
- 1 -

Please cite this article as:
A. Zaman, Z. U. Din, S. Iqbal, A. A. Shuhail. UPMVM: A Metrics Verification Model for Urdu Poetry, International Journal of Interactive Multimedia and
Artificial Intelligence, (2025), http://dx.doi.org/10.9781/ijimai.2025.09.001

Keywords

Arud Meters, Natural
Language Processing,
Pattern Matching,
Poetry, Urdu Ghazal.

Abstract

Urdu poetry retains a prominent position in the cultural heritage of Urdu language. Rhyme schemes and
meters are frequently employed in poetry, which follow specific patterns and structures. Natural Language
Processing has the capacity to recognize and analyze these patterns, which is beneficial in the investigation
of poetic forms. This research presents the UPMVM (Urdu Poetry Metrics Verification Model), a novel rule-
based architecture, designed for detecting meter of any given Urdu ghazal verse. In this work, we propose
an algorithm that consists of sixteen steps that identifies the Arud meter in the Urdu verses using a custom
developed system. This application will not only assist professional poets but also enable students to examine
poetry within the framework of prosody principles. The accurate analysis of the prosody of any poetry relies
on the act of uttering words rather than on a written record. UPMVM consists of two phases: 1) The primary
objective of the initial phase is to consolidate all available literature of the Arud system into a unified digital
platform, then develop individual and combined DFA of each identified meter for pattern recognition; 2)
the second phase is about the algorithmic implementation. All these rhythmical patterns are matched with
290 Arud meters and their sub-meters developed during this study. The implementation strategy of phase
2 comprises of five essential sub-phases including tokenization, orthography, syllable identification, weight
assignment, and meter detection. For evaluation of the proposed method, three different datasets are used for
feature extraction, token identification and performance measurement for identification of rhythmic patterns
in Urdu poetry. The UPMVM model reached to promising outcome with an average accuracy of 94%.

DOI: 10.9781/ijimai.2025.09.001

UPMVM: A Metrics Verification Model for Urdu Poetry
Asia Zaman 1*, Zia-Ud-Din1, Sajid Iqbal2*, Asma Al Shuhail2

1 Department of Computer & Information Technology, Faculty of Computing, Gomal University, Dera Ismail Khan, KPK (Pakistan)
2 Department of Information Systems, College of Computer Science & Information Technology, King
Faisal University, Al-Ahsa 31982 (Saudi Arabia)

* Corresponding author: aasiazaman123@gmail.com(A.Zaman), siqbal@kfu.edu.sa (S.Iqbal)

Received 14 November 2024 | Accepted 23 March 2025 | Early Access 15 September 2025

I.	 Introduction

Urdu poetry is based on Arud system derived from Arabic and
Persian languages. Arud System is the rhythmic pattern found in

any poetry. The knowledge of Arud is crucial in Urdu poetry because
it provides an appropriate process for ensuring that the poet's work
complies with poetic weight regulations [1]. Poetry consists of tone,
metrical forms, melody, imagery, and symbolic representation [2].
Al-Khalil bin Ahmed is the founder of Illm-e- Arrud [3]. He designed
this knowledge by using the ideologies of the tune. He used basic
knowledge of Arabic poetry; his focus was that every verse ensures
some patterns to give proper weights. Poetic Weight (PW) is a poetic
meter which is the rhythmical arrangement of () mutaharik and
() sakin letters into verse parts lines [4]. Later on, these rules, with
some modification and addition, got popular in Persian poetry [5].
The origin of Urdu poem is believed to be couplet poems (a form of
Arabic poetry). Persian language influenced the Turkish and Indian
region and this art of versification got popular in these languages
as well [6]. Urdu poetry deals with Arud meter. Arud is the study

of poetic meter that is practiced in Arabic, Turkish, Persian, Urdu,
Hindi, Punjabi, and other languages of South Asia. Arud meter is a
standard pattern of sounds established by poetry experts [7]. These
meters are composed of feet [6]. The feet are the basic sound patterns
composed of short or long syllables. Short syllable is represented by
“1” and long syllable with “2”. If a meter is developed by repetition
of a single foot, like (122 122 122 122), it
is called a simple meter. On the other hand, if a meter is formed by
combination of different feet, it is called a compound meter, such as

 (2122 1212 22). Different poetry styles use different
number of feet. The line of 8 feet is called Musaman (), while line
of 6 feet is referred as Musads (). Meter nomenclature is based
on number of feet. There are 19 basic Arud meters [4] whereas one
more meter Jameel is added recently. These meters were designed to
make them easy to understand without referring context. The feet join
together in different orders and quantities to constitute the meters. If
the poetry were restricted to 19 basic meters only, it had limited choice
for poets. All meters consist of multiple sub-meters. These sub-meters
show different arrangements of feet with its zehaaf () or catalexis.

- 2 -

International Journal of Interactive Multimedia and Artificial Intelligence

Zehaaf word means amendment from the original one. Catalexis is
the name given to any irregular change occurring in the meter. There
are specific rules applied on the zehaf [8]. Most commonly, following
three rules or their combinations are implemented to make a zehaf.

1.	 Making mutaharik words sakin.

2.	 Eliminating sakin or mutaharik letters.

3.	 Adding more letters in feet/affails.

The use of catalexis or “zehaaf” generates multiple of new meters
and an acceptable range of meters exceeds 100 [3] and using all
possible zehaaf of basic meters we gather around 290 meters and sub-
meters from basic feet. The complicated nature of these regulations
emerges from the fact that the primary criterion for justifying the
phonological stability of verses is the accumulated effect of sounds as
a whole, rather than the specific words or letters used. To determine
and quantify the weight and rhythm of sounds, the poem is analyzed
by dividing it into words (Tokens), and further breaking down the
words into syllables. A syllable is a unit of sound in prosody that can
be classified as either a long syllable, a short syllable, or a flexible
syllable. The representation of weight of syllables is given in Table
I. A long syllable is formed when two consonants are combined
with a short vowel. A syllable that consists of only one vowel or
consonant is referred to as a short syllable. A flexible syllable consists
of a consonant and a long vowel. Its pronunciation can vary, being
either long or short depending on how it is spoken. After retrieving
token syllabification, we assign weights to each identified syllable
according to Table I to get the numeric pattern of the meter for
further meter detection.

TABLE I. Syllable Representation

Syllable Weight Representation

Long 2

Short 1

Flexible X

Our approach firstly identifies verse tokens by splitting functions,
then applies Arud rules on tokens to get token-taqti that contains only
those words which are phonetically effective. Token-taqti describes
the verse syllables. The identified syllables are subsequently measured
in quantity in order to establish the verse pattern. Subsequently, in
order to facilitate verse pattern matching, the state sequence of the
Deterministic Finite Automaton (DFA) associated with each of the 290
identified meters is retained and subsequently retrieved.

The main contribution of the model involves organizing and
preserving Urdu meters and their variations, creating a unique pattern
for each meter. Using verse tokens model a comprehensive dataset
for an Urdu lexicon database is developed. Analytical approaches are
used to verify the authenticity of Urdu verse meters, and the use of
algorithms in Urdu Poetry Metrics Verification (UPMVM) systems
enhances metric management and analysis. One main influence of
UMPVM is improving educational tools and information retrieval
mechanisms. The rest of this article comprises 6 sections. Section II
contains a brief overview of related work. Section III illustrates the
datasets used in the proposed methodology. Next section IV describes
the proposed methodology which includes the steps and algorithms
used in the UPMVM implementation. Section V further elaborates on
the methodology step by step by running a sample example test-case.
Section VI shows the evaluation of test cases results using different
evaluation measuring techniques. Finally, Section VII presents the
conclusion and future work.

II.	 Related Work

Currently, there is a lack of research explicitly focused on analyzing
the prosody of Urdu poetry using computational methods. In Urdu
language hot area of research is stemming [9][10], POS tagging [11],
parsing [12] and context analysis. However, there are research papers
dealing with content analysis, authorship attribution of Urdu poetry
using machine learning algorithms. In 2020 Nida Tariq’s [12] and
in 2019 Momna Dar’s [1] studies use a variety of machine-learning
approaches to determine the poet’s name. To categorize the poet’s
name, they employ many classification techniques, including Decision
Tree, Nave Bayes, SVM, Random Forest, and KNN. In another work
[13] Agha Ali Raza applied N-gram-based algorithms to corpora for
applied authorship attribution. Shahid Rabbani [14] in 2006 explored
Urdu poetry data to provide numerical insight into ghazal features
analyzed using a multidimensional scale to identify the linguistic
diversity.

