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Abstract

Currently, wind power is the fast growing area in the domain of renewable energy generation. Accurate 
prediction of wind power output in wind farms is crucial for addressing the challenges associated the power 
grid. This precise forecasting enables grid operators to enhance safety and optimize grid operations by 
effectively managing fluctuations in power generation, ensuring a reliable and stable energy supply. In recent 
years, there has been a significant rise in research and investigations conducted in this field. This study aims 
to develop a multivariate short-term wind power forecasting (WPF) model with the objective of enhancing 
forecasting precision. Among the various prediction models, deep learning models such as Long Short-Term 
Memory (LSTM) have demonstrated outstanding performance in the field of WPF. By adding multiple layers 
of LSTM networks, the model can capture more complex patterns. To improve the performance, data pre-
processing is carried out using two techniques such as removal of missing values and imputing missing values 
using Random Forest Regressor (RFR). The comparison between the proposed Stacked LSTM model and other 
methods including vector autoregressive (VAR), Multiple Linear Regression, Gated Recurrent Unit (GRU) and 
Bidirectional LSTM (BiLSTM) has been experimented on two datasets. The experimental results show that 
after imputing missing values using RFR, the Stacked LSTM is optimized model for better performance than 
above mentioned reference models.
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I. Introduction

Renewable energy sources are developed and adopted since there 
is a decline in the cost of renewable technology, globally. This is 

for the reason that using conventional energy causes the environment 
irreparable harm [1]. Among them, wind power is an attractive option 
because of its low operating costs, low environmental impact, and 
high availability and sustainability. As a result, to assure the stability 
and safety of the power system, efficient and reliable wind power 
forecasting (WPF) methodologies are required. The three categories 
of WPF tasks are: (i) Short-Term Prediction: time range from several 
minutes to several hours; (ii) Medium-Term Prediction: time range 
from hours to a week; and (iii) Long-Term Prediction: time range from 
week to year or more.Short-term WPF allows the power industry to 
prepare for fluctuations in wind farm output. This preparation reduces 
operating expenses, the need for backup power, and reduce the strain 

on the electrical grid. The relevant methods mainly classified into 
physical, statistical, and hybrid methods [2].

The physical method [3] requires lots of data, because the 
establishment of a predictive model will be done with the help of many 
variables, and the amount of data has a direct relationship with forecast 
accuracy. As a result, the predictive model’s calculation process 
and mathematical structure are complex, resulting in a relatively 
longer computation time. The most extensively utilized method is 
numerical weather prediction (NWP) [4]. The NWP involves extensive 
calculations and is better suited for Long-Term forecasting rather 
than Medium-Term and Short-Term forecasting. Statistical methods 
involve linear models and non-linear models. Autoregressive (AR), 
Autoregressive Moving Average (ARMA), Autoregressive Integrated 
Moving Average (ARIMA) [5], vector autoregressive (VAR), Smooth-
Transition Auto-Regressive (STAR) are some examples of linear 
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model. ARIMA is unable to reliably predict wind power due to the 
accumulation of error hence many strategies have been developed 
to solve this limitation. The Non-linear model, includes strategies 
such as Autoregressive Conditional Heteroskedasticity (ARCH) [6], 
Generalized Autoregressive Conditional Heteroskedasticity Process 
(GARCH) and Deep learning algorithms [7], [8]. Artificial intelligence 
is a recent area of statistical methods, which is successfully applied for 
forecasting wind power, and the results of the forecasts gaining people 
approval [9]–[14]. Techniques used here involve artificial neural 
network (ANN) [15], support vector machine (SVM) [16], and Long 
Short-Term Memory (LSTM) [17]. Artificial intelligence is best suited 
for general purposes, but its disadvantage is that it cannot accurately 
explain the relationship between model elements. A study conducted 
by Kia Qu et al. investigated the use of the transformer architecture for 
short-term WPF [18]. This research covered the examination of wind 
power output data from various wind farms and included a comparative 
assessment with the LSTM model serving as a benchmark model. 
Where as a novel deep learning model that combines transformers 
and wavelet transforms uses weather data to predict wind speed and 
power generation six hours in advance, outperforming LSTM models 
[19]. Transformers offer several advantages for WPF, they come 
with computational requirements and may require large datasets for 
training. Additionally, model architecture, hyperparameter tuning, and 
data preprocessing are critical factors in achieving accurate forecasts.

A hybrid model [20] is a combination of different forecasting models. 
These combined models are expected to avoid the shortcomings of 
one model in forecasting wind power. Statistical methods are best 
in achieving high accuracy for short-term forecasts but tend to 
accumulate errors when used for long-term forecasts. On the other 
hand, physical methods, owing to their extensive scope and scale, 
are better suited for long-term forecasting rather than short-term 
predictions. Therefore, there are many errors in the existing methods, 
and studies are currently underway to improve the forecasting 
methods. Hybrid methods are generally classified into four types: 
hybrid approach based on data pre-processing technique, weight-
based hybrid approach, hybrid approach based on data post-processing 
technique and parameter selection and optimization technique [21]. 
Table I provides a brief assessment of each class of hybrid techniques. 
This research takes first type of hybrid approach. Recent studies have 
suggested large amount of hybrid techniques in order to decrease the 
prediction errors by incorporating the merits of different methods. 
The author E. Lopez et al. utilized Principal Component Analysis 
(PCA) to reduce the input variables of the LSTM model for NWP 
data prediction [22]. The proposed model has demonstrated superior 
accuracy in comparison to SVM and Backpropagation Neural 
Network (BPNN). LSTM has higher prediction accuracy; therefore, 

it is used in wider range of applications. The author F. Shahid et al. 
merged wavenets with LSTM for diminishing wave and gradient 
transformation for nonlinear mapping [23]. WN-LSTM is applied on 
seven wind farms in Europe for Short-Term WPF. The performance 
is assessed based on metrics such as Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE). The results indicate a notable 
improvement, with performance showing a significant increase of 
30%. In the Advanced LSTM [24] technique, the author fine-tuned the 
neural network’s parameters based on new insights gained over time, 
instead of retraining the model using the entire dataset. The results of 
a case study in Belgium show that recalibration of advanced models 
will improve the consistency of predictions while reducing the cost 
of evaluating the system. Z. Sun et al. introduced a hybrid model that 
combines variational mode decomposition (VMD), Convolutional 
Long Short-Term Memory network (ConvLSTM), and error analysis 
[25]. The VMD approach divides the input wind energy into a set of 
different frequency components and then obtains a new structure that 
incorporates the convolutional layer into the LSTM network. This 
structure can extract the spatio-temporal features of each sub-series as 
an initial prediction engine.

