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Abstract

In real-world situations, researchers frequently face the difficulty of missing values (MV), i.e., values not 
observed in a data set. Data imputation techniques allow the estimation of MV using different algorithms, by 
means of which important data can be imputed for a particular instance. Most of the literature in this field 
deals with different imputation methods. However, few studies deal with a comparative evaluation of the 
different methods as to provide more appropriate guidelines for the selection of the method to be applied 
to impute data for specific situations. The objective of this work is to show a methodology for evaluating 
the performance of imputation methods by means of new metrics derived from data mining processes, 
using quality metrics of data mining models. We started from the complete dataset that was amputated with 
different amputation mechanisms to generate 63 datasets with MV; these were imputed using Median, k-NN, 
k-Means and Hot-Deck imputation methods. The performance of the imputation methods was evaluated 
using new metrics derived from quality metrics of the data mining processes, performed with the original full 
file and with the imputed files. This evaluation is not based on measuring the error when imputing (usual 
operation), but on considering the similarity of the values of the quality metrics of the data mining processes 
obtained with the original file and with the imputed files. The results show that –globally considered and 
according to the new proposed metric, the imputation methods that showed the best performance were k-NN 
and k-Means. An additional advantage of the proposed methodology is that it provides predictive data mining 
models that can be used a posteriori.
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I. Introduction

MVS (Missing Values) introduce an element of ambiguity in data 
analysis. They can affect the properties of statistical estimators 

such as mean, variance or percentages, resulting in a loss of power 
and false conclusions. Data imputation is an alternative to deal 
with MV. Most of the published work in this field deals with the 
development of new imputation methods. However, few studies report 
a comprehensive evaluation of existing methods to provide guidelines 
to make the most appropriate methodological choice in practice [1].

The literature proposes two  general approaches to dealing with 
MVs [2]. In the simplest case, they are omitted. A second option is 
to use imputation techniques and, from the complete data, estimate 
them using different algorithms, whereby an important feature can be 
imputed for a particular instance [3].

A classical approach to performance evaluation of imputation 
methods is described in [4].

Other works have proposed the use of machine learning (ML) 
algorithms as imputation methods [5]. These techniques are based 
on building a predictive model to estimate missing data based on the 
available values in the dataset [6]. In [5], the suitability of supervised 
(classification) and unsupervised (clustering) learning algorithms for 
imputation is studied. ML algorithms such as decision trees (DT), 
k-Nearest Neighbors (k-NN), k-Means Clustering and Bayesian 
Networks have been used as imputation methods in different domains 
[5], [6], [7], [8], [9], [10].

In this work, a continuation of [11], we do not propose the use of 
ML and data mining (DM) algorithms to impute. We rather propose 
an innovative criterion to evaluate the performance of imputation 
methods (IM), in this case Medians, k-NN, k-Means and Hot-
Deck, using the value of quality indicator metrics of a data mining 
model (DMM) obtained through data mining processes (DMP). The 
polynomial regression technique was used to create predictive DMMs.
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We use the criterion of highest similarity between the results of the 
data mining processes using the original dataset (with complete data) 
and the imputed datasets after being amputated. New specific metrics 
were defined from the values of the metrics obtained by the DMPs.

We used the original “Iris” data set and 252 data sets imputed after 
amputation.

Quality, accuracy (precision) and classification metrics were 
considered as indicators of DMM quality [12].

The article is organized as follows: the Data Mining (DM) concept 
review section introduces the main algorithms and model evaluation 
metrics, the Materials and methods section describes the datasets, 
the data mining algorithm and the quality indicator metrics used, the 
Results and discussions section discusses and compares them in detail, 
and concludes with Conclusions, Future work, Acknowledgements 
and References. 

II. Review of Data Mining Concepts (DM)

Historically, the notion of discovering hidden patterns in data 
has been given a variety of names including data mining (DM) and 
knowledge discovery (KDD: Knowledge Discovery in Databases). 
KDD refers to the general process of discovering useful knowledge 
from data.  KDD is the application of specific algorithms to extract 
patterns from data. DM is a stage within the general KDD process that 
refers to the algorithmic means by which patterns are extracted and 
enumerated from data [13].

The generation of a DMM is part of a larger process that includes 
from the formulation of questions about the data and the creation 
of a model to answer them, to the implementation of the model in 
a working environment. In a broad sense, DMP can be defined by 
the following basic steps: data acquisition, preprocessing, model 
generation, evaluation, and exploitation [14].

In addition, DMP is cyclical in nature, meaning that the generation 
of a DMM is a dynamic and iterative process [15], [16].

A. Generation of DM Models
In practice, the two main objectives of DM, prediction and 

description, can be achieved by using a variety of methods [17].

Predictive methods include supervised learning techniques 
such as classification and regression. Descriptive methods include 
unsupervised learning techniques such as clustering, association rules 
or sequence discovery [12].

A DM algorithm is a set of calculations and heuristic rules that 
allows the creation of a DMM from data. To create a model, the 
algorithm first analyzes the data provided, looking for specific types 
of patterns or trends. The algorithm uses the results of this analysis to 
define the optimal parameters for creating the DMM. These parameters 
are then applied across the entire dataset to extract actionable patterns 
and detailed statistics [14].

The most common classification techniques include tree algorithms 
and decision rules, Bayesian classifiers, nearest neighbor-based 
classifiers, logistic regression, support vector machines (SVM) and 
artificial neural networks (ANN) [12], [15], [18].

The most common regression techniques include linear regression 
algorithms (simple and multiple), polynomial and weighted local 
regression, regression trees, SVM for regression and ANN [19], [12], [18].

In general, the main clustering algorithms include partitioning, 
hierarchical, distance-based and mesh-based methods [15].

The performance evaluation of a DMM is probably the most critical 
step in the entire DMP [16].

 The quality of classification models is often assessed by the 
classification accuracy and the confusion matrix [18].

In regression problems, measures are based on the difference 
between the true value and the value predicted by the model [18].

III. Materials and Methods

This section describes the procedure followed to evaluate the 
performance of four imputation methods (IM): Medians, k-NN, 
k-Means and Hot-Deck, using the values of quality, accuracy 
(precision) and classification metrics obtained through data mining 
processes, using polynomial regression models to classify the “Iris” 
plant type.

A. Data Mining
IBM InfoSphere Warehouse (ISW) V.9.7 software was used, which 

includes, among others, tools (Intelligent Miner, Design Studio, etc.), 
for the creation, interpretation, and evaluation of DMM [20].

The original “Iris” data set and 252 imputed “Iris” data sets, obtained 
from imputing by Mean, k-NN, k-Means and Hot-Deck IM the 
amputated data sets in the 63 combinations of mechanisms, patterns 
and MV percentages, as thoroughly detailed in [11], were used.

In the DM stage, the techniques to be used were selected and the 
corresponding mining flows were created, in which the respective 
algorithms were parameterized.

The polynomial regression technique was considered. Its objective 
is to predict the numerical value of the dependent variable on known 
values thus creating models that can then be used to predict new or 
unknown values.

For the analysis of results, the “Iris” data set was considered, 
corresponding to the plant species of the same name. The type of plant 
was selected as the objective variable t and the width and length of 
petals and sepals as independent variables, as presented in Table I.

TABLE I. “Iris” Correlation Matrix [11]

sepal.
length

sepal.
width

petal.
length

petal.
width class

sepal.
length 1.0000 -0.1777 0.8774 0.8288 0.7885

sepal.
width -0.1777 1.0000 -0.4434 -0.3549 -0.4320

petal.
length 0.8774 -0.4434 1.0000 0.9619 0.9462

petal.
width 0.8288 -0.3549 0.9619 1.0000 0.9526

class 0.7885 -0.4320 0.9462 0.9526 1.0000

In Design Studio, DMPs are performed by creating and executing 
DM flows. The design of a flow includes, at a minimum, an input table 
operator, and a DM operator specific to the DM technique being used. 
Additionally, most flows include one or more output operators, such 
as the visualization operator that presents the value of the metrics to 
evaluate the obtained model [20].