The Arud system has its origins in the Arab culture. Hence, we have
identified the scholarly research primarily focused on the Arud meter
in Arabic [15]-[25] as well as its use in Punjabi [26][27] and Ottoman
languages [28]. Additionally, software systems have been created to
analyze the prosody of Arabic poetry. A computing system was built
at Yarmouk University in 2003. Unfortunately, the test data for that
system are no longer accessible [29]. An expert system named ALAroud
was developed in 2009, which specifically met the requirements of Al-
Khalil ibn Ahmad al-Farahidi, including the use of diacritic markings.
In 2010, a system called EHST was developed [30]. This approach not
only identified the meter, but also emphasized the incorrect placement
of words inside the poem. In 2013, a method called “Finding Arabic
Poem Meter using Context-Free Grammar” [15] was created using
regular expressions (REs) and Context-Free Grammars (CFGs) where
pipeline-based text processing technique was employed. In this work,
the initial stage was the conversion of the stanza into a metrical pattern.
Subsequently, the verse was segmented, and ultimately, the meter was
ascertained. The system achieved an accuracy rate of 75% for the given
input test data. Subsequent advancements, exemplified by the system
presented in 2014, prioritized accuracy and efficiency in Arabic poetry
prosody analysis. Dahab et al. [16] and Belal [30] contributed to this
progress by proposing algorithms utilizing finite state automata and
focusing on the first part (Sadr) of Arabic poetry verses. In recent
studies [23] [24] for Arabic meter detection techniques deep learning
models are used and generate results with high accuracy. Recently
in 2024 [23] Mutawa uses classical Arabic poetry that follows one
of the 16 meters, with metering being the rhythmic framework. A
deep learning model was implemented using TensorFlow on a large
dataset of Arabic poetry. Character level encoding was used for full-
verse and half-verse classification, with the Bi-LSTM model showing
the best accuracy, with 97.53% for full-verse and 95.23% for half-verse.
In 2019 [24] Waleed introduces machine learning models RNN in
detecting poems meters from plain text. This is a step forward for
machine understanding and synthesis of languages in general, and
Arabic language in particular. Machine learning networks successfully
classified 16 Arabic and 4 English poem meters with 96.38% and 82.31%
accuracy, respectively, using massive datasets of over 1.5 million
verses from nontechnical sources and unstructured formats. Zeyada
et al. [25] introduce a new AI system called “IMAP” to automatically
recognize the Arud of modern Arabic poems, a challenge in this
field. The system uses machine learning techniques to identify Arud,
a group of syllables that form a prosodic unit, with an accuracy of
99%. Another work [31] identifies the poetic meter in spoken Arabic
poetry, this research suggests a voice-based methodology. Three
meters spoken aloud by two speakers are among the 230 samples
drawn from ten poems that the model employs. The model employs
a support vector machine (SVM) classifier, a long short-term memory
classifier, and linear prediction cestrum coefficient and Mel frequency

- 3 -

Article in Press

cepstral coefficient features. The speaker-dependent strategy achieves
the highest accuracy in the SVM model and surpasses the performance
of state-of-the-art research by 3%. An analogous methodology is
recognized in the field of Turkish literary academia. In 2012, Kurat
[28] introduced a system for identifying the Arud meter in Diwan
poetry, a crucial aspect of the old Turkish literary heritage. The initial
input consists of verses written in Ottoman character, which are
subsequently transformed into Latin Transcription Alphabets (LTA)
through transliteration. Following transliteration, the text is subjected
to metrical analysis in order to determine the meter and detect any
associated deviations or inconsistencies. In 2020, Muhammad Raihan
[26] created a web application specifically designed to detect Arud
meters in Punjabi Ghazal poetry. The approach entails applying
orthographic changes, scanning verses, and utilizing nested iterations
to synchronize rhythmic patterns with 37 Arud meters. The automated
methodology surpasses human alternatives in terms of efficiency. A
research based on observation and experience discovered that 83% of
the dataset used for testing could be accounted for by 5 particular Arud
meters. In 2023, Ayush [23] employed machine learning techniques
to automate the categorization of Punjabi ghazels. The dataset was
divided into four distinct categories. In Latent Dirichlet Allocation
scenarios, the Support Vector Classifier (SVC) consistently achieved
a higher accuracy rate of 82.17% compared to TF-IDF. Despite no
scientific research on detecting Urdu poetry metrics, websites like
Aruuz [32] and Rakhta [33] help poets determine their work’s meter.
Aruuz offers tools for detecting overlap weight, closest overlap,
word-matching corrections, and single word overlap. Aruuz dataset
[34] contain 80k Urdu words. On the other hand, Rakhta provides
a comprehensive online resource for Urdu literature, including
translations, dictionaries, audio and video resources. Both sites aim
to promote and uphold Urdu’s cultural heritage where Rakhta has
recently launched, in April 2023, the beta version of its project Taqti,
to detect the meter of any given verse. The fundamental knowledge of
the Arud meter was acquired from chapters 1-7 of the book “Pritchett
and Khaliq” [6] and chapters 2-5 of Captain Pybus’ book [7].

In [35] one of the recent paper Maged used RRN and BiRRN for
tasks such as text classification, named entity recognition, or language
modeling, which might be adaptable for meter classification to detect
Arabic poetry meter. Urdu Arud meters classification work done
in different studies [36] [37] to explore the problems faced in Arud
system [38].

III.	Evaluation Dataset

The UPMVM model utilizes three datasets named UD1, UD2
and UD3. UD1 is primarily used to collect and retrieve 290 poetry
meters (rhythmic patterns [) and their corresponding feet. Existing
literature and expert’s feedback used to generate UD1. Other uses of
this dataset include the design of DFA state function sequences with
terminal state information to align the identified verse meters. UD2
is collected from Zeeshan’s repository [34] and updated. This update
process involves the parsing and tokenization of UD2 dataset. Arud
rules are then applied to each token for its discretization, resulting
into a tok-taqti which is then added to vocabulary if it is not already
present. This dataset UD2 contains 80,000 Urdu words along with
their diacritics, language information, and word variations. The third
dataset UD3 is used to evaluate the proposed model. UD3 contains
500 verses including structure-based genre, collected from published
books [3][4][5][6]. The dataset contains verses that have undergone
rigorous reviews by poetry specialists, and each verse is annotated
with poetic metrics like syllable count, rhyme scheme, meter pattern,
and metadata about genre, style, and period. UD3 serves as a starting
point for validating the UPMVM. Table II, Table IV and Table VI
present the important features of all three datasets. While Table III,
Table V and Table VII explore the record samples of all datasets.

Our understanding of the metrical structure of verses is not restricted
to particular poets or periods in poetry; rather, it applies to every Urdu
Ghazal verse. The dataset utilized for model evaluation comprises
works of early Urdu poets which are done during the nineteenth
century, with particular attention on its structural components.

