts, the time obtained is calculated 
randomly. This value was set as the maximum time calculated in 
a previous study.

B. Results Using Base Model

1. Curve Estimation Using Machine Learning
The base model was implemented using machine learning 

algorithms in Jupyter, using Python v3.9.2 as the programming 
language. The scikit library, an open-source library that implements 
many machine learning algorithms, was used. We used the same input 
dataset for all the algorithms and tested different classifier algorithms 
using 80% of the data for training and 20% of the simulated data for 
testing. The classifiers tested included Random Forest (with different 
depths), Logistic Regression, Nearest Neighbors (with different 
numbers of neighbors), Gaussian Naive Bayes, and Decision Tree (with 
different depths). We used grade as the dependent variable and the 
student’s time spent on the exercises and the number of attempts as 
independent variables. To avoid overfitting, we used cross-validation 
with an algorithm to obtain the best metrics.

Fig. 3 shows the three best algorithms using precision(macro), 
recall(macro), f1(macro), RMSE, and AUC as metrics because the 
data were not balanced. The Nearest Neighbors with the k = 10 
algorithm obtained relatively good metric values for approximating 
the relationship between the three variables used in the model design.

C. Best Algorithm Nearest Neighbors
We selected the best algorithm obtained in the previous section(i.e. 

the Nearest Neighbors with k = 10 ) and the confusion_matrix method 
of the sklearn.metrics library to obtain the confusion matrix. Fig. 4 
shows the confusion matrix for the nearest neighbors algorithm with 
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k equal to 10. The matrix shows the different classes for the dependent 
variable grade of exercise. The figure shows the prediction accuracy 
for all grades, obtaining the highest values for grades 4 and 6. Also, the 
lowest accuracy was obtained for grades between 0 and 2.

The different clusters obtained in the model are shown in Fig. 
5 for each attempt at different times. The changes between the 
colors indicate the Bayes decision boundary of the different classes 
corresponding to the dependent variable grade of colors ranging from 
blue for 0 to yellow for 10.

We used the cross_val_score method from the sklearn.model_
selection library to prevent the overfitting of the best algorithm. Fig. 6 
shows the results of cross-validation accuracy with five folds evaluated 
in the nearest neighbor algorithm using different neighbor values. The 
results indicate that the best values were obtained with neighbor values 
between 10 and 15, which helped avoid over-fitting and under-fitting. 
Therefore, the nearest neighbor algorithm with k equal to 10, which 
obtained the best-evaluated metrics is within this range.

In addition, we used the predict_proba method of the 
KNeighborsClassifier class within the sklearn library to predict the 
probability of all classes using grade as an independent variable. Fig. 
7 shows the results using four elements of the test data set; the X-axis 

shows the different classes of the variable grade, whereas the Y-axis 
shows the probability estimate obtained in the predict_proba method. 
The test input data used were a pair of variables: the first corresponded 
to the number of attempts, and the second was the time spent.

The results show four examples tested in the selected algorithm 
in the first scenario (1–1.5): 1 is the number of attempts, and 1.5 is 
the time spent normalized between 0 and 10, obtaining a cumulative 
probability of 0.90 for a grade between 0 and 2. Finally, for a second 
attempt with a time of 4.4, a probability of 0.9 is obtained for the 
highest grade of 8. In summary, this exercise increased the time spent 
on the first attempt and the probability of improving grade.
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The following sections aim to create different possible scenarios and 
analyze the performance of the machine learning algorithms to estimate 
the model using these characteristics. We tested different datasets with 
a different number of interactions, changing the probability of correctly 
answering the questions, and changing the distributions, and we used 
a group of students with the same prior knowledge.

IV. Simulations

In this section, we describe the methodologies used to generate 
different sets of simulated data for the three simulated datasets for 
each of the three exercise characteristics.

A. Using Different Probabilities of Answering Correctly
To illustrate the different probabilities of answering a question 

correctly, we used three types of questions used in student evaluations: 
50% to represent true/false questions, 20% and 14% to represent 
multiple-choice questions with five or seven options and just one 
correct answer, and 7%and 5% to represent multiple-choice questions 
with six or seven options and two correct answers. The simulations 
aimed to understand the model’s behavior for different types of 
questions depending on the probability of answering correctly, 
identifying changes in the model’s accuracy, and whether more 
interactions are needed.