The DM flow used to perform the DMP has the following structure: 
The <Source Table> operator defines the data set, which in this case 
consists of one record for each sample of the “Iris” plant file, composed 
of the four predictor attributes and the target attribute described 
in Table I. The <Predictor> operator executes the indicated DM 
algorithm (polynomial regression) and sends the obtained DMM to 
the <Visualizer> operator, which finally presents the information to 
evaluate the DMP result.
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The model quality metrics, which range from 0 to 1, are presented 
by the Design Studio viewer operator, and considered to evaluate the 
quality of the DMM obtained in each of the DMPs: i) model quality, ii) 
accuracy (precision) and iii) classification [12].

Model quality compares the model’s predictive performance with 
the predictive performance of a trivial model that always returns the 
mean of the target attribute as the prediction value. A quality value 
of zero indicates that the model’s predictive performance is no better 
than predicting the standard. In contrast, a value close to one indicates 
that the model’s predictive performance is far superior to predicting 
the mean [12].

Accuracy (precision) represents the probability that a prediction be 
correct [12].

Finally, the classification is a measure of the model’s ability to sort 
the records correctly. It is calculated according to the order of the test 
set records when sorted by the predicted values with the order of 
the same data records when sorted by the actual values of the target 
variable [12].

DM flows were run for the original “Iris” dataset and the 252 datasets 
imputed by the Means, k-NN, k-Means and Hot-Deck IM, after being 
amputated in the different amputation combinations described in [11].

For each DM flow, the values of three metrics indicating the quality 
of the DMM achieved were obtained.

B. Evaluation of the Performance of Imputation Methods (IM) 
Using Metrics Obtained From Data Mining Processes (DMP) 

It is considered:

• The data set Y shown in Table II, with n cases and p variables, 
where yij are observed values, with 1 ≤ i ≤ n and 1 ≤ j ≤ p.

• The imputed data sets Yarms depicted in Table III, with 1 ≤ r ≤ l and 
1 ≤ s ≤ t. 

• The metrics qi indicated in Table IV, which are quality indicators 
of DMM, with 1 ≤ i ≤ k. 

Table IV shows the values of the metrics qi, with 1 ≤ i ≤ k, which 
are the quality indicators of the DMM obtained by the DMP using the 
data set Y. 

TABLE II. Original Data Set Y [11]

Y1 Y2 … Yj … Yp

y11 y12 … y1j … y1p

y21 y22 … y2j … y2p

… … … … … …

yi1 yi2 … yij … yip

… … … … … …

yn1 yn2 … ynj … ynp

TABLE III. Datasets Yarms With Elements  Imputed by the Ms 
Method After Having Been Amputated by the Ar Mechanism [11]

… …

… …

… …

… …

… …

… …

… …

TABLE IV. Values of the Metrics qi(Y) Indicating the Quality of the 
DMM (Own Elaboration)

q1 q2 … qi … qk

Y q1(Y) q2(Y) … qi(Y) … qk(Y)

It is considered qi(Yarms) the values of the qi metrics, indicators of 
quality of the DMM obtained through the DMP using the data sets 
Yarms, with 1 ≤ r ≤ l and 1 ≤ s ≤ t, represented in Table V.

The metric , with 1 ≤ i ≤ k; 1 ≤ r ≤ l and 1 ≤ s ≤ t, equation 
(1), was defined. That is, the difference in absolute value, between the 
values of the metrics qi(Y) and qi(Yarms) represented in Tables IV and 
V respectively.

Thus, with respect to the  metric, the best imputation method 
ms, with 1 ≤ s ≤ t, for imputing the amputated Y data set in the 
combination ar, with 1 ≤ r ≤ l, is the one that minimizes the value of 
the  metric, with 1 ≤ i ≤ k.

TABLE V. Values of qi(Yarms) (Own Elaboration)

Y m1 … m1 … ms … ms …
a1 … … … …
a2 … … … …
... ... ... ... ... ... ... ... ...
ar … … … …
... ... ... ... ... ... ... ... ...
al … … … …

Table VI summarizes the values as expressed in equation (1).

 (1)

TABLE VI.  Values (Own Elaboration)

Y m1 … m1 … ms … ms …
a1 … … … …
a2 … … … …
... ... ... ... ... ... ... ... ...
ar … … … …
... ... ... ... ... ... ... ... ...
al … … … …

Thus, by ascendingly ordering the imputation methods by the 
values given by equation (1), we obtain the order of goodness of 
fit of the ms, with 1 ≤ s ≤ t, imputation methods used to impute the 
amputated Y data set in the combination ar, with 1 ≤ r ≤ l, with respect 
to the metric , with 1 ≤ i ≤ k.

The performance of the imputation methods used to impute an 
amputated data set was evaluated using this newly defined metric, 
which made it possible to obtain an order of goodness of imputation 
methods, considering an evaluation criterion.  

The order of goodness of imputation methods with respect to 
the criterion considered was defined as an ordered list or ratio of 
imputation methods according to their performance in imputing an 
amputated data set, considering an evaluation criterion. In this list, the 
best method is ranked first and the worst last.

In this scenario, the best imputation method according to one 
criterion (and its corresponding metric) may turn out to be the worst 
according to the remaining criteria. Evaluating an imputation method 
according to a single metric may not be sufficient, as the best method 
in terms of two or more metrics simultaneously may be of interest.

An aggregation operator makes it possible to aggregate, merge 
or synthesize information, that is, to combine a series of data from 
different sources to reach a certain conclusion or make a certain 
decision [21], [22].
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In order to find the best imputation method ms to impute an 
amputated data set in the combination ar in terms of the ∆qi, with 1 ≤ i ≤ k, 
metrics simultaneously, a new metric was defined, based on an 
aggregation operator,  or simply Qrs for short, 
with 1 ≤ r ≤ l; 1 ≤ s ≤ t. In this case, the arithmetic average of the values of 
the metrics used was considered, as shown in equation (2). It is considered 
convenient to use an aggregate value of the values of the metrics used, to 
avoid biases that could occur when using a single metric.

 (2)

Thus, by ascendingly ordering the imputation methods by the 
values given by equation (2), we obtain the goodness-of-fit order of 
ms, with 1 ≤ s ≤ t, imputation methods used to impute the amputated 
Y data set in the combination ar, with 1 ≤ s ≤ l, with respect to the ∆qi, 
with 1 ≤ i ≤ k, metrics simultaneously.

To evaluate the performance of ms, with 1 ≤ s ≤ t, imputation 
methods used to impute the amputated Y data sets in the ar, with  
1 ≤ r ≤ l, combinations, i.e., considering all amputation scenarios (all 
data sets considered), two criteria were used.

Criterion 1. It is considered a new metric  
or simply Rsi for short, with 1 ≤ r ≤ l; 1 ≤ i ≤ k and 1 ≤ s ≤ t, given 
by equation (3). This metric thus defined, allows to compute the 
arithmetic average of the values of the metric ∆qi (Yarms), for the 
imputation method ms used to impute all amputed data sets in the ar  
combinations.

Rsi is an average indicator of the performance of the s imputation 
method for all files amputated with different mechanisms and then 
imputed with the s method, considering one of the metrics ∆qi.

 (3)

Thus, by ascendingly ordering the imputation methods by the 
values given by equation (3), we obtain the order of goodness of 
fit of the ms, with 1 ≤ s ≤ t, imputation methods used to impute all 
amputated Y data sets in the ar, with 1 ≤ r ≤ l, combinations, with 
respect to the metric ∆qi, with 1 ≤ i ≤ k.

Similarly, a new metric was defined,  
or simply Ts, as shown in equation (4), which allows to obtain the 
arithmetic average of the values of the metric Qrs for the imputation 
method ms, with 1 ≤ s ≤ t, used to impute all amputed data sets in the 
ar, with 1 ≤ r ≤ l combinations.

 (4)

Ascendingly ordering the imputation methods by the values given 
by the first term of equation (4), we obtain the order of goodness of the 
ms, with 1 ≤ s ≤ t, imputation methods used to impute all amputated Y 
data sets in the ar, with 1 ≤ r ≤ l, combinations, with respect to the ∆qi 
metrics simultaneously, with 1 ≤ i ≤ k.

Ts is an average indicator of the performance of the s imputation 
method for all files amputated with different mechanisms and then 
imputed with the s method, considering simultaneously all metrics ∆qi.

Criterion 2. It is considered the order of goodness of the imputation 
methods ms, with 1 ≤ s ≤ t, used to impute the amputed data set in the 
combination ar, with 1 ≤ r ≤ l, with respect to the metrics , with 1 
≤ i ≤ k, and with respect to the metric Qrs.