TABLE II. UD1 Description

Feature Description Measure

Dataset: UD-1

No. of meters Identified Urdu meters and its Sub meters 290

Meter Language Urdu, English 2

Size of dataset 98KB

DFA terminal state Final state showing the acceptance of pattern

DFA states pattern Individual meter state functions pattern stored
Example state sequence
[0 33 34 35 36 37 38 39 601 602 603…]

TABLE III. UD1 Record Sample

Meter ID Meter EngName Meter UrduName DFA states Sequences Terminal Meter feet /Afail

101 Hazeej Musamn Akhrab
[0 33 34 35 370 372 374 384

385 386 387 379 380 381 382]
382

66
Kamil Musamn Muzmar

Salim Alakhir

[0 1 201 202 233 234 270 271
272 273 274 275 276 277 278

279 280 281 282]
282

35
Rajez Musaman Matawa

Mazal
[0 33 34 55 56 57 58 112 113

114 115 116 117 598]
598

9 Mutakarib Musaman Maqsor [0 1 2 3 4 5 6 7 8 9 10 11 31] 31

56
Ramal Musaman Makhboun

Mahzof Maskin
[0 33 59 177 178 218 219 220

221 648 649]
649

- 4 -

International Journal of Interactive Multimedia and Artificial Intelligence

TABLE IV. UD2 Description

Dataset: UD-2
Feature Description Measure

No. of token Urdu token with diacritics 80k tokens

Token Language Urdu, Persian, Arabic, Sanskrit, English Languages merged

in Urdu 98KB

Size of Dataset 8.50 MB

Tok-Taqti Basic Arud rules applied on token to get tok_taqti
Example state sequence
[0 33 34 35 36 37 38 39 601 602 603…]

TABLE V. UD2 Sample Record

Token ID Token Muarrab Taqti Language
45008

7

23

124

178

333

364

 441

476

1075

64500

TABLE VI. UD3 Description

Feature Description Measure
No of Verses Number of verses used for result analysis 500

Meter Language Urdu

Size of Dataset 5 KB

Verse Annotation Randomly selected Ghazal verses

No. of meters Most frequently used meters in Urdu 9

TABLE VII. UD3 Sample Record

V # Verse Verse Meter Verse Afail Verse Syllable quantification

1 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2

2 2 1 2 2 1 1 2 2 1 1 2 2 2 2

3 1 2 1 2 1 2 1 2 1 2 1 2 2 1

4 2 2 2 1 2 1 2 1 2 2 2 1 2

5 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2

During the development of our dataset, we have observed that current
state of Urdu poetry resources is inadequate for the purpose of meter
detection and Urdu related NLP. In this context, our dataset, for meter
detection, is an initial data collection.

IV.	Methodology

Identifying the Arud meter in poetry requires a sophisticated
technique of scansion. The fundamental concept underlying this
approach involves transforming the verse into a corresponding rhythm
pattern. The primary contribution of this work is the development of

an innovative method known as UPMVM, which seeks to identify
every original or variation meter found in any verse in conventional
Urdu poetry. UPMVM consists of two primary modules: the first one
is used for gathering Urdu meter data, while the second one is used
to implement algorithm for developing applications to analyze meter
detection. The rule-based approach used in our method encapsulates
the domain-specific knowledge or heuristics, guiding the system’s
behavior in processing and analyzing data. Rule-based systems are
characterized by their explicit representation of knowledge in the
form of if-then rules or logical statements.

- 5 -

Article in Press

The literature highlights the need for further research on the prosody
of Urdu poetry due to limited data resources and the absence of a standard
model for verifying written Urdu poetry verses. UPMVM comprises of
two main phases following main steps as shown in Fig. 1. First six steps
comprise phase I while remaining 10 steps make the phase II.

The first phase involves gathering metrics related to Urdu
poetry and constructing its DFA, while the second phase involves
implementing algorithms to create an application that can identify
verse meters. Each phase has its own unique set of steps. The initial
phase of meter collection and DFA construction goal is to compile
metrics and their sub-meters for Urdu poetry from published works,
quantify them and then each detected metric’s DFA is created. The
second phase of algorithmic implementation is to develop a tool by
executing algorithms for validating Urdu verse meter. Both phases
contain the number of steps shown in Fig. 1, which describes the
pictorial representation of UPMVM.

A.	 Phase One
Phase I of the UPMVM comprises six steps aimed at meter collection

and constructing meters DFA for pattern recognition.

Step1: Collection and Classification of Urdu Meter and its Sub-meters
This initial phase entails the comprehensive gathering of data
pertaining to Arud meter, a fundamental aspect of Urdu poetry.
The compilation process involves sourcing information from
literary works and consultations with experts [6][7][8][21][3]. A
thorough examination of available materials has resulted in the
identification of 290 meters. Each associated with its respective
units of measurement, namely feet or Afails. The classification of
meters is based on the foundational principles of feet and zeehaf.
Basic meters such as kamil, Hazej, and Mutakarib
are introduced, alongside the corresponding number of feet, such
as Musadas for six feet and Musaman for eight feet. Additionally,
meters nomenclature is established, incorporating the alignment
of zeehaf points within meters for precise identification and
categorization. A detailed presentation of meter nomenclature and
quantification is provided in Table VIII.

Step 2: Description and Analysis of Meter Contents (Afail –)
This step involves the meticulous examination of the constituents
of each identified meter and its sub-meters. The composition of

feet is analyzed with regard to their short and long syllables. For
instance, the meter pattern is dissected into its constituent
syllables (), with a quantification of 1 2 2, denoting the
sequence of short, long, and long syllables.

Step 3: Quantification of Feet in Meters
Once the feet have been accessed, the following step is to quantify
them in meters. The quantification of each meter is represented
as a sequence of 1s and 2s. As discussed above, a short syllable is
represented by the number 1, whereas a long syllable is represented
by the number 2. There will be no alteration in feet, so there will
be no flexible syllable in Afail/feet composition. For example,
if we have a metric quantification string pattern as in Fig. 2:
1 2 1 2 2 1 2 1 2 2 feet/Afails we parse this
meter string into tokens in the form of afail and then quantify
them. The JFLAP [39] software was used to build individual as
well as combined DFA for all 290 meters listed in dataset UD1.

Step 4: Construct a Deterministic Finite Automaton (DFA)
A DFA is constructed for every meter that has been identified in
the preceding stages. Each DFA is used for pattern recognition of
the meters through its state sequences. Fig. 2 shows individual
meter () Mutakarib Maqboz Aslam’s DFA.

1 1 1 1

2

2222

2

q0 q1 q2 q3 q4 q5 q6 q7

q10

q8

q9

Fig. 2. Individual Meter DFA.

Phase One
Meters Collection & its DFA Construction

Metric Extraction Enter Verse

Tokenization

Extract Tok-Taqti
from UD2

Adding Missing Token
(UD2)

Orthography\Apply
Arud rules

Syllibification

�antify Words

Generate Verse Sequence

Verse Validation

Verified
Verse
Result

1x212212212

112122
122212

Metrics
DFA

Combine &
Optimized DFA

DFA states pa�ern Storage

0 33 34 35 370 372 374 384

DFA states sequence Match Pa�ern

Feet Description

Meter
�antification

Phase Two
Algorithmic Implementation

Fig. 1. UPMVM Steps.

TABLE VIII. Meter Nomenclature & Quantification

1 Mutakarib Musadas
1 2 2 1 2 2 1 2 2
(Left to right)

2
Mutakarib Musaman Aslam Maqsor

2 2 1 2 2 1 2 2 1 2 1

- 6 -

International Journal of Interactive Multimedia and Artificial Intelligence

Step 5: Integrate the individual DFA
The individual DFAs of all meters and sub-meters are integrated
to formulate an optimal combined pattern. Firstly, combined
DFA of all basic 20 meters with their sub-meters is created.
Lastly overall combined patterns are created for showcases of
the interconnectedness of meters and their corresponding sub-
meters. One of the basic Meter Mutakarib ‘s Combined DFA
is depicted in Fig. 3.

Step 6: Development of Database and Verification Process
The database stores meter name with its feet/Afail and the series
of DFA state patterns in combined DFA with their terminal state.
The stored metric sequence will be compared with the generated
verse sequence to determine whether the entered verse is written
with the appropriate emphasis to match a specific meter.

B.	Phase Two
This phase II of UPMVM comprises 11 steps, during which a variety

of procedures are utilized for implementation. This application is
designed to determine the meter of any Urdu poetry verse entered by
the user. In algorithmic representation of certain terms, we use some
symbols presented in form of the following equations:

•	 Verse → vr = tok (1)

Verse is collection of tokens

•	 Tokens → tok = toktaqti (2)

Token is collection of token-taqti words

•	 TokenTaqti → toktaqti = le (3)

Tokentaqti is a collection of letters

•	 Letters → le = vo, cn (4)

Letters is collection of vowel & consonant

•	 Vowel → vo = { } (5)

Vowel are set of certain Urdu alphabets

•	 Letters → cn = { } (6)

All remaining Urdu alphabets which are not vowels

Step 1: System Input (poetic verses)
Input a Verse (vr) into the tool without diacritic (). vr is
collection of verse tokens according to eq (1).

Step 2: Tokenization
Split verse (vr) into tokens (tok) as shown in eq (2) using ‘space’
based split function. Algorithm 1 generates number of tokens by
applying space split function. Identified tokens are then matched
with the dataset consisting of more than 80K Urdu lexicon [34].
If a token tok is found in the database, then token with diacritics
is retrieved from UD2 dataset in UPMV application for further
actions, otherwise step 3 invokes.