Using the data simulation, we used the same methods and libraries 
described in the previous section for the exercise model. We then ran 
150 simulations corresponding to the interactions of 150 students 
during the exercise. Each student completed at least one interaction 
during the exercise and made more attempts in the same exercise. 
The grade in each of the simulated exercises was different because it 
depended on the type of probability.

• 50%: This type of probability corresponds to true/false questions. 
Students with no prior knowledge had a 50%probability of 
correctly answering

• 20% and 14%: These two probabilities represent questions with n 
options, of which only one was the correct answer. We simulated 
two random questions with a probability of a student answering 
randomly: 20% (one correct answer out of five options) and 14% 
(one correct answer out of seven options).

• 7% and 5%: In this type of probability, students had more possible 
selections because the exercise had a combination of n among m, 
where n is the number of correct answers and m is the number 
of choices. For the simulation, we considered two correct 
answers among the six options; we obtained a combination of 15 
possibilities available to the student. Therefore, the probability of 
correctly answering the questions was 7%(1 out of 15). Finally, the 
other probability of 5%corresponds to a question with two correct 
answers among the seven options (1 out of 21).

If the student obtains the maximum grade on the first attempt or N 
attempts, the student makes no further attempts. The same conditions 
were used for the simulations in the base model.

B. Using Different Number of Interactions
Initially, we [13] used 150 interactions with a probability of 

answering by guessing of 0%, and in the previous section, we used 
150 interactions with three different probabilities of answering 
correctly. However, in the present section, we now focus on 
identifying how large a data set is needed to find the size of the 
data set needed to find the characteristic curve of the model for 
this type of question that is accurate enough, similar to what has 
been done in other studies [42] [43]. To determine the characteristic 
curve of the model for this type of question, we simulated students’ 
interactions in three exercises with different difficulties based on 

previous knowledge acquired: low, medium, and high. The data set 
size options for each exercise were as follows:

• 30 interactions
• 50 interactions
• 100 interactions
• 150 interactions
• 200 interactions
• 300 interactions
• 1000 interactions

C. Using Different Types of Distributions
In a previous work [13], a standard distribution was used for the 

simulations. However, in the present section, we performed simulations 
with different distributions for two exercise characteristics: grade, time 
spent, and the variable number of attempts to keep the distribution 
fixed in all simulations. The aim was to simulate different student 
behaviors and identify whether the model fits different possible real-
world scenarios. Previous work has used different simulations, [44] 
used a uniform distribution for the difficulty of questions in simulated 
student interactions. On the other hand, [45] assumed student ability 
to be a normal distribution with mean and variance using it to obtain 
the probability of answering correctly in simulated students. The 
following distributions were used:

• Uniform distribution: Interactions are centered on intervals (a,b). 
A possible scenario is that students obtain a similar grade in an 
exercise, and none have low or high extremes.

• Normal distribution: These are the interactions used in the 
previous study and previous simulations; it is also the distribution 
used in other studies [45] [13] where student data were simulated.

• Gamma distribution: Most of the interactions were close to each 
other, and a few data points were at the end of the bell distribution. 
For example, almost all students had a similar grade in one exercise, 
and a few students had a higher grade.

V. Results

A. Using Different Probabilities of Answering Correctly

1. Curve Estimation Using Machine Learning
We tested the machine-learning algorithms described in Section 

III.B. 1 using the metrics previously indicated. As shown in Fig. 8, the 
best algorithm describing the three different datasets was the nearest 
neighbor with k equal to 10. The metrics corresponding to the 50% 
probability have poor results, with values between 0.6 and 0.7, owing 
to the high probability of answering correctly. Therefore, the model 

1
0,9
0,8
0,7
0,6

50% 
probability

20% 
probability

14% 
probability

7% 
probability

5% 
probability

Precision 
(macro)

0,619 0,687 0,798 0,769 0,750

Recall 
(macro)

0,652 0,693 0,827 0,806 0,758

F1 
(macro)

0,628 0,662 0,748 0,777 0,744

RMSE 
(macro)

0,795 0,722 0,610 0,668 0,837

AUC 0,940 0,960 0,970 0,960 0,950

Fig. 8. Metric of algorithm Nearest Neighbors (k=10).
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had few classes corresponding to lower grades and could not learn 
correctly for these values. In this scenario, the proposed model design 
could not be used because it only had two answer choices with a 
maximum of two attempts to find the correct answer at random by 
the student. In this type of question with few possible answers, such 
as True/False, it is not recommended to use the model design because, 
after two attempts, all students would get the maximum grade, no 
matter how much time was spent.