Taking into account these issues, this study presents stacked LSTM 
for Short-Term Wind Power Forecasting using Multivariate Time Series 
Data. The major contributions of our paper are summarized as follows: 
(a) The presentation of a wind power forecasting model, employing the 
deep recurrent neural network LSTM, to assess potential improvements 
in predictions through the incorporation of additional training layers 
within the framework of time series analysis. (b) The proposed model 
uses data pre-processing technique and hyperparameter optimization 
to improve the LSTM network structure and proposed model is 
evaluated by comparing predicted values with actual values based 
on MAE & RMSE statistical error measures. (c) The performance of 
twelve deep LSTM models are assessed using various architectures for 
WPF. (d) The effectiveness of the presented research work is compared 
with three methods used in the literature. The subsequent sections 
of the paper are structured as follows: Section II describes overviews 
of LSTM. Section III provides an overview of the data pre-processing 
method. Section IV explains proposed model and performance metrics. 
Section V outlines experimental analysis on two open-access datasets. 
Finally, Section VI presents concluding remarks and future work.

II. Theoretical Framework

In this section LSTM is illustrated in detail. LSTM [26], a refined 
version of RNN, is designed for working with time series data. It’s like 
a unique neural network that excels at making decisions based on data 

TABLE I. A Brief Evaluation of the Hybrid Approaches

Hybrid WPF Approach Advantages Disadvantages

Hybrid approach based data pre-processing 
technique [27], [28]

• Higher performance compared to other 
approaches

• Mathematical knowledge of decomposition is 
required

• slow response to new data

Weight-based hybrid approach [29] • Adaptive to new data
• Easy to implement
• Adaptable to a variety of situations

• To determining the weights, an additional model is 
required

• The best forecast within the forecast range is not 
guaranteed

Hybrid approach based on data post-processing 
technique [11]

• Effective in reducing systematic error
• High accuracy

• Depends on designer’s understanding of the 
optimization problems

• Harder to code
• Computationally complex

Hybrid approach based on parameter selection 
and optimization technique [30], [31]

• Relatively basic structure • Computational time inefficient
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over extended periods. Instead of RNN’s conventional hidden layers, 
LSTM employs memory cells, as shown in the Fig. 1, to effectively 
manage and retain information.
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Fig. 1. Internal structure of LSTM cell.

LSTMs are experts at grasping temporal relationships by employing 
several gate units like the input gate (it), the forget gate (ft), and the 
output gate (ot), all accompanied by activation functions like tanh and 
sigmoid. By utilizing the sigmoid function each gate produces a binary 
output, either 1 or 0, which satisfies the input data flow. The input gate 
is a critical element responsible for identifying and selecting relevant 
information from the current input. It takes both the present input 
and the previous hidden state into account, using them to compute a 
candidate cell state. The decision related to the kind of information to 
be maintained and discarded is the responsibility of the forget gate. It 
achieves this by considering the current input and the previous hidden 
state, ultimately calculating a forget factor. The process of updating the 
cell state involves combining the previous cell state with the candidate 
cell state, with the assistance of the forget gate and input gate. This 
step ensures that the cell state is updated to integrate new information 
while preserving essential past information. The output gate plays a 
pivotal role in deciding which information from the updated cell state 
should be forwarded as the output. Additionally, it is instrumental in 
guiding subsequent cells in a sequence.

The mathematical computation is explained as follows:

Equation (1) compute the output vector ht

 (1)

where ot is output gate vector, Ct is cell state, expressed using 
Equation (2) and Equation (3).

 (2)

 (3)

To adjust the memory cell, at each step the hyperbolic tangent 
(tanh) function is utilized so as to improve the training performance 
which is shown in Equation (4).

 (4)

The values ft and it correspond to the forget gate and input gate, 
respectively. These values are computed using Equation (5) and 
Equation (6).

 (5)

 (6)

Where W represents the weight matrix. Here subscript o, c, i and f 
denotes weight of each gate. LSTM networks have established themselves 
as exceptionally effective technique across an array of applications which 
includes sequential data and time series analysis. Their versatility is 
well-demonstrated in various domains. LSTM plays a crucial role in the 
domain of Natural Language Processing (NLP) which includes machine 
translation using sequence-to-sequence analysis and Google Neural 
Machine Translation (GNMT) models [32]. Moreover, LSTMs are also 
used for text generation tasks, for instance OpenAI’s GPT-2 model to 
craft human-like text [33]. LSTM (Long Short-Term Memory) networks 
are versatile in time series forecasting, proving effective in applications 
such as predicting stock prices [34], [35], oil production [36], weather 
forecasting [37], and Automatic Speech Recognition systems [38] ,Sea 
Surface Temperature Prediction [39], photovoltaic Generation [40] by 
analyzing historical data. They proficiently translate spoken language 
into text, enabling voice-controlled personal assistants like Siri, Google 
Assistant, and Amazon Alexa, accurately. In Healthcare, LSTMs are 
crucial for analyzing and decision making in medical time series data 
such as electrocardiogram (ECG) and electroencephalogram (EEG) 
[41]. In autonomous driving, LSTM networks are effectively employed 
for tasks like vehicle trajectory prediction and object detection [42]. 
Human Activity Recognition (HAR) utilizes LSTM networks in order 
to recognize and classify human activities emerging from sensor data 
located in wearable devices [43]. These examples collectively highlight 
the adaptability of LSTM networks in handling sequential data across a 
diverse range of domains.