Algorithm 1: Splitting Urdu Verse

 Data: Array of verse splitted via split function
 Result: Split Urdu verse with taqti
 Split() ;
 String[] Patterns = vr.Split(“ ”);
 foreach String tok in Patterns do
 Match tokens in the Lexicon database;
 if match found then
 extract toktaqti with diacritics;
 else
 insert missing token taqti with diacritics;
 end
 end
 end

Step 3: Adding missing token to dictionary
Add a missing token if the token is not found in the database. A
function Inserttaqti( ) is called in Algorithm 2 to insert the missing
token with its taqti into UD2 dataset.

Algorithm 2: Database Insertion Function

 tok search missing token;
 enter token taqti \# database with diacritics;
 update database;
 return missing token;

Step 4: Systematic analysis of tokens
The system utilizes a series of scansion Arud rules functions to
systematically analyze all toktaqti words, identifying those that
produce audible sounds upon pronunciation. Various scansion
algorithms given below (algorithms 3-12), i.e. nasalization,

q0 q1 q2

q28

q29
q30 q31 q32 q33 q34 q35

q36
q37

q38 q39 q41

q3 q4 q5 q6 q7 q8 q9
q10

q11 q12 q13
q14

q27
q41q86q64

q25

q63
q62

q61

q60
q59

q58q57q56
q55q47

q48

q50

q51
q52

q53
q85

q54 q49
q72 q73 q74

q75

q78

q81

q82

q83

q84 q85

q76

q77

q15 q16 q17

q44

q18
q19

q20 q21

q22q23
q24

1

1

1
1

1

1

1

1
1

1

1

1
1

1
1

11

1

1

1

1
1

1

1

1

1

1

1 1 1 1

2

2

2

2 2

2

2

2 2
2

2

2
2

2

2
2

2

2
2

2
2

2 2 2 2
2 2

2 2 2

2

2

2
22

2 2

2

2 2
2 2

2 2

22

Fig. 3. Combined DFA of meter Mutakarib.

- 7 -

Article in Press

implementing diacritics such as Tashdid (ّ), Kahrii Zer (۔), Dagger
Alif (ا), wow (و) construction, Kasr-e-Izafat, Silent Letters (ء ,و),
Alif Madd Grafting ( آ ), and Alif Grafting (ا), can be applied as
necessary on any token tok during this step.

Algorithm 3: Nasalization Procedure
 Data: token le contain ھ
 Result: toktaqti without ھ
 if toktaqti contains ھ (Unicode U + 06BE) then
 remove ں
 end
 if toktaqti contains ں (Unicode U + 06BA) then
 remove ں
 end

Algorithm 4: Procedure removeTashdid
 Data: toktaqti le contains tashdid
 Detected letter with Tashdid Result: Modified le without tashdid
 if le contains U + 0651 then
 repeat
 Repeat the le twice with diacritic U + 0651;
 until le twice;
 end

Algorithm 5: Procedure deal KahriiZer
 Data: toktaqti
 Result: Modified verse with Kharii Zer replaced by ی
 if verse contains "Kharii Zer" then
 Replace "Kharii Zer" with ی;
 end

Algorithm 6: Procedure DaggerAlif
 Data: toktaqti
 Result: Modified verse with Dagger Alif replaced by ا ;
 if verse contains "Dagger Alif" then
 Replace "Dagger Alif" with ا ;
 end

Algorithm 7: Procedure wowConstruction
 Data: tok, le
 Result: Modified word with appended at the end if it is followed
 by le
 if tok is followed by le و then
 Append at the end of the word;
 end

Algorithm 8: Procedure KasreIzafat
 Data: toktaqti
 Result: Modified verse with KasreIzafat replaced by ۓ
 if verse contains KasreIzafat then
 Replace KasreIzafat with ۓ ;
 end

Algorithm 9: Procedure silentWow

 Data: toktaqti

 Result: Modified toktaqti with removed if it is immediately after
 the letter خ

 if toktaqti contains خ then
 Remove و;

 end

Algorithm 10: Procedure silentHamza

 Data: toktakti

 Result: Modified toktaqti with removed if it is at the end of a
 word

 if toktaqti contains ء at the end of a word then
 Remove ء ;

 end

Algorithm 11: Procedure AlifMaddGrafting

 Data: input toktaqti

 Result: Modified vr with vo آ replaced with vo ا under certain
 conditions

 if vr contains a toktaqti starting with vo آ then
 if the last le of previous toktaqti is con then
 Replace vo آ with vo ا in the toktaqti;

 end
 end

Algorithm 12: Procedure ReplacingHamza

 Data: toktaqti

 Result: Modified verse with Hamza ء replaced by Alif if it is not
 at the end of a token

 if a tok in the verse contains Hamza ء which is not at the end then

 Replace Hamza ء with Alif ا;

 end

For example in Algorithm 1 of Nasalization, Unicode U+06BE is
detecting ھ while U+06BA is used for ں . According to Arud rules
 does not make any sound and omitted from the token tok. A ں ,ھ
Nasalization algorithms is invoked for every diacritic in the token
tok and triggered to execute appropriate procedure when specific
diacritics were applied to the tokens. When necessary, these Arud
rules were implemented to toktaqti via an if − then condition.

Step 5: Token scansion
This step extracts the entirety of token scansion (toktaqti-) values
from the step 4. After applying the Arud rule to the retrieved
toktaqti, any of the algorithms listed above may be utilized
depending on the diacritics present in the token. For toktaqti, a
number of Arud rules are implemented to the tok. The classification
of taqti words into short, flexible, and long syllables is determined
by the length of the words and the position of the vowels in these
toktaqti words as shown in Algorithm 13.

- 8 -

International Journal of Interactive Multimedia and Artificial Intelligence

Algorithm 13: Scantokenlength Procedure

 if token.length = 1 then
 Call scanOnelength();

 end
 else if token.length = 2 then
 Call scanTwolength();

 end
 else if token.length = 3 then
 Call scanThreelength();

 end
 else if token.length = 4 then
 Call scanFourlength();

 end
 else if token.length = 5 then
 Call scanFivelength();

 end

The Scantokenlength function is responsible for determining the
length of each token and then calls the corresponding functions
in accordance with the length of the token. Every Scanlength
function (scanOnelength, scanTwolength, scanThreelength,
scanFourlength and scanFivelength) in Algorithm 13 is specifically
engineered to evaluate the placement of consonants and vowels
within the token and apply Arud rules mentioned in algorithms
3-12. The identification of toktaqti syllables within the token is
facilitated by this analysis.

Step 6: Taqti word differentiation
The system differentiates taqti words into short, flexible, and long
syllables, which are based on the position of the vowels and the
length of the words. Algorithm 14 used for this procedure.

Algorithm 14: Syllables Identification Procedure

 all toktaqti in the vr are traversed if (con is followed by vo) then
 Mark the syllable as Long;

 end
 if (vo not at the end of toktaqti) then
 Mark the syllable as Long;

 end
 if (con alone in toktaqti) then
 Mark the syllable as Short;

 end
 if (vo at the end of toktaqti) then
 Mark the syllable as Flexible;

 end
 if (con is preceded by con) then
 Mark the Sakin char as a short syllable;

 end

Step 7: Taqti- token quantification
In this step taqti tokens are quantified according to the identified
syllable by calling function assigncode( ). Words are differentiated
as short, long, and flexible syllables as per arud rules and quantified
as 1, 2, and, x respectively as shown in Algorithm 15.

Algorithm 15: AssignCode Procedure

 all toktaqti in the vr are traversed if (syllable is Long) then
 Set weight of syllable to "2";
 end
 if (syllable is single Short) then
 Set weight of syllable to "1";
 end
 if (syllable is Flexible) then
 Set weight of syllable to "x" // flexible weight;
 end

Step 8: Sequence generation
This step generates two sequences for flexible syllable words
by calling the function generatesequence( ). The flexible syllable
is treated as ‘1’ in the first pattern row and then ‘2’ in the other
pattern. The same is repeated for each flexible syllable found in
the verse pattern.