In contrast, for probabilities of 5%, 7%, 14%, and 20%, there was 
a different distribution of grades and sufficient data obtained in 
each class of the dependent variable for learning the algorithm. By 
decreasing the probability of answering correctly, the values of all 
the metrics evaluated improved. The results were unsatisfactory with 
a probability of 20%, the results were unsatisfactory. In addition, for 
probabilities of 14%, 7%, and 5%, values greater than 0.75 are obtained 
in the precision, recall, and F1 metrics, respectively. In contrast, the 
AUC and RMSE metrics were relatively similar.

In the following subsections, we report the results for three 
probabilities of answering correctly: 50%, 14%, and 7%, and we select 
the probability for each type of question.

2. Best Algorithm Nearest Neighbors
Having already identified the best algorithm for predicting the 

grade, in this subsection, we present three different subsections with 
three different figures for each probability of answering correctly for 
the best algorithm. The three scenarios selected for analysis in this 
study and the following subsections are probabilities of 50%, 14%, and 
7%. Fig. 9 shows the three confounding matrices for the algorithm in the 
three evaluated scenarios. Fig. 9(a) corresponds to a 50% probability of 
answering; it can be seen that the algorithm has few elements for grades 
better than 5 and has a test condition for grades 7 and 9. Also, Fig. 9(b) 
and Fig. 9(c) correspond to 14% and 7% probabilities respectively and 
Fig. 9(c) has a better accuracy between grades 4 and 7 and presents a 

particular sensitivity between grades greater than 7. A possible reason 
may be the small amount of data available for these classes.

Fig. 10 shows the different clusters corresponding to the nearest 
neighbor algorithm with k equal to 10. The limits of each class vary 
depending on the percentage of probability of answering correctly. 
The tonality varies with color to yellow, corresponding to class 10 in 
the question with 50% (Fig. 10(a)), while 14% (Fig. 10(b)) and 7% (Fig.  
10(c)) show the whole range of tonality from the blue of class 0 to the 
yellow color corresponding to class 10.

To avoid overfitting, we evaluated the score of the algorithm using 
the cross_val_score of the sklearn.model_selection library with accuracy 
as scoring and 5-fold cross-validation. Table I shows the results of the 
cross-validation performed with five subsets of the nearest neighbors 
algorithm with the three different datasets representing the three 
types of questions. The N-fold column indicates the run number and 
the value indicates the accuracy of the algorithm in this run. Thus, 
we evaluated the robustness of the algorithm and avoided overfitting.

TABLE I. Cross-Validation Values

50% probability 14% probability 7% probability

cv1 0,679 0,799 0,768

cv2 0,575 0,826 0,793

cv3 0,616 0,812 0,692

cv4 0,676 0,740 0,781

cv5 0,548 0,809 0,806

Finally, we used the predict_proba method to calculate the 
probability of different grades using the simulated test dataset with 
three different probabilities of answering correctly. For example, in 
Fig. 11, using in the model a similar ordered pair, such as (1–5.5), (1–
5.6), or (1–5.7), where 1 means the number of attempts and 5.5,5.6,5.7 
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Fig. 9. Confunsion matrix with nearest neighbors (k=10).
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corresponds to the time spent in the exercise. We obtained a probability 
of 0.7 for a grade of 6 in the exercise with 50%correct answers (Fig. 
11(a)). In comparison, with an exercise of 14% (Fig. 11(b)), we obtained 
a probability of 0.9 for a grade of 4, and an exercise of 7% (Fig. 11(c)), 
we obtained a 0.6 probability for a grade of 6. As we can observe, we 
obtained different probabilities in the classes for the three probabilities 
of answering correctly, evaluated with similar values of time spent in 
the first attempt.

B. Using Different Number of Interactions

1. Curve Estimation Using Machine Learning
We tested the same algorithm used in the previous section, using 

the same metrics. Fig. 12 shows the precision, recall, F1, RMSE, and 
AUC metrics. We can see an increase in their values as the number 
of interactions increased, stabilizing the curve at 200 interactions. 
The RMSE metric decreased as the number of interactions increased, 
achieving stability with the same number of interactions as that of the 
other metrics. From the results, we can conclude that the minimum 
number of interactions for the proposed exercise model with good 
accuracy is approximately 200 because the best results were obtained 
for all the metrics evaluated: precision of 0.878, recall of 0.873, F1 of 
0.875, and RMSE of 0.527.