III. Data Pre-Processing

Time series information is generally obtained from real world 
environment or data generated from sensors. These data are usually 
affected by instances like noise. A proper method for collecting data 
and the removal of any deficient information should be followed 
before performing any kind of analysis. This is crucial as it will assist in 
making the analysis less challenging and to avoid incorrect analytical 
conclusions. Typically, data obtained from wind farms contains a lot 
of missing values due to sensors malfunctioning. Detecting outliers, 
eliminating noise, and filling in missing values are the three most 
common data pre-processing techniques.

• Detecting outliers: Statistical-based outlier detection methods 
leverage statistical distributions and the relationship of data 
points to these distributions. Parametric methods [44], [45] rely 
on predefined models, while non-parametric methods take a more 
flexible and data-driven approach to identify outliers. Whereas 
density-based [46] outlier detection methods are founded on a 
fundamental principle: outliers tend to reside in regions of low data 
density. Conversely, non-outliers, often referred to as inliners or 
genuine data points, are expected to cluster in dense neighborhoods. 
These methods assess the densities of data points within their 
local contexts, comparing them to the densities of their nearby 
neighbors. Distance-based methods identify outliers by calculating 
distances between data points. Outliers are often defined as data 
points that are significantly distant from their nearest neighbors.

• Eliminating noise: One of the dominant challenges encountered 
in wind farm datasets is the presence of noisy data. This issue can 
be effectively addressed by employing a filter method to extract the 
accurate signal estimation. Among the frequently employed data 
filtering techniques, the most common strategies include frequency 
domain, time-domain and time-frequency domain filtering.

• Missing values: Missing data are common in statistical analyses. 
The imputation function is widely used to identify the missing 
values in a wind farm based on the variables and their relationship. 
Do not use metaphorical expressions.



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº3

- 74 -

The data was normalized before using it in the forecasting system. 
A dataset can be normalized using a variety of methods. The method 
used in this study is known as min-max normalization.

A. Sliding Window
In a multivariate time series, each variable represents an aspect 

of a complex system, and the temporal evolution of these variables 
signifies changes in the underlying system state. To capture the 
interrelationships and temporal dependencies among these variables 
and derive the system’s state over specific periods, we employed a 
sliding window approach with a size of K to segment the multivariate 
time series data. This partitioning technique allows us to analyze the 
data within discrete intervals, facilitating the extraction of meaningful 
insights about the system’s behavior. As illustrated in Fig. 2, for a 
given point in time t, we can establish the sliding window data Wt ∈ 
RMXK, where Wt = {xt-K, ..., xt-1, xt }, M is the dimension of the variable and 
K represent the sliding window size.
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Fig. 2. Sliding Window.

B. RFR Based Imputation Method
Random forest [47] imputation is a machine learning technique 

that offers the advantage of handling nonlinearities and interactions 
within data without necessitating the specification of a specific 
regression model. These methods do not assume normality or require 
specification of parametric models. In this paper random forest method 
has been used for filling missing value. It extends from classification 
and regression trees (CART) [48], which are predictive models that 
iteratively partition the data based on predictor variable values. 
Notably, random forests don’t depend on distributional assumptions 
and can effectively manage nonlinear relationships and interactions in 
the data. The schematic of the Random Forest Imputation framework 
is shown in Fig. 3 The steps involved in the proposed imputation 
approach is explained in Algorithm 1:

SCADA
Dataset

Incomplete Dataset
Dmiss

Complete Dataset
Dcomp

DFinal = Dcomp ∪ Dcompute

Select Ri from Dmiss

Remove Ri from Dmiss

Dataset without missing
Value DFinal

Is Dmiss = 0

Apply Random Forest

Impute Missing Value
using Random Forest

Yes

Fig. 3. RFR Imputation framework.

The effectiveness of the imputation method is evaluated by using 
RMSE and MAE parameters.

Algorithm 1: Random Forest Imputation Algorithm

Data: Data set 𝒟 containing |ℛ| records and |𝒜| attributes.

Result: An imputed dataset 𝒟Final containing |ℛ| records and |𝒜|
attributes.
1    for each record Ri ∈ 𝒟 do
2       if any attribute Ak is missing then
3            𝒟miss = 𝒟miss ∪ Ri ;
4        end
5        else
6             𝒟comp = 𝒟comp ∪ Ri ;
7        end
8    end
9    rfmodel = TrainRandomForest(𝒟comp );
10  while 𝒟miss ≠ ∅ do
11      Ri ← Select an incomplete record from 𝒟miss; 
12      for j = 1, ..., M do
13           if rij = NaN then
14               rij = PredictRFR(rfmodel, Ri );
15               𝒟compute = 𝒟compute ∪ Aj ;
16           end
17      end
18  end
19  𝒟Final = 𝒟comp ∪ 𝒟compute;
20  return 𝒟Final

TABLE II. Details of Dataset Used in the Experiment

Data Source Attribute Specifications Resolution Capacity No. of records

Sotavento wind farm Wind speed, wind direction and wind 
power

10-minute, 1-hour, 1-day, 
Data from 2014 to till date

17560kW 52568 records with 3 
attributes

Yalova Wind Farm Active power, Theoretical power, 
Wind speed, Wind direction

10 min period 1 January 
2018 to 31 December 2018

54000kW 50530 records with 4 
attribute
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C. Dataset
The characteristics of the two datasets include data instances, 

attributes, capacity, resolution, and record count which are detailed 
in Table II.