A score  was assigned to the imputation method ms, used to 
impute the amputated Y data set in the combination ar, which comes 
first in the order of goodness of fit with respect to the values of the metric  

 obtained using equation (1). Similarly, a score Prs is assigned to the 

imputation method ms, used to impute the amputated data set in the 
combination ar, which comes first in the order of goodness of fit with 
respect to the values of the metric Qrs.

The score was assigned according to the following criteria. If an 
imputation method ms results first in the goodness-of-fit order, 1 (one) 
point is assigned to the method. If two imputation methods ms and 
ms' tie for first place in the order of goodness of fit, ½ (half) point 
is assigned to each of them. If three imputation methods ms, ms' and 
ms'' tie for first place in the order of goodness of fit, each of them is 
assigned 1/3 (one third) of a point and, in general, if all t imputation 
methods tie for first place in the order of goodness of fit, each of them 
is assigned 1/t points.

Applying the above mentioned procedure, a new metric wsiwas 
defined as shown in equation (5), as the score obtained by the 
imputation method ms, considering the metric ∆qi. The value of wsi 
indicates the score obtained by the imputation method s for the metric 
∆qi.

 (5)

Sorting the imputation methods descendingly by the values given 
by equation (5), we obtain the order of goodness of fit of the ms, with  
1 ≤ s ≤ t, imputation methods used to impute the amputated Y data sets 
in the ar, with 1 ≤ r ≤ l, combinations with respect to the wsi metric.

Similarly, a new metric Ws was defined as the score obtained by 
the imputation method ms, considering the values of the metric Prs, 
average score of all metrics ∆qi.

 (6)

Sorting the imputation methods descendingly by the values given 
by equation (6), we obtain the order of goodness of fit of the ms, with  
1 ≤ s ≤ t, imputation methods used to impute the amputated Y data sets 
in the ar, with 1 ≤ r ≤ l, combinations with respect to the Ws metric.

Finally, a new metric Gs given by equation (7) was defined as the 
overall score obtained by each imputation method ms considering all 
metrics, wsi and Ws.

 (7)

Sorting the imputation methods descendingly by the values given 
by equation (7), we obtain the order of goodness of fit of the ms, with  
1 ≤ s ≤ t, imputation methods used to impute all amputated Y data sets 
in the ar, with 1 ≤ r ≤ l, combinations with respect to the Gs metric. 

This metric is considered the global indicator of this proposal, 
although each of the summands of equation (7) separately could also 
be considered as proxy indicators.

IV. Results and Discussions

Table VII presents the values of the quality indicator metrics of 
the DMM obtained through the DMP using the original “Iris” dataset.  
These are quality (Cal), precision (accuracy) (Prec) and classification 
(Clas).

TABLE VII. Values of the Metrics for the Original Data Set (Own 
Elaboration)

Quality (Cal) Precision (Prec) Classification (Clas)
Iris 0.884 0.972 0.796
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Table VIII presents the values of the DMM quality indicator metrics 
obtained by DMP using the “Iris” datasets imputed by the Means, 
k-NN, k-Means and Hot-Deck imputation methods, after being 
amputated in each of the 63 combinations of mechanisms, patterns 
and MV percentages described in [11]. In total, for 63 amputated 
datasets, 252 imputed datasets were obtained (63 x 4). MR indicates 
the percentage of missing records.

Each row of Table VIII represents the characteristics of the 
amputated datasets and the value of each of the DMM goodness-of-fit 
indicator metrics obtained by DMP using the dataset imputed by Mean, 
k-NN, k-Means and Hot-Deck imputation methods after amputation.

Thus, for example, the accuracy value of the DMM obtained with the 
“Iris” data set imputed by the k-NN imputation method after having 
been amputated according to the MCAR assumption, in univariate 
pattern in 10% of the records is 0.967.

Table IX shows the values of the metrics differences in absolute value 
between the values of the DMM quality indicator metrics mentioned 
in Table VII and Table VIII, obtained using equation (1).

 Thus, for example, the values of the differences in absolute value 
between the quality metrics (∆Cal) for the “Iris” data sets imputed by 
Mean, k-NN, k-Means and Hot-Deck after amputation in the MCAR 
assumption, in univariate pattern on 10% of the records, are 0.007; 
0.001; 0.004 and 0.008 respectively.

Sorting the preceding values in ascending order gives the k-NN, 
k-Means, Medians and Hot-Deck methods, ranked according to their 
order of goodness of fit for the relevant imputation method.

The results presented in Table IX for each of the metrics and the 
number of times each imputation method came first, second, third 
and fourth in the order of goodness of fit to impute each of the 63 
amputated data sets are described below.

Regarding the difference in absolute value between the quality 
metrics (∆Cal), the Mean imputation method came first, second, third 
and fourth 14, 1, 17 and 31 out of 63 times respectively. Also, of the 14 
times it came first, it shared position with the k-NN method and in one 
with the k-NN and k-Means methods. In terms of the absolute value 
difference between the precision metrics (∆Prec), the Mean imputation 
method came first, second, third and fourth 12, 5, 20 and 26 out of 63 
times respectively. Finally, for the absolute value differences between 
the classification metrics (∆Clas), the Mean imputation method came 
first, second, third and fourth 11, 19, 11 and 22 out of 63 times, 
respectively. Of the 12 times it came first in the order of goodness of 
fit, it was accompanied by the k-NN method once and the k-Means 
method once.

Regarding the difference in absolute value between the quality 
metrics (∆Cal), the k-NN imputation method came first, second, third, 

and fourth in 27, 25, 8, and 3 of 63 times, respectively. Also, of the 
27 times it came first in the goodness-of-fit order, in one it shared 
position with the Hot-Deck method and in three with the k-Means 
method. In terms of the difference in absolute value between the 
precision metrics (∆Prec), the k-NN imputation method came first, 
second, third and fourth 35, 20, 5 and 3 times out of 63, respectively. Of 
the 35 times it came first, once it did so jointly with k-Means. Finally, 
for the absolute value difference between metric classification (∆Clas), 
the k-NN imputation method came first, second, third and fourth 22, 
13, 24 and 4 times out of 63, respectively. Of the 22 times it came first, 
four times it did so jointly with k-Means.

Regarding the difference in absolute value between the quality 
metrics (∆Cal), the k-Means imputation method came first, second, 
third and fourth 24, 23, 14 and 2 out of 63 times, respectively. Likewise, 
of the 24 times it came first in the goodness-of-fit order, once it did 
so jointly with Mean and k-NN, 3 times with k-Means and once with 
Hot-Deck. In terms of the difference in absolute value between the 
precision metrics (∆Prec), the k-Means imputation method came first, 
second, third and fourth 13, 31, 17 and 2 times out of 63, respectively. 
Of the 13 times it came first, once it did so jointly with k-NN. Finally, 
for the absolute value difference between the classification metrics 
∆Clas), the k-Means imputation method came first, second, third and 
fourth 18, 14, 19 and 12 times out of 63, respectively. Of the 18 times it 
came first, once it did so jointly with Mean, twice with k-NN and once 
with Hot-Deck.

Regarding the difference in absolute value between the quality 
metrics (∆Cal), the Hot-Deck imputation method came first, second, 
third and fourth in 6, 10, 20 and 27 out of 63 times, respectively. 
Also, of the 6 times it came first in the order of goodness of fit, it 
did so jointly with k-NN once and once with k-Means. In terms of 
the absolute value difference between the precision metrics (∆Prec), 
the Hot-Deck imputation method came first, second, third and fourth 
13, 31, 17 and 2 times out of 63, respectively. Finally, for the absolute 
value difference between classification metrics (∆Clas), the Hot-Deck 
imputation method came first, second, third and fourth in 18, 18, 8 and 
19 times out of 63 respectively. Of the 18 times it came first, once it did 
so jointly with k-NN and once with k-Means.

Fig. 1 presents the number of times that the Mean, k-NN, k-Means, 
and Hot-Deck imputation methods came first, with respect to each 
metric and under each of the three assumed MV mechanisms. It is clearly 
observed that the k-NN imputation method results first overall, except 
with respect to the ∆Cal and ∆Clas metrics under the MAR assumption 
where it ranks first with k-Means and with respect to the ∆Prec metric 
under the MCAR assumption where the first place is for Mean.