In summary, step 8, generates all possible sequences denoted by
1 and 2, representing syllable types. The number of generated
patterns depends on the presence of ‘x’ flexible syllables. For
example, in Verse test-case 1 of Fig. 5, a sequence like [2 2 x 2 x
2 1 1 2 2 1 2 1 2 1] generates four distinct patterns by applying
Algorithm 16. These patterns are essential for understanding
the rhythmic structure and meter of Urdu poetry. The generated
sequence produces four possible patterns as

Algorithm 16: Generate All Possible Sequences

 Data: Original Urdu verse
 Result: Verse All possible sequences
 GenerateSequence() ;
 if Vr contains X;
 then Check the number of X in verse length;
 foreach X in Vr sequence do
 interpret X with 1 ;
 interpret X with 2;
 Display all possible sequences;

Step 9: Matching verse pattern
This step compares the verse pattern generated in previous step
sequentially with the series of stored DFA (step 6, UD1 dataset
column # 4) by calling a matchSquence( ) function (see Algorithm
17).

Algorithm 17: DFA state q_{0} function for MatchSequence

 Input: Verse DFA states matched sequence
 if next == null then
 display "No meter is matched";
 if next ==1 then
 fq1();
 end
 else
 fq(33);
 end
 end

- 9 -

Article in Press

Step10: Matching verse pattern with Afail
The system detects the exact match of the pattern with the DFA
state sequence and verifies the meter name with its Afail. In this
step, we can detect the meter name with its Afail of any entered
verse. Overall cumulative algorithm for detecting verse meter is
depicted in Algorithm 18.

Algorithm 18: Collective Urdu Poetic Verse Matching Algorithm
 Input: Enter Urdu verse without diacritics
 Output: Urdu Verse Matched Meter, Meter Name, Meter Feets
 Entered Urdu poetic verse;
 vr splits into tokens by split() // Apply Algorithm 1;
 for each token in the Database do
 if token found then
 Scantokenlength() // Apply Algorithm 13;
 else
 dbinsertion() // Apply Algorithm ';
 end
 end
 for each le in taqti-token do
 apply Arud rules // (algorithms 3-12, Arud rules algo applied
 where needed);
 end
 for each taqti-token in tokens do
 callassigncode() // Apply Algorithm 15;
 end
 for each sequence in original sequence do
 generatesequence(Patterns) // generate all possible verse pattern;
 for each Pattern in Patterns do
 for each state function do
 matchedSequence() // Apply Algorithm 16;
 end
 display detected meter;
 end
 end

Next, the Algorithm 18 is written in pseudo code form for clarity to
increase readability.

Algorithm: Collective Urdu Poetic Verse Matching Algorithm
Input:
 Urdu verse without diacritics
Output:
 Matched Meter, Meter Name, Meter feet
Procedure:
1. Split the Urdu poetic verse into tokens.
2. For each token in the dataset:
 a. If the token is found:
 i. Apply Algorithm 13 (Scan token length).
 b. Else:
 i. Apply Algorithm 2 (missing token insertion).
3. For each `taqti-token` in tokens:
 a. Apply Arud rules (Algorithms 3-12, and additional rules if needed).
4. For each `taqti-token` in tokens:
 a. Call `assign code()` (Apply Algorithm 15).
5. For each sequence in the original sequence:
 a. Generate sequences (`Patterns`) for all possible verse patterns.
 b. For each pattern in the generated patterns:
 i. For each state function:
 - Apply Algorithm 16 (Match sequence).
6. Display the detected meter.
End

V.	 Example Test Case: Verse Step By Step
Implementation

After explaining the step by step working of proposed methods,
now, we run our solution for a test input to elaborate the UPMVM
process of meter identification. Through this instrument, the verse
writer can discern the metrical structure of a given verse. Looking
closely at the steps that were taken in the implementation phase, Fig. 4
gives detailed view about how the second phase of the UPMVM is put
into consideration. The second phase is explored with a verse example
and divided into five sub-phases, each of which applies several
functions to complete the specific tasks. In the second phase, 11 steps
are summed up into five sub-phases i.e. Tokenization, orthography,
syllable identification, weight assignment, and meter detection. Let
consider a sample verse as a test case 1:

اچھا ہے دل کے ساتھ رہے پاسبان عقل

Once a verse is input to the system, the verse goes through the sub-
phases of the phase 2 of UMPVM as shown.

1.	 Tokenization (step 1-2)
In the first phase of pre-processing tokenization is performed as
described above. The possible tokens of the above verse are as
follows:

2.	 Orthography (step 3 – 4)
Orthography is performed on the tokenized verse. Here, the
scansion rules are applied where applicable to the identified token.
The example output is as follows:

3.	 Syllable Identification (Right to Left) (step 5 – 6)
The third phase transforms detected tokens into Arud tokens
by applying Arud rules, which are applicable on each identified
token. The output of syllable identification is shown below, where
 is چ letter ,ھچ is removed and, due to tashdid on اھچا in token ھ
counted twice. ھ is also removed from word ھتاس transforming it
into ۔تاس . The output of this phase is the Arud token which gives
the sense of short, flexible, or long syllables:

4.	 Assigning weights (Left to Right) (step 7-8)
In this second to last phase of verse implementation, each Arud
token is detected as a short, long, or flexible syllable. Where the
short syllable is assigned a weight of 1, the long syllable as 2, and
the third flexible syllable as X. The example verse is assigned
weights as shown below. This pattern is further used for meter
matching.

2 2 𝑥 2 𝑥 2 1 1 2 2 1 2 1 2 1
5.	 Meter Matching (Left to Right) (step 9 – 10)

In this last phase of implementation, where verse meter is detected
with its state function, each state function is matched to the above-
required pattern in the metric function. These state functions are
created using combined optimized

DFA state sequences of identified meters. Each state function
starts matching from state function q0, then according to the
sequence generated above that calls the corresponding state

- 10 -

International Journal of Interactive Multimedia and Artificial Intelligence

Start

TokensWord Tokenization
with split function

No

No
Yes

Yes

UrduWords
DataSet

if
token exist

in the
database

Word
scansion
database

Insert
function to

add
missing
token
word

Token
Scansion

Syllable
identification

&
Assiging
weight

Sequence Pa�ern
from First Phase
of Methodology

No

DFA state functions
retrived for matching

sequence

DFA
Pa�ern

Meter
Matching

Enter Urdu Verse

Urdu Verse

Tokenization

Orthography

Verse
Pa�ern

Matched with
stored DFA states

sequence

Verse Meter
not Verified

Verse Meter
verified as

Syllables
Scansion

Scansion Function Tokens

MySQL database

Steps to be followed

Condition

flexible short longVerse Pa�ern Generated

221212112212121
221222112212121
222212112212121
222222112212121

1 2 1 2 1 1 1

�antify le�ers as Sakin & Mutaharik according to Arud rules

Word Scansion by applying Arud rules

1

2 2 2

2

2X X 2 2

1 2

Scansion via functions to apply basic Arud rules

Nasallization

isVowelPlusH

lengthOneScan

lengthThreeScan

Diacreitics

Silent-le�ers

lengthTwoScan

lengthFiveScan

Gra�ing

NoonGhunna

lengthFourScan

removeTashdid

Fig. 4. Implementation Example of UPMVM.

- 11 -

Article in Press

functions until the end of the Tc pattern. In our test case, fq0()
calls fq33() because the first sequence is 2, which invokes state
function fq33(), and then will call state functions according to the
generated sequence in previous sub-phase. The above verse will
sequentially call the following functions one by one [0-33-34-35-
36-246-247-497-498-499-500-501-503-504-506] to match the exact
meter of the given verse until it reaches the terminal state. Here,
algorithm 16 is implemented, to call the DFA state functions. The
verse pattern generates four possible sequences and successively
matches them. Every generated pattern as shown in step 8 calls
the state functions to be matched with the stored DFA sequence
and display the matched verse as shown in Fig. 5. The detected
meter of test case 1 is []. Fig 5 shows
all steps results of the UPMV tool.

VI.	Evaluation Results

To measure the effectiveness of UPMV system, we use a (UD3)
benchmark dataset. This labelled data is filtered out through two
autonomous systems i.e. the Aruuz system and our UPMV tool for

meter detection [34] system [32] is one of the commonly known and
frequently used platforms for verse meter detection. Techniques such
as cross-validation help maximize the utility of a limited dataset by
iterative training and testing the model on different subsets of the
data. We assess the outcomes of the Aruuz system by contrasting
them with the findings of the UPMV through the utilization of various
evaluation metrics.