1. Sotavento Wind Farm
This dataset is from the Sotavento wind farm in Galicia, Spain with a 

total capacity of 17560 kW which consists of 24 onshore turbines. This 
wind farm gives real-time information on wind direction, wind speed 
and turbine’s power generation. This paper uses five years data from 
2014-2019 to test the proposed forecast model. The resolution of the data 
is hourly. Some attribute of this dataset has missing value. Wind power 
and wind speed is having 756 and 500 missing values respectively. 
Pre-processing strategies with deep learning methods are combined to 
evaluating the effectiveness of pre-processing. Two approaches have 
been used while performing experimentation, first is simply removing 
missing value and second approach is to use RFR imputer.

2. Yalova Wind Farm
The Yalova Wind Farm (YWF) situated in western Turkey records 

wind related information such as wind speed, wind direction, turbine 
power (theoretical) and generated. YWF possess a total capacity 
of 54,000 kW, obtained from 36 wind turbines. The wind generated 
information is collected and reserved utilizing a Supervisory Control 
and Data Acquisition (SCADA) system. Here the data is recorded at an 
interval of 10 minutes. The format of the data available is CSV.

IV. Proposed Model

Fig. 4 shows the proposed architecture. For the experimentation 
purpose two datasets are used, first is from Sotavento wind farm 
in Galicia and second from Yalova Wind in west Turkey. Data pre-

processing is done on both the dataset as described in Section III. The 
dataset is partitioned into training and testing samples by employing 
70:30 ratio. The model is trained on train set using stacked LSTM. In 
order to improve the accuracy of WPF, various network structures, 
along with different numbers of layers and neurons in each layer, 
are tested. Min-Max scaling function is employed to scale the input 
features before applying to the deep learning models. Min-Max scalar 
is expressed by Equation (7) as,

 (7)

A. Stacked LSTM
A stacked LSTM is a neural network architecture that comprises 

multiple LSTM layers, creating a multi-layer structure, as illustrated in 
the Fig. 5. Incorporating multiple LSTM layers increases the model’s 
complexity and depth. In this composite LSTM structure, each output 
layer of the LSTM model serves as input to subsequent layers within 
the same block. This design allows the model to capture the temporal 
patterns in the data and combine the learned representations from 
previous layers, resulting in a higher-level abstraction in the final 
output. Each intermediate LSTM layer produces a sequence vector as 
its output, which serves as the input for the next LSTM layer. Unlike 
a single-output LSTM, the stacked LSTM provides an output for 
each timestamp. Equations (8) to Equations (13) illustrate Nth layer of 
unrolled stacked LSTM.

 (8)

 (9)

 (10)

 (11)
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 (12)

 (13)

A stacked LSTM neural network outperform a regular LSTM due 
to its increased capacity and ability to capture more complex patterns 
in the data. Here are some reasons why a three-layer LSTM could 
outperform a regular LSTM:

• Hierarchical Feature Extraction: A stacked LSTM network has 
an additional layer to extract hierarchical features from the data. 
This allows it to learn abstract representations of the input data 
at different levels of granularity. The first layer can capture low-
level features, the second layer can capture mid-level features, and 
the third layer can capture high-level features. This hierarchical 
feature extraction can make the network more effective at 
capturing complex patterns.

• Increased Capacity: The additional layer in a stacked LSTM 
increases the network’s capacity to learn and represent data. It 
can model more intricate relationships and dependencies within 
the data, which is particularly useful for tasks involving long 
sequences or complex temporal dependencies.

• Improved Generalization: A deeper network, such as a three-
layer LSTM, can sometimes generalize better to unseen data. 
While a deeper network has the potential to overfit the training 
data, appropriate regularization techniques (e.g., dropout) can help 
mitigate this risk. With proper regularization, a three-layer LSTM 
can learn to generalize well to new, unseen examples.

• Better Representation Learning: The stacked architecture 
allows for more sophisticated representation learning. Each layer 
can transform the input data into a more meaningful representation. 
This can be especially advantageous for tasks where the input data 
is complex or contains multiple levels of abstraction.

B. Cross-Validation
In this experiment we used rolling cross-validation method. It 

begin with a small initial subset of the data for training. Then, make 
forecasts for the subsequent data points and assess the accuracy of 
these forecasts. Importantly, the data points that were forecasted 
are subsequently incorporated into the training dataset for the next 
iteration. This process is repeated, allowing for the inclusion of 
previously forecasted data points in each subsequent training dataset, 
while forecasting the remaining data points. Rolling cross-validation 
provides a robust means of evaluating the performance of time-series 

models by continuously expanding the training dataset while testing 
against new, unseen data points. The experiment is performed on 
5-fold-cross-validation as shown in Fig. 6.

Data

Data

Data

Data

Train Test

Test

Test

Test

Train

Train

Train

Fig. 6. Rolling cross-validation.

C. Evaluation Criteria
MAE and RMSE are selected for comprehensive and quantitative 

evaluation of prediction performance. RMSE and MAE represent 
absolute time series error and the scale is same as the data. A decrease 
in MAE and RMSE values signifies a reduction in model error residuals, 
indicating a higher level of accuracy in the prediction model. MAE and 
RMSE are expressed by Equation (14) and Equation (15) as,

 (14)

 (15)

where n is the total number of the predicted values  and yt is the 
actual value.

V. Experimental Analysis

In this section, results of proposed stacked LSTM on Sotavento 
and Yalova wind farm dataset are discussed. The proposed model is 
implemented using Python 3.10 employing Keras library. The loss 
function for LSTM was defined as the mean squared error, and the 
optimization method used was ’ADAM’. The dataset is partitioned into 
training and testing phases. Here the presented model follows training 
and testing ratio of 70:30. The performance of the forecasting models 
is assessed using RMSE and MAE.

A. Sotavento Wind Farm
In order to construct a stacked LSTM, trial and error method is 

used to select the size of the input layer and output layers. For that, 
experiments have been conducted on LSTM networks with 1 to 4 
hidden layers, and the best LSTM network with the smallest MAE and 
RMSE has been selected.

The model with the structure "16-16-16-1" works best. The 
proposed stacked LSTM shows a comparatively lesser MAE and 
RMSE values as depicted in Table III. When fourth layer is added, 
MAE and RMSE value start increasing because of number of 
parameters. It is also observed that when the missing values are 
imputed with the help of RFR, the performance is improved in every 
case as shown in Fig. 7b and Fig. 8b. Only for single layer it has 
slightly increases.