The number of times that the Mean, k-NN, k-Means and Hot-Deck 
imputation methods came first for each metric considering the three 
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Fig. 1. First place according to MV mechanisms (Own elaboration).
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TABLE VIII. Values of the Metrics for the Imputed Data Sets (Own Elaboration)

Amputation data set in the
amputation combination

Imputation method used to impute the amputated dataset

Media k-NN k-Means Hot-Deck

Mechanism Type Pattern MR Cal Prec Clas Cal Prec Clas Cal Prec Clas Cal Prec Clas

MCAR -

univa
0.1 0.877 0.97 0.784 0.883 0.967 0.798 0.88 0.967 0.793 0.876 0.964 0.788

0.15 0.877 0.971 0.783 0.889 0.972 0.806 0.888 0.979 0.796 0.868 0.949 0.786
0.2 0.881 0.974 0.788 0.881 0.967 0.795 0.881 0.963 0.8 0.872 0.955 0.79

multiva2
0.1 0.897 0.997 0.797 0.891 0.973 0.809 0.88 0.968 0.792 0.878 0.96 0.796

0.15 0.818 0.872 0.763 0.896 0.985 0.806 0.898 0.99 0.806 0.88 0.965 0.796
0.2 0.773 0.753 0.793 0.872 0.942 0.801 0.901 0.99 0.812 0.835 0.895 0.775

multiva3
0.1 0.848 0.92 0.775 0.859 0.908 0.808 0.858 0.907 0.808 0.852 0.893 0.811

0.15 0.753 0.718 0.788 0.86 0.916 0.803 0.855 0.902 0.808 0.879 0.978 0.781
0.2 0.782 0.806 0.758 0.88 0.973 0.786 0.811 0.824 0.798 0.803 0.811 0.796

MAR

LEFT

univa
0.1 0.893 0.988 0.798 0.867 0.924 0.809 0.866 0.923 0.809 0.675 0.549 0.802

0.15 0.892 0.993 0.79 0.874 0.943 0.805 0.799 0.792 0.806 0.79 0.782 0.798
0.2 0.892 0.994 0.79 0.79 0.777 0.803 0.786 0.768 0.804 0.812 0.824 0.801

multiva2
0.1 0.784 0.764 0.805 0.861 0.91 0.813 0.86 0.907 0.813 0.852 0.893 0.811

0.15 0.811 0.828 0.793 0.862 0.912 0.813 0.861 0.909 0.813 0.618 0.464 0.772
0.2 0.713 0.642 0.784 0.863 0.919 0.808 0.865 0.919 0.812 0.863 0.908 0.818

multiva3
0.1 0.742 0.716 0.768 0.88 0.991 0.768 0.859 0.912 0.806 0.817 0.826 0.808

0.15 0.787 0.798 0.777 0.876 0.988 0.764 0.89 0.973 0.806 0.842 0.876 0.808
0.2 0.815 0.877 0.753 0.812 0.86 0.764 0.893 0.973 0.813 0.842 0.93 0.755

MID

univa
0.1 0.826 0.866 0.786 0.896 0.989 0.803 0.861 0.912 0.81 0.794 0.814 0.775

0.15 0.881 0.972 0.79 0.89 0.981 0.799 0.863 0.917 0.81 0.593 0.435 0.752
0.2 0.879 0.955 0.804 0.89 0.981 0.799 0.895 0.986 0.805 0.835 0.906 0.764

multiva2
0.1 0.795 0.784 0.806 0.905 1 0.81 0.86 0.909 0.812 0.853 0.908 0.798

0.15 0.757 0.707 0.808 0.882 0.96 0.803 0.9 0.991 0.808 0.594 0.453 0.734
0.2 0.753 0.697 0.808 0.884 0.965 0.803 0.883 0.956 0.81 0.799 0.797 0.802

multiva3
0.1 0.812 0.873 0.752 0.873 0.979 0.768 0.893 0.976 0.81 0.722 0.649 0.796

0.15 0.839 0.943 0.736 0.872 0.976 0.768 0.894 0.988 0.8 0.841 0.869 0.813
0.2 0.802 0.873 0.731 0.856 0.965 0.746 0.894 0.983 0.805 0.731 0.709 0.753

RIGHT

univa
0.1 0.793 0.794 0.791 0.885 0.983 0.787 0.853 0.889 0.818 0.863 0.936 0.79

0.15 0.878 0.956 0.8 0.89 0.981 0.799 0.861 0.922 0.8 0.576 0.411 0.74
0.2 0.884 0.965 0.803 0.89 0.981 0.799 0.859 0.904 0.815 0.744 0.727 0.76

multiva2
0.1 0.787 0.765 0.81 0.9 0.992 0.808 0.896 0.982 0.81 0.893 0.998 0.788

0.15 0.773 0.742 0.804 0.887 0.97 0.803 0.895 0.982 0.808 0.822 0.854 0.791
0.2 0.744 0.695 0.793 0.887 0.978 0.797 0.882 0.955 0.81 0.644 0.553 0.734

multiva3
0.1 0.855 0.976 0.734 0.818 0.891 0.745 0.898 0.998 0.798 0.858 0.912 0.803

0.15 0.816 0.898 0.734 0.84 0.936 0.745 0.861 0.917 0.805 0.819 0.839 0.8
0.2 0.785 0.865 0.705 0.858 0.976 0.741 0.894 0.999 0.789 0.858 0.928 0.787

MNAR

LEFT

univa
0.1 0.893 0.988 0.798 0.867 0.924 0.809 0.867 0.923 0.811 0.675 0.549 0.802

0.15 0.889 0.988 0.79 0.89 0.981 0.799 0.87 0.934 0.806 0.704 0.62 0.789
0.2 0.889 0.988 0.79 0.89 0.981 0.799 0.873 0.94 0.806 0.846 0.886 0.805

multiva2
0.1 0.789 0.771 0.806 0.861 0.91 0.813 0.861 0.908 0.813 0.856 0.901 0.811

0.15 0.823 0.852 0.793 0.862 0.91 0.813 0.86 0.902 0.818 0.767 0.757 0.776
0.2 0.726 0.673 0.779 0.861 0.91 0.811 0.861 0.909 0.813 0.859 0.907 0.811

multiva3
0.1 0.714 0.662 0.767 0.871 0.956 0.786 0.859 0.911 0.806 0.852 0.897 0.808

0.15 0.834 0.9 0.769 0.872 0.977 0.766 0.857 0.902 0.812 0.849 0.886 0.812
0.2 0.766 0.786 0.747 0.825 0.892 0.757 0.896 0.908 0.812 0.855 0.929 0.781

MID

univa
0.1 0.753 0.721 0.784 0.89 0.981 0.799 0.863 0.92 0.806 0.878 0.985 0.771

0.15 0.883 0.975 0.79 0.89 0.981 0.799 0.863 0.92 0.806 0.55 0.351 0.75
0.2 0.888 0.987 0.788 0.89 0.981 0.799 0.872 0.938 0.806 0.796 0.845 0.747

multiva2
0.1 0.814 0.825 0.803 0.856 0.899 0.813 0.852 0.887 0.816 0.732 0.667 0.797

0.15 0.757 0.707 0.808 0.882 0.96 0.803 0.9 0.991 0.808 0.594 0.453 0.734
0.2 0.753 0.697 0.808 0.884 0.965 0.803 0.883 0.956 0.81 0.799 0.797 0.802

multiva3
0.1 0.852 0.952 0.752 0.875 0.982 0.768 0.894 0.978 0.81 0.585 0.402 0.768

0.15 0.829 0.917 0.741 0.848 0.95 0.746 0.884 0.971 0.796 0.847 0.906 0.788
0.2 0.802 0.872 0.731 0.846 0.946 0.746 0.895 0.982 0.808 0.748 0.734 0.763

RIGHT

univa
0.1 0.774 0.755 0.792 0.874 0.967 0.782 0.894 0.988 0.8 0.69 0.607 0.774

0.15 0.688 0.612 0.764 0.739 0.719 0.759 0.892 0.985 0.8 0.838 0.907 0.769
0.2 0.893 0.991 0.795 0.89 0.981 0.799 0.854 0.887 0.82 0.865 0.969 0.76

multiva2
0.1 0.787 0.765 0.81 0.9 0.992 0.808 0.899 0.988 0.81 0.893 0.998 0.788

0.15 0.773 0.742 0.804 0.887 0.97 0.803 0.883 0.952 0.815 0.801 0.828 0.775
0.2 0.744 0.695 0.763 0.887 0.978 0.797 0.88 0.95 0.81 0.644 0.533 0.734

multiva3
0.1 0.511 0.294 0.728 0.567 0.368 0.766 0.897 0.996 0.798 0.871 0.942 0.8

0.15 0.658 0.591 0.724 0.82 0.893 0.746 0.889 0.984 0.795 0.894 0.99 0.798
0.2 0.671 0.63 0.713 0.856 0.96 0.751 0.857 0.91 0.803 0.809 0.817 0.801
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TABLE IX. Value of the Metrics Differences in Absolute Value (Own Elaboration).