Fig. 6 describes that in the model evaluation experiment we
filtered UD3 from both autonomous systems UPMV and Aruuz. We
carefully compared and evaluated the outcomes of both tools R1 and
R2 with labelled datasets using contingency metrics. To evaluate
the performance of our system, four well-known metrics are used,
namely, (i) precision, (ii) recall, (iii) F1-measure [40], and (iv) accuracy.
After executing all 500 test cases from both systems we analyzed that
out of 20 basic metrics, the dataset covers 9 most frequently used
Urdu meters. Most of the results show these nine meters as shown
in Table IX.

Fig. 5. UPMV System Screenshot.

- 12 -

International Journal of Interactive Multimedia and Artificial Intelligence

Verse

Experiment

Aruuz
system
result

Accuracy
Precision

Fl-measure
comparison

cross matching

Labelled
Dataset

R1 R2

UPMV

use
autonomous

model for
detecting

verse meter

use
expert
results

BenchMark Aruuz

Verse

Verse

Fig. 6. Result Evaluation.

TABLE IX. No of Meter Collection in UD3

Meter Description No of Verse
Mutaqarb 89 متقارب

Kamel کامل 69

Hazeej ہزج 105

Khafef خفیف 77

Ramel رمل 50

Mutadarik متدارک 46

Muzareeh مضارع 39

Wafeer وافر 5

Mujtees 20

These nine meters are incorporated into our model evaluation. In
Table IX the minimum count is for the Wafer وافر meter, 20 verses i.e.
due limit use in Urdu poetry, and the maximum is for the Hazeej جزہ
meter, 105 verses. Hazeej meter is the most frequently used meter in
Urdu language having 48 sub-meters mentioned in UD1. Its number
of sub-meter is relatively high as compared to all other Arud meters.
Table IX presents a selection of meters from Urdu poetry literature,
highlighting that Hazeej (ہزج) is the most frequently used meter, while
Wafer (وافر) is the least one. The outcomes of the UPMV system
were assessed and contrasted with the results obtained from the
Aruuz system. The definitive value is attributed to human-annotated
values, which are obtained from books that have been subjected to
extensive evaluation by a wide list of experts prior to publication. We
are quantifying the number of positive cases that can be predicted
in order to validate the verse meter name and its feet/Afail افاعیل .
Specifically, we are assessing the dependability of our model by
determining how many of the correct predictions are positive cases.
We use a confusion matrix, also known as a contingency table, which
is a two-dimensional array that is employed to visually depict and
represent the correlation between instances annotated by humans
and those predicted by machines. The instances that were labelled
by humans are displayed in each row, while the machine-predicted
labels are indicated in each column.

In our case, since we are dealing with a multi-class classification
problem (different verse meters), the concepts of true negatives and
false negative are not directly applicable. True negatives refer to the
cases where the model correctly predicts the absence of a particular
class, but in our scenario, there is no “negative” class. We are interested

in predicting the specific meter of each verse, not whether it belongs
to a “negative” category. Confusion matrix contains TP, FP, TN and FN
values. In our case we consider TP, FP, and FN, which are described as:

•	 True Positive (TP): These are the cases where the model correctly
predicts the meter of a verse. In other words, if the model predicts
that a verse belongs to a certain meter category, and the actual
label of the verse matches that prediction, it is a true positive.	

•	 False Positive (FP): These are the cases where our model predicts
a verse to belong to a certain meter category, but the actual label
of the verse does not match that prediction. In other words, the
model incorrectly assigns a meter to a verse that does not belong
to that category.

•	 False negative (FN): These are the cases where our model fails to
predict the correct meter of a verse. If the actual label of a verse
indicates that it belongs to a certain meter category, but the model
predicts a different meter (or fails to predict any meter), it is a false
negative. Unidentified (UI) verses are FN values.

•	 In this context, we have compiled a 10 x10 matrix of frequently
used nine key Urdu poetry meters and an additional field of
Unidentified (UI) verses to evaluate the performance of UPMV
on a benchmark collection of verses. We compiled separate heat
maps and contingency tables for Aruuz as well as the proposed
UPMV framework on the same benchmark collection to assess
the effectiveness and relatedness of the proposed system. The
results of a multiclass classification task covering ten distinct
classes are displayed in the confusion matrix shown in Fig. 7. The
genuine class is denoted by each row, whereas the predicted class
is identified in each column. The number of occurrences in which
the predicted class is accurate is denoted by the cell values. In Fig.
7 and Fig. 8 the diagonal elements of the matrix represent correct
predictions TP, where the true class matches the predicted class.
Off-diagonal elements indicate misclassifications.

Confusion Matrix using UPMV

H
um

an
-a

nn
ot

at
ed

 d
at

a

Mutakarib 85 0 1 0 2 1 0 0 0 0

Kamel 1 64 2 0 0 0 0 1 0 1

Hazeej 1 1 101 0 0 0 1 0 1 0

Khafeef 0 0 1 67 1 1 0 0 0 0

Ramel 0 1 0 0 48 0 0 1 0 0

Mutadarik 0 1 0 0 0 44 0 0 0 1

Muzaree 0 1 0 1 0 0 37 0 0 0

Mujtees 0 0 1 0 1 0 0 23 0 0

Wafir 0 0 2 0 0 0 0 0 5 0

UI 0 0 0 0 0 0 0 0 0 0

M
ut

ak
ar

ib

K
am

el

H
az

ee
j

K
ha

fe
ef

Ra
m

el

M
ut

ad
ar

ik

M
uz

ar
ee

M
uj

te
es

W
af

ir U
I

UPMV Predicted data

Fig. 7. R1 Confusion Matrix using UPMV.

The confusion matrix shown in Fig. 7 describes diagonal true
positives for each meter, with some verses being false negatives and
misclassified, obtained with UPMV method (R1 results). Although we
find some mismatched and UI meters the percentage of these is quite
low. The analysis of heat-map shows that more than 250 verses lie in

- 13 -

Article in Press

top first three meters. The first three meters Mutakarib متقارب, Kameel
 meters have higher degrees of mismatch due to ہزج and Hazeej کامل
their large number of sub-meters. The remaining 6 meters had a lower
degree of mismatching meters. The occurrence of false negative values
in Urdu poetry is due to factors like poet’s diacritics to maintain the
verse’s rhythm. Different factors/Affail افاعیل having the same weight
detect different meters. The UPMV is a rule-based model, that is why
it ignores rhythmic analysis, and displays exact match of the verse
meter. It follows the rules and quantifies the syllables according to pre
defined Arud rule. The same data is processed by the Aruuz system to
get results R2 shown in Fig. 8.

Confusion Matrix using Aruzz

H
um

an
-a

nn
ot

at
ed

 d
at

a

Mutakarib 84 0 1 0 1 1 0 1 0 1

Kamel 1 63 1 2 0 0 0 1 0 1

Hazeej 1 0 100 1 0 0 2 0 0 1

Khafeef 0 0 1 67 1 1 0 0 0 0

Ramel 0 1 0 0 48 0 0 1 0 0

Mutadarik 0 1 0 0 0 45 0 0 0 0

Muzaree 0 1 0 1 0 0 37 0 0 0

Mujtees 0 0 1 0 0 1 0 23 0 0

Wafir 0 1 1 0 0 0 0 0 5 0

UI 0 0 0 0 0 0 0 0 0 0

M
ut

ak
ar

ib

K
am

el

H
az

ee
j

K
ha

fe
ef

Ra
m

el

M
ut

ad
ar

ik

M
uz

ar
ee

M
uj

te
es

W
af

ir U
I

Aruzz Predicted data

Fig. 8. R2 Confusion Matrix using Aruuz.

The Aruuz system was used to filter the same UD3 of 500 verses, to
accurately identify exact meter names in each verse. However, some
verses were misclassified as false negative values due to the complexity
of the system’s implementation. The Aruuz system uses different
fuzzy logic to preserve the rhythmic structure of the verse, preventing
misclassification. The heat-maps in Fig. 7 and Fig. 8 display the actual
and predicted values, while the confusion matrix is used to assess
performance using various measures. The measuring techniques used
to compare the results are described below.

A.	Precision
Precision is a quantitative measure that provides insight into the

accuracy and reliability of positive forecasts. In our context, a high
level of precision signifies that a large number of verses are marked
correctly. It indicates that the high ratio of retrieved items is relevant
and vice versa.