1,95
1,65
1,35
1,05
0,75
0,45
0,15

30 
interac-

tions

50 
interac-

tions

100 
interac-

tions

150 
interac-

tions

200 
interac-

tions

300 
interac-

tions

1000 
interac-

tions

Precision 
(macro)

0,214 0,269 0,568 0,708 0,878 0,882 0,866

Recall 
(macro)

0,19 0,315 0,632 0,718 0,873 0,862 0,871

F1 
(macro)

0,167 0,281 0,587 0,666 0,875 0,865 0,864

RMSE 
(macro)

2,000 0,918 0,793 0,693 0,527 0,526 0,527

AUC 0,723 0,890 0,870 0,980 0,990 0,985 0,989

Fig. 12. Metric of algorithm Nearest Neighbors (k=10).

Regarding the previous result, we performed simulations with 
values between 150 and 200 interactions to determine the exact value 
at which the curve of the metrics stabilizes. Fig. 13 shows the results 
of all the metrics evaluated, and the results show that between the 
values of 150 and 190 interactions, the values of the metrics precision, 
recall, F1, and RMSE increase slightly. For the 200 interactions, all 
metric values yielded the best results, as indicated in the previous 
paragraph. In summary, for the simulated exercise with values for the 
three characteristics, the number of attempts (mean, 2; minimum, 1; 
maximum, 4) of 200 interactions was needed.
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150 inter-
actions

160 inter-
actions

170 inter-
actions

180 inter-
actions

190 inter-
actions

200 inter-
actions

Precision 
(macro)

0,708 0,709 0,716 0,721 0,731 0,878

Recall 
(macro)

0,718 0,725 0,747 0,757 0,764 0,873

F1 
(macro)

0,666 0,687 0,706 0,727 0,737 0,875

RMSE 
(macro)

0,693 0,692 0,683 0,683 0,674 0,527

AUC 0,98 0,970 0,970 0,980 0,980 0,990

Fig. 13. Metric of algorithm Nearest Neighbors (k=10) between 150 and 200.

If the number of attempts to obtain the maximum grade increases, 
then. To test this hypothesis, we simulated two new exercises by 
modifying the variable number of attempts differently from the 
previous exercise with a mean of two. The first exercise involved an 
average of four attempts, and the second exercise involved an average 
of seven attempts.

Fig. 14(a) shows the results of the precision, recall, F1, RMSE, and 
AUC metrics for different interactions in the exercise with a mean of 
four attempts. The metrics decreased as the number of interactions 
increased, except for the AUC metric, which tended to maintain 
similar values. Fig. 14 shows that in 500 interactions, good values 
were obtained for all metrics evaluated: precision = 0.815, recall = 0.83,  
F1 = 0.84, RMSE = 0.628, and AUC = 0.92. We conclude that, for an 
exercise with a mean of four attempts to find the maximum grade, a 
minimum of 500 interactions are needed.
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Fig. 11. Predicted probability with nearest neighbors(k=10).
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Furthermore, Fig. 14 (b) shows the results of the same metrics 
in the exercise with a mean of seven attempts. In the exercise with 
a mean of four attempts, the metrics decreased as the number of 
interactions increased, except for the AUC metric. Fig. 14(b) shows 
that at 800 interactions, good values were obtained for all metrics:  
precision = 0.875, recall = 0.858, F1 = 0.857, RMSE = 0.581, and  
AUC = 0.980. Based on these results, we can conclude that, in an 
exercise with a mean of seven attempts, a minimum of 800 interactions 
would be needed. In summary, as the number of attempts that students 
must make to obtain the maximum grade increases, the minimum 
number of simulated students also increases.

2. Best Algorithm Nearest Neighbors (K=10) With 200 
Interactions

Fig. 15 shows the confusion matrix of the algorithm with the 
highest accuracy with 200 interactions obtained in the previous 
subsection. The results show that the algorithm has a better prediction 
for middle grades, with a decreasing prediction as the grades increase. 
However, for low grades, the accuracy decreases because of the small 
dataset with which the model was trained and because of the type of 
distribution used in the simulations.
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Additionally, Fig. 16 shows different clusters of the algorithm for 
different numbers of attempts. The tonalities of the different classes 
varied as number of attempts increased, the students improved their 
grades, and the total number of classes decreased. In the middle 
grade, most of the clusters were located in the correct class on the 
first attempt. In the low and high grades, the classes had clusters 
corresponding to the nearby classes.
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Fig. 16. Plot with nearest neighbors(k=10).