Amputation data set in the
amputation combination

Imputation method

Medias k-NN k-Means Hot-Deck

Mechanism Type Pattern MR ∆Cal ∆Prec ∆Clas ∆Cal ∆Prec ∆Clas ∆Cal ∆Prec ∆Clas ∆Cal ∆Prec ∆Clas

MCAR -

univa
0.1 0.007 0.002 0.012 0.001 0.005 0.002 0.004 0.005 0.003 0.008 0.008 0.008

0.15 0.007 0.001 0.013 0.005 0.000 0.010 0.004 0.007 0.000 0.016 0.023 0.010
0.2 0.003 0.002 0.008 0.003 0.005 0.001 0.003 0.009 0.004 0.012 0.017 0.006

multiva2
0.1 0.013 0.025 0.001 0.007 0.001 0.013 0.004 0.004 0.004 0.006 0.012 0.000

0.15 0.066 0.100 0.033 0.012 0.013 0.010 0.014 0.018 0.010 0.004 0.007 0.000
0.2 0.111 0.219 0.003 0.012 0.030 0.005 0.017 0.018 0.016 0.049 0.077 0.021

multiva3
0.1 0.036 0.052 0.021 0.025 0.064 0.012 0.026 0.065 0.012 0.032 0.079 0.015

0.15 0.131 0.254 0.008 0.024 0.056 0.007 0.029 0.070 0.012 0.005 0.006 0.015
0.2 0.014 0.010 0.038 0.084 0.177 0.010 0.073 0.148 0.002 0.081 0.161 0.000

MAR

LEFT

univa
0.1 0.009 0.016 0.002 0.017 0.048 0.013 0.018 0.049 0.013 0.209 0.423 0.006

0.15 0.008 0.021 0.006 0.010 0.029 0.009 0.085 0.180 0.010 0.094 0.190 0.002
0.2 0.008 0.022 0.006 0.094 0.195 0.007 0.098 0.204 0.008 0.072 0.148 0.005

multiva2
0.1 0.100 0.208 0.009 0.023 0.062 0.017 0.024 0.065 0.017 0.032 0.079 0.015

0.15 0.073 0.144 0.003 0.022 0.060 0.017 0.023 0.063 0.017 0.266 0.508 0.024
0.2 0.171 0.330 0.012 0.021 0.053 0.012 0.019 0.053 0.016 0.021 0.064 0.022

multiva3
0.1 0.142 0.256 0.028 0.004 0.019 0.028 0.025 0.060 0.010 0.067 0.146 0.012

0.15 0.097 0.174 0.019 0.008 0.016 0.032 0.006 0.001 0.010 0.042 0.096 0.012
0.2 0.069 0.095 0.043 0.072 0.112 0.032 0.009 0.001 0.017 0.042 0.042 0.041

MID

univa
0.1 0.058 0.106 0.010 0.012 0.017 0.007 0.023 0.060 0.014 0.090 0.158 0.021

0.15 0.003 0.000 0.006 0.006 0.009 0.003 0.021 0.055 0.014 0.291 0.537 0.044
0.2 0.005 0.017 0.008 0.006 0.009 0.003 0.011 0.014 0.009 0.049 0.066 0.032

multiva2
0.1 0.089 0.188 0.010 0.021 0.028 0.014 0.024 0.063 0.016 0.031 0.064 0.002

0.15 0.127 0.265 0.012 0.002 0.012 0.007 0.016 0.019 0.012 0.290 0.519 0.062
0.2 0.131 0.275 0.012 0.000 0.007 0.007 0.001 0.016 0.014 0.085 0.175 0.006

multiva3
0.1 0.072 0.099 0.044 0.011 0.007 0.028 0.009 0.004 0.014 0.162 0.323 0.000

0.15 0.045 0.029 0.060 0.012 0.004 0.028 0.010 0.016 0.004 0.043 0.103 0.017
0.2 0.082 0.099 0.065 0.028 0.007 0.050 0.010 0.011 0.009 0.153 0.263 0.043

RIGHT

univa
0.1 0.091 0.178 0.005 0.001 0.011 0.009 0.031 0.083 0.022 0.021 0.036 0.006

0.15 0.006 0.016 0.004 0.006 0.009 0.003 0.023 0.050 0.004 0.308 0.561 0.056
0.2 0.000 0.007 0.007 0.006 0.009 0.003 0.025 0.068 0.019 0.140 0.245 0.036

multiva2
0.1 0.097 0.207 0.014 0.016 0.020 0.012 0.012 0.010 0.014 0.009 0.026 0.008

0.15 0.111 0.230 0.008 0.003 0.002 0.007 0.011 0.010 0.012 0.062 0.118 0.005
0.2 0.140 0.277 0.003 0.003 0.006 0.001 0.002 0.017 0.014 0.240 0.419 0.062

multiva3
0.1 0.029 0.004 0.062 0.066 0.081 0.051 0.014 0.026 0.002 0.026 0.060 0.007

0.15 0.068 0.074 0.062 0.044 0.036 0.051 0.023 0.055 0.009 0.065 0.133 0.004
0.2 0.099 0.107 0.091 0.026 0.004 0.055 0.010 0.027 0.007 0.026 0.044 0.009

MNAR

LEFT

univa
0.1 0.009 0.016 0.002 0.017 0.048 0.013 0.017 0.049 0.015 0.209 0.423 0.006

0.15 0.005 0.016 0.006 0.006 0.009 0.003 0.014 0.038 0.010 0.180 0.352 0.007
0.2 0.005 0.016 0.006 0.006 0.009 0.003 0.011 0.032 0.010 0.038 0.086 0.009

multiva2
0.1 0.095 0.201 0.010 0.023 0.062 0.017 0.023 0.064 0.017 0.028 0.071 0.015

0.15 0.061 0.120 0.003 0.022 0.062 0.017 0.024 0.070 0.022 0.117 0.215 0.020
0.2 0.158 0.299 0.017 0.023 0.062 0.015 0.023 0.063 0.017 0.025 0.065 0.015

multiva3
0.1 0.170 0.310 0.029 0.013 0.016 0.010 0.025 0.061 0.010 0.032 0.075 0.012

0.15 0.050 0.072 0.027 0.012 0.005 0.030 0.027 0.070 0.016 0.035 0.086 0.016
0.2 0.118 0.186 0.049 0.059 0.080 0.039 0.012 0.064 0.016 0.029 0.043 0.015

MID

univa
0.1 0.131 0.251 0.012 0.006 0.009 0.003 0.021 0.052 0.010 0.006 0.013 0.025

0.15 0.001 0.003 0.006 0.006 0.009 0.003 0.021 0.052 0.010 0.334 0.621 0.046
0.2 0.004 0.015 0.008 0.006 0.009 0.003 0.012 0.034 0.010 0.088 0.127 0.049

multiva2
0.1 0.070 0.147 0.007 0.028 0.073 0.017 0.032 0.085 0.020 0.152 0.305 0.001

0.15 0.127 0.265 0.012 0.002 0.012 0.007 0.016 0.019 0.012 0.290 0.519 0.062
0.2 0.131 0.275 0.012 0.000 0.007 0.007 0.001 0.016 0.014 0.085 0.175 0.006

multiva3
0.1 0.032 0.020 0.044 0.009 0.010 0.028 0.010 0.006 0.014 0.299 0.570 0.028

0.15 0.055 0.055 0.055 0.036 0.022 0.050 0.000 0.001 0.000 0.037 0.066 0.008
0.2 0.082 0.100 0.065 0.038 0.026 0.050 0.011 0.010 0.012 0.136 0.238 0.033