	 (7)

In our case

	 (8)

B.	Recall
The total number of real positive cases accurately anticipated is

known as recall. Another name for this metric is sensitivity. A lower
recall implies that a sizable portion of positive examples are being

missed by the model, whereas a greater recall shows that the model
is more adept at catching positive occurrences. In our case, recall is
defined as the number of true positives divided by the total number of
verses that belong to the positive class.

	 (9)

	 (10)

C.	F1-Measure
F1- measure is a single measure of performance of the test. A high

F1_ Measure indicates that the model has both high precision and high
recall, which is desirable for many classification tasks. It is beneficial
when you have uneven class distribution.

	 (11)

D.	Accuracy Rate
The accuracy rate (AR) for UPMV model and Aruuz system is

computed as follows:

	 (12)

A comparison was made between the results of the UPMV model
and the Aruuz system using human annotated verses in UD3. The
comparison was made between the obtained results with respect to
F-score (Eq. 11), Precision (Eq. 8), and Recall (Eq. 10) [40].

The complete details of the model performance are represented in
Table X. It shows the values of precision, recall, F1-measure, rates for
each unique class using UPMV and Aruuz tools on UD3 verses. The
findings were derived and highlight the inherent tradeoff between
precision and accuracy. UMPV Mutakarib and Muzaree
meters show the highest precision of 97%. The low performance is
demonstrated by the wafer meter with 92% precision. Similarly, with
the Aruuz method the highest precision was found in Majtees
and Mutakarib , 100 and 97 respectively. The results of the AR
analysis demonstrate that both the UPMVM and Aruuz models exhibit
similar accuracy, with only minor fractional differences. However,
UPMVM outperforms the Aruuz system despite Aruuz’s 13 years of
existence and rigorous validation processes. UPMVM delivers
satisfactory performance in detecting the exact match of verse meters
and shows potential for further improvement if additional test cases
covering all meter types are incorporated. The findings suggest that
the accuracy of the proposed model in Urdu meter classification can be
enhanced by expanding the size of the dataset. UPMVM represents a
significant advancement over the Aruuz system, as it addresses a
notable limitation in the Aruuz database, which omits one of the Urdu
poetic feet, “ ,” in its meter verification. Additionally, while the
Aruuz database includes comparisons for approximately 143 Urdu
meters, the UPMVM dataset (UD1) extends this capability by storing
192 Urdu meters for comparison.

Although the proposed model is designed for Urdu poetry, the
UPMVM’s framework could potentially be adapted to handle poetic
meters in other languages with similar metrical systems, such as
Persian, Punjabi, Othman or Arabic. This adaptation would further test
its scalability in multilingual and multicultural contexts. The UPMVM

- 14 -

International Journal of Interactive Multimedia and Artificial Intelligence

model serves as a comprehensive and widely applicable framework for
the analysis of Urdu poetry. Incorporating a user feedback mechanism
enables users to identify ambiguous results, facilitating the model’s
evolution over time. The scalability of the UPMVM is demonstrated
by its extensive dataset and capacity to accommodate a wider variety
of poetic forms.

VII.	Conclusion

The rapid digital change of modern life has led to a widespread
desire for quick fixes and simple solutions to a variety of problems.
This phenomenon is present in a number of fields, such as Urdu
poetry, where prospective learners look for quick and easy access to
educational materials. Because specialists are now faced with time
constraints, there is less need for conventional mentorship, which was
once used to ensure that poetry followed complex Arud norms.

As a result, an increasing dependence on Artificial Intelligence (AI)
platforms has emerged to satisfy the growing need for comprehensive
language acquisition. In order to address the gap between digital
accessibility and human expertise in Urdu poetry, our study
introduces the Urdu Poetry Meter Verification (UPMVM) framework.
Our approach involved implementing a rule-based system in order
to assess the viability of digitizing human expertise. The UPMVM
consists of two phases: pre-processing Urdu poetry metrics collection
and constructing their DFA for tracing pattern of each identified
meter, and implementing the model to verify meters. The first phase
focuses on pre-processing Urdu poetry metrics and assembling
existing literature on the Arud system onto a single soft-form
platform. The second phase involves algorithmic implementation,
accepting a single verse without diacritics, and implementing
seventeen different procedures to identify rhythmic patterns in Urdu
poetry. By focusing on a dataset consisting of 500 Urdu verses, our
UPMV model attained a remarkable 94% accuracy rate. The UPMVM
precision, recall, and accuracy results were satisfactory. Our analysis
surpasses simple rhythm verification by thoroughly quantifying every
verse token in order to differentiate between “mutaharik” and “sakin”
components. Nevertheless, obstacles continue to exist, especially
when the machine is confronted with the ambiguity caused when
distinct “afail” labels assigned equal weights, which occasionally leads
to misclassifications. In contrast to conventional methodologies, our
novel approach not only authenticates the adherence of verses but also
offers comprehensive insights into their metrical composition, thereby
enabling a more profound comprehension of metrics in Urdu poetry.
Future research will focus on integrating rhythmic analysis into
UPMV to enhance precision. Expanding the model’s ability to process

additional diacritics can further improve accuracy. Additionally,
leveraging machine learning and deep learning techniques will
optimize the effectiveness of UPMVM.

Acknowledgement

This work was supported by the Deanship of Scientific Research,
Vice Presidency for Graduate Studies and Scientific Research, King
Faisal University, Saudi Arabia, under Project GRANTS: KFU241130.

References

[1]	 M. Dar, “Authorship attribution in Urdu poetry,” Information Technology
University (ITU), Lahore, 2020.

[2]	 Z. Sherif, M. Eladawy, M. Ismail, and H. Keshk. “A Proposed System
for the Identification of Modem Arabic Poetry Meters (IMAP),” In 15th
International Conference on Computer Engineering and Systems (ICCES),
pp. 1-5. IEEE, 2020.

[3]	 M. OajLakhnawii, “Mikyass-ul – Ashaar,” Prosody book, 1875.
[4]	 S. Alam Sarwer, “Kitab-r-Arooz,” 2008.
[5]	 M. Najmal-ul-Ghani, “Bahr-ul-Fasahet,” Tayaba Noor printers, Lahore,

2018.
[6]	 P. W. Frances, and A. Khaliq, “Urdu Meter: A Practical Handbook,” FW

Pritchett and KA Khaliq, 1987.
[7]	 G.D. Pybus, “A Text-book of Urdu Prosody and Rhetoric,” Baptist Mission

Press, 1924.
[8]	 N. Balghi, “Tafheem ul Arud,” Behar Afseet press, Patna, 1985.
[9]	 A. Jabbar, S. Iqbal, M.U. Khan, “Analysis and development of resources

for Urdu text stemming,” Language and Technology, vol. 1, no. 1, pp. 40-
5, 2016.

[10]	 J. Abdul, S. ul Islam, S. Hussain, A. Akhunzada, and M. Ilahi, “A comparative
review of Urdu stemmers: Approaches and challenges,” Computer Science,
vol. 34, 100195, 2019.

[11]	 A.A. Raza, A. Habib, J. Ashraf, M. Javed, “A review on Urdu language
parsing,” International Journal of Advanced Computer Science and
Applications, vol. 8, no. 4, pp. 93-97, 2017.

[12]	 N. Tariq, I. Ejaz, M.K. Malik, Z. Nawaz, and F. Bukhari, “Identification
of Urdu ghazal poets using SVM,” Mehran University Research Journal of
Engineering & Technology, vol. 38, no. 4, pp. 935-944, 2019.

[13]	 AA. Raza, A. Athar, and S. Nadeem, “N-gram based authorship
attribution in Urdu poetry,” In Proceedings of the Conference on Language
& Technology, pp. 88-93, 2009.

[14]	 R. Shahid, and Z.A. Qureshi. “Exploratory data analysis of urdu
poetry,” arXiv preprint arXiv:2112.02145, 2021.

[15]	 M.A. Alnagdawi, H. Rashideh, and F. Aburumman, “Finding Arabic
poem meter using context free grammar,” Journal of Communication and
Computer Engineering, vol. 3, no. 1, pp. 52-59, 2013.