LSTM Cell LSTM Cell

Dropout Layer

LSTM Cell

LSTM Cell LSTM Cell LSTM Cell

Dropout Layer

Dropout Layer

Dense Layer with 1 unit

LSTM Cell LSTM Cell LSTM Cell

Fig. 5. Detail three-layer LSTM architecture.
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TABLE III. MAE and RMSE Value of Sotavento Wind Farm

No. of
Layers

No. of
Neurons

Removing
NA records

Missing value 
imputation using RFR

MAE RMSE MAE RMSE

1

8

1.17 1.89 1.46 2.11

2 1.14 1.83 1.13 1.84

3 1.1 1.83 1.09 1.82

4 1.13 1.82 1.12 1.81

1

16

1.16 1.88 1.1 1.85

2 1.17 1.88 1.15 1.86

3 1.1 1.81 1.1 1.81

4 1.1 1.82 1.14 1.83

1

32

1.19 1.88 1.19 1.87

2 1.19 1.84 1.15 1.88

3 1.2 1.81 1.13 1.81

4 1.11 1.82 1.32 1.85

B. Yalova Wind Farm
Yalova Wind Farm dataset does not contain any missing value or 

outliers. The dataset is a clean dataset so it is directly divided into 
train and test set. From the experimental results shown in Table IV 
it is observed that the prediction performance decreases along with 
increase of amount of layers. The MAE and RMSE values for each 

model are plotted in Fig. 9. The graph shows that architecture with 3 
layers and 16 neurons provides the smallest error value compared to 
other architectures. The minimum MAE of this architecture is 164.35, 
and the RMSE is 341.92. Therefore, the structure of "16-16-16-1" is 
selected as the optimal model.

TABLE IV. MAE and RMSE Value of Sotavento Wind Farm

No. of
Layers

No. of
Neurons

Removing
NA records

MAE RMSE

1

8

186.63 353.44

2 168.97 340.87

3 173.54 345

4 175.82 345.77

1

16

180.96 349.15

2 170.38 340.99

3 164.35 341.92

4 168.15 341.57

1

32

182.88 349

2 182.98 354.92

3 164.89 341.97

4 171.34 343.21

(a) RMSE value a�er removing NA
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C. Comparative Analysis
To verify the proposed models accuracy, four models including 

Multiple linear regression, VAR, GRU, BiLSTM are employed to conduct 
WPF of two wind farms. Table V shows the comparison results between 
proposed models and benchmark models. For regression model, the 
input is a multivariate time series of length ten (corresponding to 10 
hours) and output is a real number corresponding to the next hour into 
the future. An input and hidden layers contain 16 neurons. Where as 
an output layer contains one neuron. The total number of epochs is 
100, batch size is 64, and training rate is 0.001.

On the Yalova wind farm test dataset, the VAR model produces 
significantly higher MAE (995.09 and 1006.24) compared to the 3-layer 
stacked LSTM. This difference can be attributed to the VAR model’s 
limitation in handling stationary time series data effectively. When we 
utilize the GRU model, the MAE increases by 0.07 and 25.04, and the 
RMSE increases by 0.05 and 7.28 for the Sotavento wind farm and Yalova 
Wind Farm, respectively, in comparison to the three-layer Stacked 
LSTM. The stacked LSTM model has much better performance than 
the baseline model, since it can capture longer temporal dependencies. 
Fig. 10a and Fig. 11a present graphical representations illustrating the 
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predictions achieved by the five regressors for Sotavento Wind Farm 
and Yalova Wind Farm, respectively. The test result shows that, the 
proposed method is more robust and effective than the other five WPF 
methods. The fundamental reason for this is because the proposed 
method is based on the LSTM, which, due to the presence of self-
feedback connections, is suited and successful in modelling time-series 
data. Subsequently, Fig. 10b and Fig. 11b provide a detailed view of the 
experiment. The detailed view shows the clarity of the improvements 
in measurements.

TABLE V. Comparative Analysis of RFR-Based Stacked LSTM

No.of Layers

Imputing Missing 
values using RFR Yalova Wind Farm

MAE RMSE MAE RMSE

Multiple Linear Regression 1.36 1.98 404.56 521.71

VAR 2.9 3.61 1159.44 1348.16

GRU 1.17 1.86 189.39 349.2

BiLSTM 1.75 2.28 180.44 342.94

Stacked LSTM 1.1 1.81 164.35 341.92

VI. Conclusion

Wind power is an essential area in renewable energy generation. 
This paper talks about the WPF utilizing a time series data acquired 
from wind mill. Here, the wind power is predicted effectively by 
employing the proposed stacked LSTM model. At first, utilizing 
two approaches such as removing missing values and RFR the input 
information is pre-processed. It is observed that the accuracy of the 
proposed model significantly increases when RFR is used for data 
imputation. It is followed by a 3-layer LSTM model referred as stacked 
LSTM to perform the task of WPF. From experimentation, it is observed 
that the proposed model achieved an average accuracy of 94.01% which 
is greater than the state-of-the-art approaches. The performance of the 
proposed model is evaluated using two error metrics such as MAE 
and RMSE. In addition, it is also observed that addition of a fourth 
layer slightly decreases the accuracy due to increased complexity. It 
is discovered from the analysis that the proposed model consistently 
outperformed other methods in terms of error. The proposed stacked 
LSTM model which is built on conventional LSTM, effectively 
captures the complex hidden patterns and changes in wind power 
output with respect to time due to its memory units and recurrent 
design. However, time required for training the data is comparatively 
high. Also, the performance of the proposed stacked LSTM requires 
large amount of data. In addition, finding an optimal hyperparameters 
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is challenging and will require extensive experimentation.