RIGHT

univa
0.1 0.110 0.217 0.004 0.010 0.005 0.014 0.010 0.016 0.004 0.194 0.365 0.022

0.15 0.196 0.360 0.032 0.145 0.253 0.037 0.008 0.013 0.004 0.046 0.065 0.027
0.2 0.009 0.019 0.001 0.006 0.009 0.003 0.030 0.085 0.024 0.019 0.003 0.036

multiva2
0.1 0.097 0.207 0.014 0.016 0.020 0.012 0.015 0.016 0.014 0.009 0.026 0.008

0.15 0.111 0.230 0.008 0.003 0.002 0.007 0.001 0.020 0.019 0.083 0.144 0.021
0.2 0.140 0.277 0.033 0.003 0.006 0.001 0.004 0.022 0.014 0.240 0.439 0.062

multiva3
0.1 0.373 0.678 0.068 0.317 0.604 0.030 0.013 0.024 0.002 0.013 0.030 0.004

0.15 0.226 0.381 0.072 0.064 0.079 0.050 0.005 0.012 0.001 0.010 0.018 0.002
0.2 0.213 0.342 0.083 0.028 0.012 0.045 0.027 0.062 0.007 0.075 0.155 0.005
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MV patterns is presented in Fig. 2. The graphs show a clear dispute 
for first place between the k-NN and k-Means methods. Regarding the 
∆Cal metric, the Mean imputation method clearly results in the first 
place when dealing with a univariate pattern. However, in the case 
of a simple multivariate pattern k-NN comes first; something similar 
happens with the complex multivariate pattern where k-Means comes 
first. Concerning ∆Prec, the first place is for k-NN for both the univariate 
and simple multivariate pattern, however, it shares the first place 
with k-Means in the case of a complex multivariate pattern. Finally, 
regarding Clas, the results are mixed, k-NN came first in the case of a 
univariate pattern, Hot-Deck in the case of a simple multivariate one 
and k-Means in the case of complex multivariate pattern.

Finally, the number of times that the Mean, k-NN, k-Means and 
Hot-Deck imputation methods came first, with respect to each metric 

and considering the different MV percentages are shown in Fig. 3. k-NN 
comes first with respect to ∆Cal for an MV percentage of 10% while for 
15% and 20% k-Means comes first. With respect to ∆Prec, it is clearly 
observed that in all cases k-NN comes out first. Finally, with respect 
to ∆Clas, k-Means came first for 10% while k-NN came first for 15% 
and 20%.

In Table X, the values of the metrics obtained using equation (2), 
i.e., the arithmetic average of the metric values ∆Cal, ∆Prec and ∆Clas, 
indicated in Table IX, for each imputation method ms used to impute 
the amputed data set in the combination ar, are presented.

By sorting the imputation methods in ascending order by the values 
of this metric, we obtain the order of goodness of fit of the Medias, 
k-NN, k-Means and Hot-Deck imputation methods used to impute the 
“Iris” data set in each of the 63 amputation combinations.
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Fig. 2. First place according to MV patterns (Own elaboration).
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Fig. 3. First place according to percentage of MV (Own elaboration).
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Fig. 4. First place with respect to the arithmetic average metric (Own elaboration).
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TABLE X. Arithmetic Average Metric Values of ∆Cal, ∆Prec and ∆Clas (Own Elaboration)

Amputation combination
Imputation method

Medias k-NN k-Means Hot-Deck
Mechanism Type Pattern MR Average (∆Q) Average (∆Q) Average (∆Q) Average (∆Q)

MCAR -
univa

0.1 0.007 0.003 0.004 0.008
MCAR - 0.15 0.007 0.005 0.004 0.016
MCAR - 0.2 0.004 0.003 0.005 0.012
MCAR -

multiva2
0.1 0.013 0.007 0.004 0.006

MCAR - 0.15 0.066 0.012 0.014 0.004
MCAR - 0.2 0.111 0.016 0.017 0.049
MCAR -

multiva3
0.1 0.036 0.034 0.034 0.042

MCAR - 0.15 0.131 0.029 0.037 0.009
MCAR - 0.2 0.021 0.090 0.074 0.081
MAR LEFT

univa
0.1 0.009 0.026 0.027 0.213

MAR LEFT 0.15 0.012 0.016 0.092 0.095
MAR LEFT 0.2 0.012 0.099 0.103 0.075
MAR LEFT

multiva2
0.1 0.106 0.034 0.035 0.042

MAR LEFT 0.15 0.073 0.033 0.034 0.266
MAR LEFT 0.2 0.171 0.029 0.029 0.036
MAR LEFT

multiva3
0.1 0.142 0.017 0.032 0.075

MAR LEFT 0.15 0.097 0.019 0.006 0.050
MAR LEFT 0.2 0.069 0.072 0.009 0.042
MAR MID

univa
0.1 0.058 0.012 0.032 0.090

MAR MID 0.15 0.003 0.006 0.030 0.291
MAR MID 0.2 0.010 0.006 0.011 0.049
MAR MID

multiva2
0.1 0.096 0.021 0.034 0.032

MAR MID 0.15 0.135 0.007 0.016 0.290
MAR MID 0.2 0.139 0.005 0.010 0.089
MAR MID

multiva3
0.1 0.072 0.015 0.009 0.162

MAR MID 0.15 0.045 0.015 0.010 0.054
MAR MID 0.2 0.082 0.028 0.010 0.153
MAR RIGHT

univa
0.1 0.091 0.007 0.045 0.021

MAR RIGHT 0.15 0.009 0.006 0.026 0.308
MAR RIGHT 0.2 0.005 0.006 0.037 0.140
MAR RIGHT

multiva2
0.1 0.106 0.016 0.012 0.014

MAR RIGHT 0.15 0.116 0.004 0.011 0.062
MAR RIGHT 0.2 0.140 0.003 0.011 0.240
MAR RIGHT

multiva3
0.1 0.032 0.066 0.014 0.031

MAR RIGHT 0.15 0.068 0.044 0.029 0.067
MAR RIGHT 0.2 0.099 0.028 0.015 0.026

MNAR LEFT
univa

0.1 0.009 0.026 0.027 0.213
MNAR LEFT 0.15 0.009 0.006 0.021 0.180
MNAR LEFT 0.2 0.009 0.006 0.018 0.044
MNAR LEFT

multiva2
0.1 0.102 0.034 0.035 0.038

MNAR LEFT 0.15 0.061 0.034 0.039 0.117
MNAR LEFT 0.2 0.158 0.033 0.034 0.035
MNAR LEFT

multiva3
0.1 0.170 0.013 0.032 0.040

MNAR LEFT 0.15 0.050 0.016 0.038 0.046
MNAR LEFT 0.2 0.118 0.059 0.031 0.029
MNAR MID

univa
0.1 0.131 0.006 0.028 0.015

MNAR MID 0.15 0.003 0.006 0.028 0.334
MNAR MID 0.2 0.009 0.006 0.019 0.088
MNAR MID

multiva2
0.1 0.075 0.039 0.046 0.153

MNAR MID 0.15 0.135 0.007 0.016 0.290
MNAR MID 0.2 0.139 0.005 0.010 0.089
MNAR MID

multiva3
0.1 0.032 0.016 0.010 0.299

MNAR MID 0.15 0.055 0.036 0.000 0.037
MNAR MID 0.2 0.082 0.038 0.011 0.136
MNAR RIGHT

univa
0.1 0.110 0.010 0.010 0.194

MNAR RIGHT 0.15 0.196 0.145 0.008 0.046
MNAR RIGHT 0.2 0.010 0.006 0.046 0.019
MNAR RIGHT

multiva2
0.1 0.106 0.016 0.015 0.014

MNAR RIGHT 0.15 0.116 0.004 0.013 0.083
MNAR RIGHT 0.2 0.150 0.003 0.013 0.247
MNAR RIGHT

multiva3
0.1 0.373 0.317 0.013 0.016

MNAR RIGHT 0.15 0.226 0.064 0.006 0.010
MNAR RIGHT 0.2 0.213 0.028 0.032 0.078
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For example, by sorting the imputation methods in ascending 
order by the values indicated in the first row, we obtain the order of 
goodness of the imputation methods Medias, k-NN, k-Means and Hot-
Deck used to impute the “Iris” data set after the original “Iris” data set 
was amputated according to the MCAR mechanism/assumption, in a 
univariate pattern on 10% of the records.