Using the same method as in Section III.A.2, Table II lists the 
variables considered in the model with their possible values. The 
N-fold column indicates the run number and the value indicates the 
accuracy of the algorithm in this run. The results show good accuracy 
of the algorithm in the five different subsets of the cross-validation, 
indicating the robustness of the algorithm and the avoidance of 
overfitting.

TABLE II. Cross-Validation Values

N-fold value
cv1 0,892

cv2 0,965

cv3 0,862

cv4 0,789

cv5 0,862
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1,800
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tions
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interac-

tions

200 
interac-

tions

300 
interac-

tions

1000 
interac-

tions

Precision 
(macro)

0,480 0,559 0,645 0,748 0,815 0,880 0,894

Recall 
(macro)

0,425 0,495 0,629 0,754 0,830 0,876 0,889

F1 
(macro)

0,412 0,493 0,612 0,752 0,840 0,877 0,891

RMSE 
(macro)

1,770 1,535 1,360 0,927 0,628 0,596 0,509

AUC 0,880 0,920 0,910 0,960 0,970 0,970 0,980

(a)
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Precision 
(macro)

0,459 0,509 0,595 0,681 0,770 0,857 0,881

Recall 
(macro)

0,490 0,496 0,588 0,669 0,774 0,858 0,879

F1 
(macro)

0,455 0,495 0,583 0,670 0,771 0,857 0,880

RMSE 
(macro)

1,531 1,283 1,034 0,949 0,673 0,581 0,469

AUC 0,870 0,960 0,970 0,970 0,990 0,980 0,990

(b)

Fig. 14. Metric of algorithm Nearest Neighbors (k=10) increasing the number of attempts.
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Finally, we used the predict_proba method to calculate the probability 
of different grades using the simulated test data. Fig. 17 shows the 
results obtained using these four examples. The first example (1-3.0) 
corresponds to the first attempt in a time of 3 units, which corresponds 
to a higher probability of obtaining a grade of 2. In contrast, (3–3.1) 
corresponds to the third attempt at a time of 3.1. Similar to the previous 
study, the results vary, obtaining a higher probability for a grade of 7 
or 10. In conclusion, according to the predictions of this exercise, if 
a student spends more time during the first attempt or makes more 
than one attempt, the student has a greater probability of obtaining a 
higher grade.
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Fig. 17. Predicted probability with nearest neighbors(k=10).

C. Using Different Types of Distributions

1. Curve Estimation Using Machine Learning
To answer RQ4, we trained the model using the three datasets 

corresponding to each distribution. The results were obtained using 
the same algorithm as that in the previous section, and the same 
metrics are shown in Fig. 18. In general, for the three different 
student behaviors (three distributions), the precision, recall, and F1 
metrics exhibited values ranging from 0,8 and 0,9. In contrast, the 
RMSE decreased slightly when the student’s behavior was normally 
distributed. Finally, the AUC of the three distributions was not 
significantly different, with a value very close to 1. In conclusion, the 
different distributions of student behavior using machine learning 
algorithms converged with good results.
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distribution

Normal 
distribution

Gamma 
distribution

Precision (macro) 0,885 0,827 0,875

Recall (macro) 0,896 0,801 0,840

F1 (macro) 0,869 0,804 0,836

RMSE (macro) 0,672 0,574 0,639

AUC 0,96 0,990 0,980

Fig. 18. Metric of algorithm Nearest Neighbors (k=10).

2. Best Algorithm Nearest Neighbors (K=10)
The confusion matrix allowed us to observe the behavior of the 

algorithm by relating the preconditions to the real cases. Fig. 19 shows 
the confusion matrices for the three different distributions used. Fig. 