This model can further be improved using a deep BiLSTM network. 
BiLSTMs are computationally more intensive than unidirectional 
LSTMs because they process the data in both directions. Furthermore, 
pre-processing methods which depict time-frequency analysis can be 
explored. Further research into the model’s scalability, transferability to 
other contexts, and incorporation of additional relevant improvements 
could help in maximizing its practical and real time applications.

Acknowledgment

The authors wish to extend their appreciation to the Faculty 
Development Centre (VJTI-DBATU) focused on Geoinformatics, 
Spatial Computing, and Big Data Analytics. This center, established 
under the auspices of PMMMNMTT, MHRD, Government of India, 
New Delhi, has been involved in enhancing capacity in various fields, 
including Geoinformatics, AI & Machine Learning, Deep Learning, 
Big Data Analytics, and related domains. Their support has been 
invaluable in advancing our research in this study.

References

[1] S. K. Kim and S. Park, “Impacts of renewable energy on climate 
vulnerability: A global perspective for energy transition in a climate 
adaptation framework,” Science of The Total Environment, vol. 859, pp. 
160175, Feb. 2023, doi: 10.1016/J.SCITOTENV.2022.160175.

[2] S. M. H. D. Perera, G. Putrus, M. Conlon, M. Narayana, and K. Sunderland, 
“Wind Energy Harvesting and Conversion Systems: A Technical Review,” 
Energies, vol. 15, no. 24, p. 1-34, 2022.

[3] T. M. Giannaros, D. Melas, I. Ziomas, “Performance evaluation of the 
Weather Research and Forecasting (WRF) model for assessing wind 
resource in Greece,” Renewable Energy, vol. 102, pp. 190–198, 2017.

[4] C. Liu, X. Zhang, S. Mei, Z. Zhen, M. Jia, Z. Li, H. Tang, “Numerical 
weather prediction enhanced wind power forecasting: Rank ensemble 
and probabilistic fluctuation awareness,” Applied Energy, vol. 313, p. 
118769, 2022.

[5] S. Kumari, S. Sreekumar, S. Singh, D. P. Kothari, “Comparison Among 
ARIMA, ANN, and SVR Models for Wind Power Deviation Charge 
Reduction,” in 2022 International Conference on Machine Learning, Big 
Data, Cloud and Parallel Computing (COM-IT-CON), vol. 1, 2022, pp. 
551–557, IEEE.

[6] F. Yao, W. Liu, X. Zhao, L. Song, “Integrated Machine Learning and 
Enhanced Statistical Approach-Based Wind Power Forecasting in 
Australian Tasmania Wind Farm,” Complexity, vol. 2020, 2020, doi: 
10.1155/2020/9250937.

[7] Z. Wu, G. Luo, Z. Yang, Y. Guo, K. Li, Y. Xue, “A comprehensive review 
on deep learning approaches in wind forecasting applications,” CAAI 
Transactions on Intelligence Technology, vol. 7, no. 2, pp. 129–143, 2022.

[8] Y. Wang, R. Zou, F. Liu, L. Zhang, Q. Liu, “A review of wind speed and 
wind power forecasting with deep neural networks,” Applied Energy, vol. 
304, p. 117766, 2021.

[9] H. Zhen, D. Niu, M. Yu, K. Wang, Y. Liang, and X. Xu, “A Hybrid 
Deep Learning Model and Comparison for Wind Power Forecasting 
Considering Temporal-Spatial Feature Extraction,” Sustainability, vol. 12, 
no. 22, pp. 9490, May 2020, doi: 10.3390/SU12229490.

[10] K.-S. Chen, K.-P. Lin, J.-X. Yan, and W.-L. Hsieh, “Renewable Power 
Output Forecasting Using Least-Squares Support Vector Regression 
and Google Data,” Sustainability, vol. 11, no. 11, pp. 3009, May 2019, doi: 
10.3390/SU11113009.

[11] J. Zhou, X. Yu, and B. Jin, “Short-Term Wind Power Forecasting: 
A New Hybrid Model Combined Extreme-Point Symmetric Mode 
Decomposition, Extreme Learning Machine and Particle Swarm 
Optimization,” Sustainability, vol. 10, no.9, pp. 3202, May 2018, doi: 
10.3390/SU10093202.

[12] B. Xiong, L. Lou, X. Meng, X. Wang, H. Ma, Z. Wang, “Short-term wind 
power forecasting based on Attention Mechanism and Deep Learning,” 
Electric Power Systems Research, vol. 206, 2022.

[13] L. Ye, B. Dai, M. Pei, P. Lu, J. Zhao, M. Chen, B. Wang, “Combined 
approach for short-term wind power forecasting based on wave division 
and Seq2Seq model using deep learning,” IEEE Transactions on Industry 
Applications, vol. 58, no. 2, pp. 2586–2596, 2022.

[14] A. Alkesaiberi, F. Harrou, Y. Sun, “Efficient wind power prediction using 
machine learning methods: A comparative study,” Energies, vol. 15, no. 
7, p. 2327, 2022.

[15] J. Jamii, M. Mansouri, M. Trabelsi, M. F. Mimouni, W. Shatanawi, 
“Effective artificial neural network- based wind power generation and 
load demand forecasting for optimum energy management,” Frontiers in 
Energy Research, vol. 10, 2022.

[16] D.-D. Yuan, M. Li, H.-Y. Li, C.-J. Lin, B.-X. Ji, “Wind power prediction 
method: Support vector regression optimized by improved jellyfish 
search algorithm,” Energies, vol. 15, no. 17, p. 6404, 2022.

[17] X. Shi, X. Lei, Q. Huang, S. Huang, K. Ren, Y. Hu, “Hourly Day-Ahead 
Wind Power Prediction Using the Hybrid Model of Variational Model 
Decomposition and Long Short-Term Memory,” Energies 2018, Vol. 11, 
Page 3227, vol. 11, p. 3227, may 2018, doi: 10.3390/EN11113227.