[16]	 R. Shalabi, G. Kana’an, and A. AL-Jarah, “Computing System for

TABLE X: Comparative Evaluation of UPMV System With Aruuz

 UPMV -Evaluation R1 Aruuz -Evaluation R2

S# Meter Name Recall Precision F1-Measure Recall Precision F1- Measure

1 95.5 97.7 96.59 94.38 97.38 95.86

2 94.12 94.4 94.26 91.56 94.02 92.77

3 96.19 93.51 94.83 95.03 95.2 95.11

4 94.73 96.18 95.45 94.72 93.72 94.22

5 96 92.3 94.11 96 96 96.00

6 95.65 95.65 95.65 97.82 93.7 95.72

7 94.8 97.3 96.03 94.23 94.87 94.55

8 90 94.73 92.30 90 100 94.74

9 92 92.23 92.11 92 88.46 90.20

Average 94.33 94.78 94.57 93.97 94.82 94.35

- 15 -

Article in Press

Analyzing Arabic Poems Meter,” Yarmouk Research, Yarmouk University,
2003.

[17]	 O. Alsharif, D. Alshamaa, N. Ghneim, “Emotion classification in Arabic
poetry using machine learning,” International Journal of Computer
Applications, vol. 65, no. 16, 2013.

[18]	 M.Y. Dahab, A. AlAmri, B. Bagasi, E. AlMalki, O. AlBeshri, “Automatic
Identifying Rhythm of Arabic Poem, ” International Journal of Computer
Applications, vol. 975, 8887, 2016.

[19]	 K. Baïna, H. Moutassaref, “An efficient lightweight algorithm for
automatic meters’ identification and error management in Arabic poetry,”
In Proceedings of the 13th International Conference on Intelligent
Systems: Theories and Applications, pp. 1-6, 2020.

[20]	 B. Abuata, A. Al-Omari, “A rule-based algorithm for the detection of Arud
meter in CLASSICAL Arabic poetry,” The International Arab Journal of
Information Technology, vol. 15, no. 4, pp. 661-667, 2018.

[21]	 A.I. Omer, M. P. Oakes, “Arud, the metrical system of Arabic poetry, as
a feature set for authorship attribution,” IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA), IEEE, pp.
431-436, 2017.

[22]	 F. Alqasemi, A.H. Salah, N.A. Abdu, B. Al-Helali, G. Al-Gaphari, “Arabic
poetry meter categorization using machine learning based on customized
feature extraction,” International Conference on Intelligent Technology,
System and Service for Internet of Everything (ITSS-IoE), pp. 1-4, 2021.

[23]	 A. M. Mutawa, and A. Ayshah, “Determining the Meter of Classical
Arabic Poetry Using Deep Learning: A Performance Analysis,” Frontiers
in Artificial Intelligence, vol. 8, 1523336, 2025.

[24]	 W.A. Yousef, O.M. Ibrahime, T.M. Madbouly, M.A. Mahmoud, “Learning
meters of Arabic and English poems with Recurrent Neural Networks: a
step forward for language understanding and synthesis,” arXiv preprint
arXiv:1905.05700, 2019.

[25]	 S. Zeyada, M. Eladawy, M. Ismail, H. Keshk, “A Proposed System for
the Identification of Modem Arabic Poetry Meters (IMAP),” In 2020
15th International Conference on Computer Engineering and Systems
(ICCES), IEEE, pp. 1-5, 2020.

[26]	 M. R. Abbas, K. H. Asif, “Computing prosody to detect the Arud meter in
Punjabi Ghazal,” Sādhanā, vol. 45, 246, 2020.

[27]	 A. Kaushal, K. Dutta, “Analysis of Performance Metrics for
Classification of Punjabi Poetry using Machine Learning Techniques,”
In 2023 International Conference on Artificial Intelligence and Smart
Communication (AISC), IEEE, pp. 680-684, 2023.

[28]	 A. Kurt, M. Kara, “An algorithm for the detection and analysis of arud
meter in Diwan poetry,” Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 20, no. 6, pp. 948-963, 2012.

[29]	 R. Shalabi, G. Kana’an, A. AL-Jarah, “Computing System for Analyzing
Arabic Poems Meter,” Yarmouk Research, Yarmouk University, 2003.

[30]	 O. Alsharif, D. Alshamaa, N. Ghneim, “Emotion classification in Arabic
poetry using machine learning,” International Journal of Computer
Applications, vol. 65, no. 16, 2013.

[31]	 A. K. Al-Talabani, “Automatic recognition of Arabic poetry meter
from speech signal using long short-term memory and support vector
machine,” ARO-The Scientific Journal of Koya University, vol. 8, no. 1,
pp. 50-54, 2020.

[32]	 Aruuz, Meters List, accessed April 10, 2022, https://aruuz.com/resources/
meterslist.

[33]	 Rakhta, Meter detection, accessed April 12, 2024, https://www.rekhta.
org/.

[34]	 S. Zeeshan, Aruuz, GitHub repository, accessed March 25, 2022, https://
github.com/sayedzeeshan/Aruuz

[35]	 M. S. Al-Shaibani, Z. Alyafeai, I. Ahmad, ”Meter classification of Arabic
poems using deep bidirectional recurrent neural networks” vol. 136, pp.
1-7, 2020.

[36]	 A. Muztar, Doctoral thesis “Urdu ka Aruzi Nizam and Asri Takaza”, June
2022.

[37]	 A. Daud, W. Khan, D. Che, “Urdu language processing: a survey,”
Artificial Intelligence Review, vol. 47, pp. 279-311, 2017.

[38]	 R. Russell, “Some problems of the treatment of Urdu metre,” Journal of
the Royal Asiatic Society, vol. 92, no. 1-2, pp. 48-58, 1960.

[39]	 JFLAP, JFLAP: Interactive Automata Theory Tool, accessed March 20, 2022,
https://www.jflap.org.

[40]	 W. Ruibo, J. Li, “Bayes Test of Precision, Recall, and F1 Measure for

Comparison of Two Natural Language Processing Models,” In Proceedings
of the 57th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, pp. 4135–4145,
2019.

Dr. Sajid Iqbal

Department of Information Systems, College of Computer
Science and Information Technology, King Faisal
University, Hofuf, Saudi Arabia. Sajid Iqbal received the
Ph.D. degree from the Department of Computer Science,
University of Engineering and Technology, Lahore,
Pakistan. He is currently an Assistant Professor with the
Department of Information Systems, College of Computer.

He has published more than 30 papers in local and international journals and
conferences. His research interests include medical image analysis, natural
language processing, and computer vision.

Asma S. Alshuhail

She received her M.S. (2015) and Ph.D. (2022) in Computer Science and
Informatics from Cardiff University, United Kingdom. She works as an assistant
professor at King Faisal University, Saudi Arabia. Her primary research interests
encompass Information Security and privacy, Machine Learning, advancements
in privacy for artificial intelligence applications, and the enhancement of data
security and privacy through Natural Language Processing.

Zia-Ud-Din

Dr. Ziauddin is Associate Professor at Institute of
Computing and Information Technology, Gomal
University, Dera Ismail Khan, Pakistan. He is teaching
there for last 34 Years. He has done his Master degree in
Computer Science with distinction in 1990 Whereas Ph.D.
in Computer Science in 2008. He has experience in many
areas of Computer Science with emphasis on Software

Process Improvement and Machine Learning. He has supervised many Doctoral
and Master Level Scholars. Besides teaching, he is also a painter and poet.

Asia Zaman

Mrs. Asia Zaman obtained her Ph.D degree from Gomal
University, Pakistan in 2024. She is currently serving as an
Assistant Professor at the Department of Computing and
Software Engineering, Faculty of Computing at Gomal
University, D.I.Khan, Pakistan since 2021. She get MS
degree in Software Engineering from the International
Islamic University Islamabad, Pakistan in 2013. She

served six years as a Lecturer at King Faisal University, KSA. Her research
interests include Natural Language Processing, Speech Text Conversion,
Pattern Matching, Machine Learning, Deep Learning, Computer Vision, Object
Detection in Agriculture fields, Image processing in health, and IOT security.

https://aruuz.com/resources/meterslist
https://aruuz.com/resources/meterslist
https://www.rekhta.org/
https://www.rekhta.org/
https://github.com/sayedzeeshan/Aruuz
https://github.com/sayedzeeshan/Aruuz
https://www.jflap.org

	_heading=h.3znysh7