19(a) corresponds to a uniform distribution; Fig. 19(b) corresponds 
to a normal distribution; and Fig. 19(c) corresponds to a gamma 
distribution. Fig. 19(a) and Fig. 19(c) show that not all values are 
available for the degree of the dependent variable. By contrast, in Fig. 
19(b), all grade classes can be obtained. Moreover, Fig. 19(a) and Fig. 
19(c) show similar behavior, obtaining a high precision for the mean 
grades, whereas Fig. 19(b) shows good precision distributed over a 
larger number of grades.
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Fig. 19. Confunsion matrix with nearest neighbors(k=10).
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Next, Fig. 20 shows the different clusters of the dependent 
variable using the nearest neighbor algorithm with k equal to 10. 
Fig. 20(a) corresponds to the uniform distribution, Fig. 20(b) a normal 
distribution and Fig. 20 for the gamma distribution. The three figures 
represent three different student behaviors, where the different shades 
represent each class of the grade variable. The dispersion of the clusters 
in the different attempts was related to the type of distribution used, 
as shown in Fig. 20(a) and Fig. 20(c), with a large dispersion in each 
attempt. In addition, Fig. 20(b) shows a better distribution of clusters 
in each class, as represented by the same colors.

Using the same method as in Section III.A.2, Table III presents 
the results of the cross-validation performed with three subsets 
representing the three types of distributions. The N-fold column 
indicates the run number and the value indicates the accuracy of the 
algorithm in this run. Accuracy of different subsets in cross-validation 
obtained good results, demonstrating the robustness of the algorithm 
in different distributions and avoiding overfitting of the algorithm.

TABLE III. Cross-Validation Values

N-fold Uniform 
distribution

Normal 
distribution

Gamma 
distribution

cv1 0,849 0,824 0,887

cv2 0,876 0,810 0,928

cv3 0,917 0,838 0,914

cv4 0,903 0,796 0,818

cv5 0,876 0,867 0,832

Finally, we used the predict_prob method to calculate the probability 
of different grades, and the dataset used as a test was a part of the 
simulated data. Fig. 21 shows the results obtained using three different 
simulations. Fig. 21(a) corresponds to a uniform distribution, Fig. 21(b) 
corresponds to a normal distribution, and Fig. 21(c) corresponds to 
a gamma distribution. In conclusion, the probabilities obtained had 
different values for the three evaluated datasets.

VI. Discussion

In this section, we analyze the results obtained from the simulations 
based on our research questions.

A. RQ1: Is It Possible to Obtain a Time-Grade-Attempts Model 
in Exercises That Are Accurate Enough Using Some Traditional 
Machine Learning Algorithms?

The results show that traditional machine learning algorithms can 
model exercises using independent variables, such as time and number 
of attempts, with the dependent variable being the grade obtained 
by the student. The four algorithms that could be used were nearest 
neighbor (k=10), Decision Tree (Max Depth=10), Random Forest 
(Max Depth=10), and MLP (tanh). We evaluated the effectiveness of 
all algorithms based on metrics such as precision, recall, F1, RMSE, 
and AUC and found that these four algorithms yielded the best 
results. Finally, we recommend using the nearest neighbor algorithm 
(k=10) because the first choice, as it achieved the best results in the 
simulations conducted. This algorithm and its variants have been used 
in various applications such as medical predictions, data mining, and 
financial modeling [46].

B. RQ2: How Does the Accuracy of the Models Vary for Different 
Types of Exercises?

The findings show a variation in the values of the metrics evaluated 
for the different questions. Modifying the probability of answering 
correctly implies obtaining different data dispersions among dependent 
variable classes (grades). First, the questions with a 50% probability 
had the worst result among the others. This is because of the high 
probability of obtaining a good grade randomly even if the student 
has no prior knowledge. As the probability of answering correctly 
decreases, better results are obtained in the metrics because of the data 
distribution, and the algorithm has the necessary information to learn 
correctly. We do not recommend using the proposed model for true/
false questions corresponding to 50% probability because of its low 
effectiveness and the limited data that will be obtained regarding the 
number of student attempts. 
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Fig. 20. Plot with nearest neighbors(k=10).
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By contrast, the model has better results in the metrics using an 
artificial intelligence algorithm for the type of question with multiple 
options represented by probabilities of 14%, 7%, and 5%. For 20% 
probability, the results show a small increase in the results for 50% 
probability. There is an inverse relationship between probability and 
metrics; as the probability of answering correctly increases, the values 
of the evaluated metrics decrease.

This type of question is perceived as better and preferred by the 
students [47]. Using the information obtained from the model, teachers 
can orchestrate the process by redesigning educational exercises to 
improve student learning, as in other studies [48] [49]. For example, 
by knowing the types of questions, teachers can modify their exams 
based on student’s grades, the number of attempts that students will 
have to make, and the time it will take to finish the questions. By using 
this information, teachers can redesign questions with better results 
based on the proposed model to improve students’ learning processes.