[18] K. Qu, G. Si, Z. Shan, X. Kong, X. Yang, “Short- term forecasting for 
multiple wind farms based on transformer model,” Energy Reports, vol. 
8, pp. 483–490, 2022.

[19] E. G. S. Nascimento, T. A. de Melo, D. M. Moreira, “A transformer-based 
deep neural network with wavelet transform for forecasting wind speed 
and wind energy,” Energy, vol. 278, pp. 127–678, 2023.

[20] A. Lagos, J. E. Caicedo, G. Coria, A. R. Quete, M. Martz’zinez, G. Suvire, 
J. Riquelme, “State-of-the- Art using bibliometric analysis of Wind-Speed 
and- Power forecasting methods applied in power systems,” Energies, vol. 
15, no. 18, p. 6545, 2022.

[21] A. Tascikaraoglu, M. Uzunoglu, “A review of combined approaches for 
prediction of short-term wind speed and power,” 2014, doi: 10.1016/j.
rser.2014.03.033.

[22] E. López, C. Valle, H. Allende, E. Gil, H. Madsen, “Wind Power Forecasting 
Based on Echo State Networks and Long Short-Term Memory,” Energies 
2018, Vol. 11, Page 526, vol. 11, p. 526, may 2018, doi: 10.3390/EN11030526.

[23] F. Shahid, A. Zameer, A. Mehmood, M. A. Z. Raja, “A novel wavenets long 
short term memory paradigm for wind power prediction,” Applied Energy, 
vol. 269, pp. 115098, may 2020, doi: 10.1016/J.APENERGY.2020.115098.

[24] J. F. Toubeau, P. D. Dapoz, J. Bottieau, A. Wautier, Z. D. Grève, F. Vallée, 
“Recalibration of recurrent neural networks for short-term wind power 
forecasting,” Electric Power Systems Research, vol. 190, pp. 106639, may 
2021, doi: 10.1016/J.EPSR.2020.106639.

[25] Z. Sun, M. Zhao, “Short-Term Wind Power Forecasting Based on VMD 
Decomposition, ConvLSTM Networks and Error Analysis,” IEEE Access, 
vol. 8, pp. 134422– 134434, 2020, doi: 10.1109/ACCESS.2020.3011060.

[26] S. Siami-Namini, N. Tavakoli, A. S. Namin, “A Comparison of ARIMA and 
LSTM in Forecasting Time Series,” Proceedings - 17th IEEE International 
Conference on Machine Learning and Applications, ICMLA 2018, pp. 1394–
1401, may 2019, doi: 10.1109/ICMLA.2018.00227.

[27] H. S. Dhiman, P. Anand, D. Deb, “Wavelet transform and variants of SVR 
with application in wind forecasting,” Advances in Intelligent Systems and 
Computing, vol. 757, pp. 501–511, 2019, doi: 10.1007/978-981-13-1966-245.

[28] Y. Zhang, J. Le, X. Liao, F. Zheng, Y. Li, “A novel combination forecasting 
model for wind power integrating least square support vector machine, 
deep belief network, singular spectrum analysis and locality- sensitive 
hashing,” Energy, vol. 168, pp. 558–572, may 2019, doi: 10.1016/J.
ENERGY.2018.11.128.

[29] S. Han, Y. Liu, J. Li, “Wind power combination prediction based on the 
maximum information entropy principle,” 2012. [Online]. Available: 
https://ieeexplore.ieee.org/document/6321153.

[30] M. I. A. A. Khalaf, J. Q. Gan, “Deep classifier structures with autoencoder 
for higher-level feature extraction,” IJCCI 2018 - Proceedings of the 10th 
International Joint Conference on Computational Intelligence, pp. 31–38, 
2018, doi: 10.5220/0006883000310038.

[31] C. Fu, G.-Q. Li, K.-P. Lin, and H.-J. Zhang, “Short-Term Wind Power 
Prediction Based on Improved Chicken Algorithm Optimization Support 
Vector Machine,” Sustainability, vol. 11, pp. 512, May 2019, doi: 10.3390/
SU11020512.

[32] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. 
Krikun, Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural machine 
translation system: Bridging the gap between human and machine 



Regular Issue

- 81 -

translation,” arXiv preprint arXiv:1609.08144, 2016.
[33] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., 

“Language models are unsupervised multitask learners,” OpenAI blog, 
vol. 1, no. 8, pp. 9, 2019.

[34] J. Shah, D. Vaidya, and M. Shah, “A comprehensive review on multiple 
hybrid deep learning approaches for stock prediction,” Intelligent Systems 
with Applications, vol. 16, 2022, https://doi.org/10.1016/j.iswa.2022.200111.

[35] R. K. Behera, S. Das, S. K. Rath, S. Misra, R. Damasevicius, “Comparative 
study of real time machine learning models for stock prediction through 
streaming data.,” The Journal of Universal Computer Science, vol. 26, no. 
9, pp. 1128–1147, 2020.

[36] A. M. AlRassas, M. A. Al-qaness, A. A. Ewees, S. Ren, M. Abd Elaziz, 
R. Damaševičius, T. Krilavičius, “Optimized anfis model using aquila 
optimizer for oil production forecasting,” Processes, vol. 9, no. 7, p. 1194, 
2021.

[37] B. Y. El-Habil, S. S. Abu-Naser, “Global climate prediction using deep 
learning,” Journal of Theoretical and Applied Information Technology, vol. 
100, no. 24, 2022.

[38] J. Oruh, S. Viriri, A. Adegun, “Long short-term memory recurrent neural 
network for automatic speech recognition,” IEEE Access, vol. 10, pp. 
30069– 30079, 2022.

[39] D. Chen, J. Wen, C. Lv, “A spatio-temporal attention graph convolutional 
networks for sea surface temperature prediction,” International Journal of 
Interactive Multimedia and Artificial Intelligence, vol. 8, pp. 64–72, 2023, 
doi: https://doi.org/10.9781/ijimai.2023.02.011.