The results presented in Table X for this metric and the number of 
times each imputation method came first, second, third and fourth in 
the order of goodness of fit to impute each of the 63 amputated data 
sets are summarized below.  

The Mean imputation method came first, second, third and fourth 
in 8, 7, 19 and 29 times out of 63, respectively. Likewise, k-NN ranked 
first, second, third and fourth 34, 17, 9 and 3 out of 63 times. The 
k-Means method came first, second, third and fourth 18, 14, 19 and 
12 times out of 63, and finally, Hot-Deck came first, second, third and 
fourth 4, 12, 18 and 29 times out of 63, respectively.

Fig. 4 shows the number of times that the Mean, k-NN, k-Means and 
Hot-Deck methods came first in order of goodness of fit with respect 
to the arithmetic average aggregation operator metric and considering 
MV mechanisms, patterns and percentages. Clearly, the k-NN method 
came out first in all cases, except in the case of a complex multivariate 
MV pattern, where the k-Means method came out first.

Table XI shows the results obtained by applying equations (3) and (4), 
defined in Criterion 1, to the values obtained in Tables IX and X, i.e., the 
arithmetic average of the values of the quality, precision, classification, 
and aggregate metrics obtained by each imputation method.

By ascending the values in Table XI, the imputation methods were 
obtained for each metric, according to their order of goodness of fit.

TABLE XI. Values of the Arithmetic Average Metrics (Own Elaboration)

Imputation 
Method

Metrics

Pro. ∆Cal Pro. ∆Pre Pro. ∆Clas Pro. Met. Agr.

Media 0.081 0.146 0.023 0.083
k-NN 0.026 0.044 0.017 0.029

k-Means 0.019 0.043 0.011 0.024
Hot-Deck 0.095 0.178 0.019 0.097

Regarding the arithmetic average of the values of the ∆Cal metric 
(Pro. ∆Cal), the k-Means, k-NN, Mean and Hot-Deck methods resulted 
according to their order of goodness of fit. Similarly, considering 
the arithmetic average of the values of the ∆Prec metric (Pro. ∆Prec), 
the k-Means, k-NN, Mean and Hot-Deck methods were obtained, 

according to their order of goodness. However, considering arithmetic 
average of the values of the ∆Clas metric (Pro. ∆Clas), the k-Means, 
k-NN, Hot-Deck and Mean methods resulted. Finally, with respect to 
the arithmetic average of the aggregate metric values (Pro. Met. Agr.), 
the k-Means, k-NN, Mean and Hot-Deck methods resulted according 
to their order of goodness of fit.

Table XII presents the scores obtained by the imputation methods 
that came first in the order of goodness of fit with respect to the 
metrics ∆Cal, ∆Prec and ∆Clas considering the values obtained using 
equation (1) and presented in Table IX, i.e., considering Criterion 2.

Thus, for example, considering the order of goodness of IM given 
by the value of the ∆Cal, ∆Prec and ∆Clas metrics in Table IX, with 
respect to the ∆Cal metric, one point was assigned to the k-NN IM 
used to impute the amputated “Iris” dataset according to the MCAR 
mechanism, in univariate pattern, in 10% of the records; similarly, with 
respect to the ∆Prec metric, the Mean imputation method scored one 
point when imputing the amputated “Iris” dataset according to the 
MCAR mechanism, in univariate pattern, in 10% of the records.

Similarly, with respect to the ∆Cal metric, 0.33 points were assigned 
to the IM by Mean, k-NN and k-Means used to impute the amputated 
“Iris” dataset according to the MCAR mechanism, in univariate 
pattern, in 20% of the records.

Similarly, with respect to the ∆Clas metric, 0.5 points were assigned 
to the MI k-Means and Hot-Deck used to impute the amputated “Iris” 
dataset according to the MCAR mechanism, in complex multivariate 
pattern, in 10% of the records.

Table XIII presents the scores obtained, considering Criterion 2, by 
the imputation methods that resulted first in the order of goodness 
of fit with respect to the aggregate metric considering the values 
obtained by equation (2) (metric ∆Q average of the metrics ∆Cal, ∆Prec 
and ∆Clas) and systematized in Table X.

Thus, for example, considering the order of goodness of IM given 
by the value of the ∆Q metric in Table X, a point was assigned to the 
k-NN IM used to impute the amputated “Iris” data set according to the 
MCAR mechanism, in univariate pattern, in 10% of the records.

Finally, Table XIV summarizes the score obtained by each IM for 
each metric, resulting from applying equations (5) and (6) to the data in 
Tables XII and XIII, and the overall score obtained by each imputation 
method, resulting from applying equation (7) to Table XIV.

 

12
,8

3 23
,8

3

21
,3

3

5

12

34
,5

12
,5

4

10

20

16 17

8

34

17

4

42
,8

3

11
2,

33

66
,8

3

30

�ality

MEAN K-MEANS HOT-DECKK-NN

Precision

Classification

Average Cal, Prec, Clas

Sum of metric scores

Fig. 5. Overall scores obtained by the imputation methods according to the metrics used (Own elaboration).



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, Nº3

- 92 -

TABLE XII. Scores Obtained for Each Metric (Own Elaboration)

Characteristics of Amputated 
Datasets Scores obtained by each Imputation Method for each metric

Media k-NN k-Means Hot-Deck
Mechanism Type Pattern MR p1(∆Cal) p2(∆Prec) p3(∆Clas) p1(∆Cal) p2(∆Prec) p3(∆Clas) p1(∆Cal) p2(∆Prec) p3(∆Clas) p1(∆Cal) p2(∆Prec) p3(∆Clas)