C. RQ3: What Minimum Number of Interactions Is Required to 
Stabilize the Exercise Model With Acceptable Accuracy?

Previous studies [42] [43] examined the impact of various sample 
sizes on model stability and accuracy, to identify the minimum 
number of sizes required to optimize the characteristic curve. The 
results show that we need a minimum of 200 student interactions in 
the exercise to model the three characteristics of the proposed model 
design for exercises, with an average of two attempts to obtain the 
maximum grade.

However, we could also use 300 or more interactions for the first 
attempt because the difference in accuracy was insignificant because 
there were few classes to classify. The accuracy of the algorithm did 
not increase significantly in the model considering the threshold of 
200 interactions as the number of interactions increased. Having 
a minimum of 200 interactions performed in an exercise does not 
necessarily imply having 200 students because the same student can 
perform multiple interactions when trying to solve the same exercise 
several times, which increases the total number of interactions.

Moreover, if the exercises require more attempts to obtain the 
maximum grade, such as 4 or 7, more interactions are required 
to converge the model. The findings showed that we would need 
a minimum of 500 and 800 interactions for these two types of 
exercises. Existing a direct relation between the number of attempts 
and the number of interjections, if the number of attempts needed 
to obtain the maximum score increases, the number of interactions 
will be higher.

The results can be used to analyze any platform on which the 
proposed exercise model should be tested: for example, in a massive 
open online course (MOOC), because of the large number of learners 
and the possibility of obtaining numerous interactions; or in contrast, 
in Learning Management System (LMS) courses with a specific 
number of learners.

D. RQ4: How Do Different Forms of Student Behavior Modify the 
Results Obtained in the Previous Research Questions?

We used different distributions in studies of students with exercise 
characteristics. For example, normal distributions have been used to 
address question difficulty and student skills [50]. Once we identified 
the number of interactions and type of questions required to estimate 
the model and obtained good results for all metrics, we ran simulations 
with different distributions to recreate possible student scenarios. For 
example, students obtained an average grade on the first attempt; 
however, after several attempts, they could not improve their grades. 
No matter how many attempts the students made, they could not get 
the maximum grade, or all students achieved high grades on their first 
attempt. The findings allow us to infer that we can adapt the proposed 

model to different scenarios to help teachers identify the problems 
that students face when solving the exercise and redesign the exercise 
if necessary to improve the grade obtained by the student.

VII. Conclusion and Future Work

The simulations allowed us to illustrate the exercise model under 
different scenarios. First, we found that a traditional machine learning 
algorithm could model the exercise while obtaining acceptable 
results for the metrics evaluated, and the robustness of the model 
was evaluated using five-field cross-validation. Next, we found that 
different probabilities of answering a question correctly affect the 
accuracy of the model due to the distribution of the scores obtained as 
a function of the probability; for questions with few answer options, 
we do not recommend using the proposed model design as in the case 
of a true/false question.

Moreover, identifying the number of interactions is essential 
for testing the model because it indicates the minimum number of 
students required to evaluate the model accurately. The findings 
indicated that the number of interactions is related to the number of 
attempts required to obtain the maximum grade. For example, model 
design requires a minimum of 200 interactions for an exercise, with 
an average of two attempts. However, if the number of attempts is 
increased, more interactions will be required to converge the model.

Also, the model design converges on the different interaction 
scenarios of the students simulating different student behaviors using 
three different distributions so that future work can evaluate the 
model with other distributions.

The present study’s findings will allow teachers to redesign their 
course exercises, knowing information about the three characteristics 
of exercise: number of attempts, time, and grade for each type of 
question. For example, identifying student patterns in exercises, such 
as students failing to improve their grades after a few attempts or 
investing too much time to improve their grades, among others.

A limitation of the present study is the use of simulated data 
rather than real data, which does not allow us to generalize the 
accuracy obtained by applying the different algorithms tested for 
the three exercise characteristics. However, the results obtained 
allowed us to illustrate the behavior of the model in the different 
scenarios evaluated and identify the features needed in the test 
design in a real environment.

In future work, we plan to test the model in a real-world scenario 
based on simulation results. This would require many students to 
interact with the educational exercise. Hence, a massive course 
is necessary to evaluate the generality of the proposed model. 
Additionally, we will create explainable visualizations with information 
about the model within the dataset, that the teacher can use to detect 
exercise patterns using the three indicated characteristics. Moreover, 
the teacher can redesign the exercise based on these visualizations to 
enhance the students’ learning.
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