[40] M. Martínez-Comesaña, J. Martínez-Torres, P. Eguía- Oller, J. López-
Gómez, “Use of optimised lstm neural networks pre-trained with 
synthetic data to estimate pv generation,” International Journal of 
Interactive Multimedia and Artificial Intelligence, vol. 8, pp. 1–10, 2023, 
doi: https://doi.org/10.9781/ijimai.2023.11.002.

[41] M. Roy, S. Majumder, A. Halder, U. Biswas, “Ecg-net: A deep lstm 
autoencoder for detecting anomalous ecg,” Engineering Applications of 
Artificial Intelligence, vol. 124, 2023.

[42] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, 
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end learning 
for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.

[43] F. J. Ordóñez, D. Roggen, “Deep convolutional and lstm recurrent neural 
networks for multimodal wearable activity recognition,” Sensors, vol. 16, 
no. 1, pp. 115, 2016.

[44] H. N. Akouemo, R. J. Povinelli, “Data improving in time series using ARX 
and ANN models,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 
3352– 3359, 2017.

[45] F. Harlé, F. Chatelain, C. Gouy-Pailler, S. Achard, “Bayesian model for 
multiple change-points detection in multivariate time series,” IEEE 
Transactions on Signal Processing, vol. 64, no. 16, pp. 4351–4362, 2016.

[46] O. Alghushairy, R. Alsini, T. Soule, X. Ma, “A review of local outlier 
factor algorithms for outlier detection in big data streams,” Big Data and 
Cognitive Computing, vol. 5, no. 1, 2020.

[47] M. Galphade, V. Nikam, B. Banerjee, A. Kiwelekar, “Intelligent 
multiperiod wind power forecast model using statistical and machine 
learning model,” Bulletin of Electrical Engineering and Informatics, vol. 11, 
pp. 1186–1193, may 2022, doi: 10.11591/EEI.V11I3.3756.

[48] T. Carpenito, J. Manjourides, “MISL: Multiple imputation by super 
learning,” Statistical methods in medical research, vol. 31, no. 10, pp. 1904–
1915, 2022.

Manisha Galphade

Manisha Galphade is Bachelor, and Masters in Engineering 
(Computer Science and Engineering) pursuing PhD 
in Computer Department of VJTI. She has 14 years 
of teaching experience. Her research interest includes 
Machine Learning, Deep learning, GIS, Geospatial 
Analysis, Weather Predictions, Wind Power Prediction 
Modelling, Data mining.

Dr. Arvind W. Kiwelekar

Dr. Arvind W. Kiwelekar Professor in Computer Science, 
Dr. B. A. Technological University Lonere has done Ph. D. 
from Indian Institute of Technology, Mumbai. He has 26 
years of experience. His research interest includes Software 
Engineering, Software Architecture, Applied
Artificial Intelligence and Ontology.

Dr V.B.Nikam

Dr V. B. Nikam Associate Professor, Computer Engg & 
IT,VJTI Mumbai, has done Bachelors,Masters and PhD in 
Computer Engineering.He has 25 yrs experience, guided 
50+ PG,25+ UG projects,and Supervised 4 PhDs. He 
was felicitated with IBM TGMC-2010 DRONA award 
by IBM Academic initiatives. He is Senior Member 
(CSI),Senior Member (IEEE), Senior Member (ACM). 

He worked onBARC ANUPAM Supercomputer. He was invited to JAPAN 
for a K-Supercomputer study tour in 2013. He has received a grant-in-aid 
from NVIDIA for CUDA Teaching and Research,2013.Presently,he is PI & 
Coordinator, Faculty Development Center (Geo-informatics, Spatial Computing 
and BigData Analytics) funded by MHRD, Govt of India. He works in the area 
of Data Mining and Data Warehousing, Machine Learning, Geoinformatics,Big 
Data Analytics, Geo-Spatial Analysis,Cloud Computing, GPUHigh Performance 
Computing. You may visit his webpage www.drvbnikam.in.

Dr. Priyanka Sharma

Dr Priyanka Sharma has 24 years of experience that spans 
both Industry and Academia, she specialize in leading AI 
and Data Analytics based application development and 
integrated solution design for various inter-disciplinary 
domains. She is a NVIDIA DLI Ambassador and have 
trained more than 3000 professionals through NVIDIA Led 
hands-on training programs on Deep Learning, Computer 

Vision, Natural Language Processing and CUDA Programming. She has also 
been associated with other international firms as Corporate Trainer apart from 
being a passionate academician and professor in CSE Department, Nirma 
University. She has published more than 55 research papers in International 
Journal, Books and Conferences in the domain of Artificial Intelligence and 
Deep Learning. She was earlier Principal Investigator/Collaborator of NVIDIA 
Research Center at Nirma University and several other research projects funded 
under Shastri

Dr. Biplab Banerjee

Dr. Biplab Banerjee received the M.E. (Computer Science 
and Engineering) from Jadhavpur University, Kolkata, and 
Ph.D. in Satellite Image Analysis from the Indian Institute 
of Technology Bombay, Mumbai, India. Dr. Banerjee 
received the Excellence in Ph.D. Thesis Award for his 
Ph.D. thesis from the IIT Bombay. He is Postdoctoral 
Researcher at the University of Caen Basse-Normandy, 

France and the Istituto Italiano di Technologia Genova, Italy. He is engaged 
in many research projects including international collaborated projects. His 
interests include computer vision and machine learning. Dr Biplab currently 
supervising 9 PhD students, and has guided more than 25 MTech thesis so far. 
He is reviewer for IEEE journals, and Transactions in Image Processing, Applied 
Earth Observations and Remote Sensing, Neural Computing & Applications 
(Springer), Journal of Indian Society of Remote Sensing (Springer), Computer 
Vision and Image Understanding (Elsevier). He is Member of IEEE. Indo-
Canadian Research Grants, Board of Research in Nuclear Sciences – Department 
of Atomic Energy, Vishveshwarya PhD Scheme, Institute for Plasma Research, 
GUJCOST-DST and many other MNCs.