MCAR
univa

0.1 1.00 1.00 1.00
MCAR 0.15 1.00 1.00 1.00
MCAR 0.2 0.33 1.00 0.33 1.00 0.33
MCAR

multiva2
0.1 1.00 1.00 1.00

MCAR 0.15 1.00 1.00 1.00
MCAR 0.2 1.00 1.00 1.00
MCAR

multiva3
0.1 1.00 1.00 0.50 0.50

MCAR 0.15 1.00 1.00 1.00
MCAR 0.2 1.00 1.00 1.00
MAR LEFT

univa
0.1 1.00 1.00 1.00

MAR LEFT 0.15 1.00 1.00 1.00
MAR LEFT 0.2 1.00 1.00 1.00
MAR LEFT

multiva2
0.1 1.00 1.00 1.00

MAR LEFT 0.15 1.00 1.00 1.00
MAR LEFT 0.2 0.50 0.50 0.50 1.00 0.50
MAR LEFT

multiva3
0.1 1.00 1.00 1.00

MAR LEFT 0.15 1.00 1.00 1.00
MAR LEFT 0.2 1.00 1.00 1.00
MAR MID

univa
0.1 1.00 1.00 1.00

MAR MID 0.15 1.00 1.00 1.00
MAR MID 0.2 1.00 1.00 1.00
MAR MID

multiva2
0.1 1.00 1.00 1.00

MAR MID 0.15 1.00 1.00 1.00
MAR MID 0.2 1.00 1.00 1.00
MAR MID

multiva3
0.1 1.00 1.00 1.00

MAR MID 0.15 1.00 1.00 1.00
MAR MID 0.2 1.00 1.00 1.00
MAR RIGHT

univa
0.1 1.00 1.00 1.00

MAR RIGHT 0.15 0.50 0.50 1.00 1.00
MAR RIGHT 0.2 1.00 1.00 1.00
MAR RIGHT

multiva2
0.1 1.00 1.00 1.00

MAR RIGHT 0.15 1.00 1.00 1.00
MAR RIGHT 0.2 1.00 1.00 1.00
MAR RIGHT

multiva3
0.1 1.00 1.00 1.00

MAR RIGHT 0.15 1.00 1.00 1.00
MAR RIGHT 0.2 1.00 1.00 1.00

MNAR LEFT
univa

0.1 1.00 1.00 1.00
MNAR LEFT 0.15 1.00 1.00 1.00
MNAR LEFT 0.2 1.00 1.00 1.00
MNAR LEFT

multiva2
0.1 1.00 0.50 1.00 0.50

MNAR LEFT 0.15 1.00 1.00 1.00
MNAR LEFT 0.2 0.50 1.00 0.50 0.50 0.50
MNAR LEFT

multiva3
0.1 1.00 1.00 0.50 0.50

MNAR LEFT 0.15 1.00 1.00 0.50 0.50
MNAR LEFT 0.2 1.00 1.00 1.00
MNAR MID

univa
0.1 0.50 1.00 1.00 0.50

MNAR MID 0.15 1.00 1.00 1.00
MNAR MID 0.2 1.00 1.00 1.00
MNAR MID

multiva2
0.1 1.00 1.00 1.00

MNAR MID 0.15 1.00 1.00 1.00
MNAR MID 0.2 1.00 1.00 1.00
MNAR MID

multiva3
0.1 1.00 1.00 1.00

MNAR MID 0.15 1.00 1.00 1.00
MNAR MID 0.2 1.00 1.00 1.00
MNAR RIGHT

univa
0.1 0.50 0.50 1.00 0.50 0.50

MNAR RIGHT 0.15 1.00 1.00 1.00
MNAR RIGHT 0.2 1.00 1.00 1.00
MNAR RIGHT

multiva2
0.1 1.00 1.00 1.00

MNAR RIGHT 0.15 1.00 1.00 1.00
MNAR RIGHT 0.2 1.00 1.00 1.00
MNAR RIGHT

multiva3
0.1 0.50 1.00 1.00 0.50

MNAR RIGHT 0.15 1.00 1.00 1.00
MNAR RIGHT 0.2 1.00 1.00 1.00
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TABLE XIII. Score Obtained With Respect to the Arithmetic Average Metric (Own Elaboration)

Characteristics of Amputated Datasets Imputation Method
        Media k-NN k-Means Hot-Deck

Mechanism Type Pattern MR P(∆Q) P(∆Q) P(∆Q) P(∆Q)
MCAR  

univa
0.1   1.00    

MCAR   0.15     1.00  
MCAR   0.2   1.00    
MCAR  

multiva2
0.1     1.00  

MCAR   0.15       1.00
MCAR   0.2   1.00    
MCAR  

multiva3
0.1   1.00    

MCAR   0.15       1.00
MCAR   0.2 1.00      
MAR LEFT

univa
0.1 1.00      

MAR LEFT 0.15 1.00      
MAR LEFT 0.2 1.00      
MAR LEFT

multiva2
0.1   1.00    

MAR LEFT 0.15   1.00    
MAR LEFT 0.2   1.00    
MAR LEFT

multiva3
0.1   1.00    

MAR LEFT 0.15     1.00  
MAR LEFT 0.2     1.00  
MAR MID

univa
0.1   1.00    

MAR MID 0.15 1.00      
MAR MID 0.2   1.00    
MAR MID

multiva2
0.1   1.00    

MAR MID 0.15   1.00    
MAR MID 0.2   1.00    
MAR MID

multiva3
0.1     1.00  

MAR MID 0.15     1.00  
MAR MID 0.2     1.00  
MAR RIGHT

univa
0.1   1.00    

MAR RIGHT 0.15   1.00    
MAR RIGHT 0.2 1.00      
MAR RIGHT

multiva2
0.1     1.00  

MAR RIGHT 0.15   1.00    
MAR RIGHT 0.2   1.00    
MAR RIGHT

multiva3
0.1     1.00  

MAR RIGHT 0.15     1.00  
MAR RIGHT 0.2     1.00  

MNAR LEFT
univa

0.1 1.00      
MNAR LEFT 0.15   1.00    
MNAR LEFT 0.2   1.00    
MNAR LEFT

multiva2
0.1   1.00    

MNAR LEFT 0.15   1.00    
MNAR LEFT 0.2   1.00    
MNAR LEFT

multiva3
0.1   1.00    

MNAR LEFT 0.15   1.00    
MNAR LEFT 0.2       1.00
MNAR MID

univa
0.1   1.00    

MNAR MID 0.15 1.00      
MNAR MID 0.2   1.00    
MNAR MID

multiva2
0.1   1.00    

MNAR MID 0.15   1.00    
MNAR MID 0.2   1.00    
MNAR MID

multiva3
0.1     1.00  

MNAR MID 0.15     1.00  
MNAR MID 0.2     1.00  
MNAR RIGHT

univa
0.1   1.00    

MNAR RIGHT 0.15     1.00  
MNAR RIGHT 0.2   1.00    
MNAR RIGHT

multiva2
0.1       1.00

MNAR RIGHT 0.15   1.00    
MNAR RIGHT 0.2   1.00    
MNAR RIGHT

multiva3
0.1     1.00  

MNAR RIGHT 0.15     1.00  
MNAR RIGHT 0.2   1.00    
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TABLE XIV. Scores Obtained by IM for Each Metric (Own Elaboration)

Imputation 
Method

Score obtainedfor each metric

o1(∆Cal) o2(∆Prec ) o3(∆Clas) O(∆Q) G

Media 12.83 12.00 10.00 8.00 42.83

k-NN 23.83 34.50 20.00 34.00 112.33

k-Means 21.33 12.50 16.00 17.00 66.83

Hot-Deck 5.00 4.00 17.00 4.00 30.00

The values in Table XIV are plotted in Fig. 5.

By sorting the values in Table XIV in descending order, the 
imputation methods for each metric were obtained, according to their 
order of goodness of fit to impute the set/group of data sets (files).

Regarding the values of the ∆Cal metric, the k-NN, k-Means, Mean 
and Hot-Deck methods, according to their order of goodness of fit, 
were better. Similarly, considering the values of the ∆Prec metric, the 
k-NN, k-Means, Mean and Hot-Deck methods, according to their order 
of goodness of fit, were obtained. However, considering the values of 
the ∆Clas metric, the k-NN, Hot-Deck, k-Means and Mean methods 
resulted. Finally, as for the values of the arithmetic average metric ∆Q, 
the k-NN, k-Means, Mean and Hot-Deck methods resulted according 
to their order of goodness.

Finally, considering the values of the overall score metric G, the 
k-NN, k-Means, Mean and Hot-Deck methods were ranked according 
to their order of goodness of fit.

Summarizing, the best imputation methods globally considered 
turned out to be k-Means and k-NN according to criterion 1, k-NN and 
k-Means according to criterion 2 of this proposal, and k-Means and 
k-NN according to the calculation methodology based on the square 
root of the mean square error shown in [11].

V. Conclusions

This paper has presented an innovative methodology to evaluate 
the performance of imputation methods, based on metrics derived 
from data mining processes, instead of the generally used methods 
based on the root mean square error and its derivatives.

The proposed methodology is applicable to data sets to which data 
mining processes (e.g. regressions) can be applied, which will provide 
the information with which the different metrics will be calculated.  

The working environment implemented to perform the amputation 
and subsequent imputation experiments described in [11] was 
appropriate. It has facilitated the management of the respective 
original, amputated and imputed files, to which the data mining 
processes performed with ISW V.9.7 software was applied.

The proposed methodology and the metrics presented have made 
it possible to arrive at an overall value (since it takes into account 
all the variables that were amputated and then imputed by various 
methods), indicative of the performance of each imputation method, 
expressed in comparable values (since it is based on normalized values 
of data mining metrics), integrating the results of a multitude of tests 
representative of different scenarios, with different percentages, 
diversity of patterns, considering also the three most frequent 
mechanisms of occurrence of missing data.

The results obtained with the proposed methodology in its different 
variants of metrics (differences in absolute values and scores) are slightly 
different. However, they concur that the best imputation methods 
globally considered are k-NN and K-Means, which also coincides with 
the global results obtained by the metrics indicated in [11].

The proposed methodology, by contemplating several metrics 

derived from the DMPs, allows working with only one of them or with 
all of them simultaneously, to determine the best imputation methods 
for a given scenario. Moreover, it can be applied to the evaluation of 
any imputation method, since it works with the imputed files and not 
with the methods themselves.

This methodology makes it possible to use the DMM generated to 
evaluate the imputation methods, to perform a posteriori predictive 
data mining process, which constitutes an added value of this proposal.

A. Future Lines of Work
To extend the scope of the proposed methodology, we plan to 

develop new metrics and indicators. We will use combined algorithms 
based on mean square error and data mining algorithms applied on 
the complete files, and then on the files imputed by different methods 
after having been amputated by different mechanisms.
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