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Abstract

Federated learning is regarded as an effective approach to addressing data privacy issues in the era of artificial 
intelligence. Still, it faces the challenges of unbalanced data distribution and client vulnerability to attacks. 
Current research solves these challenges but ignores the situation where abnormal updates account for a large 
proportion, which may cause the aggregated model to contain excessive abnormal information to deviate from 
the normal update direction, thereby reducing model performance. Some are not suitable for non-Independent 
and Identically Distribution (non-IID) situations, which may lead to the lack of information on small category 
data under non-IID and, thus, inaccurate prediction. In this work, we propose a robust federated learning 
architecture, called FedCM, which integrates contrastive learning and meta-learning to mitigate the impact of 
poisoned client data on global model updates. The approach improves features by leveraging extracted data 
characteristics combined with the previous round of local models through contrastive learning to improve 
accuracy. Additionally, a meta-learning method based on Gaussian noise model parameters is employed to 
fine-tune the local model using a global model, addressing the challenges posed by non-independent and 
identically distributed data, thereby enhancing the model’s robustness. Experimental validation is conducted 
on real datasets, including CIFAR10, CIFAR100, and SVHN. The experimental results show that FedCM 
achieves the highest average model accuracy across all proportions of attacked clients. In the case of a non-IID 
distribution with a parameter of 0.5 on CIFAR10, under attack client proportions of 0.2, 0.5, and 0.8, FedCM 
improves the average accuracy compared to the baseline methods by 8.2%, 7.9%, and 4.6%, respectively. Across 
different proportions of attacked clients, FedCM achieves at least 4.6%, 5.2%, and 0.45% improvements in 
average accuracy on the CIFAR10, CIFAR100, and SVHN datasets, respectively. FedCM converges faster in 
all training groups, especially showing a clear advantage on the SVHN dataset, where the number of training 
rounds required for convergence is reduced by approximately 34.78% compared to other methods.
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I.	 Introduction

In the era of artificial intelligence, where various types of data (such 
as images, audio, and text) are growing exponentially, and demands 

for data privacy protection are becoming increasingly stringent, 
federated learning decentralizes model training to the client side. It 
eliminates the need to share private data by transmitting local model 
updates, which are then aggregated on a server to form a global 
model. Federated learning effectively addresses the data requirements 
of artificial intelligence and is widely applied in finance [1], Internet 

of Things [2], healthcare [3] and other fields [4], [5]. For example, in 
COVID-19 testing, federated learning is used, and different medical 
institutions use private chest X-ray images to train models, which 
can avoid privacy regulations, privacy leaks, and other issues [3]. 
However, two major factors affecting model performance are the 
unbalanced data distribution and clients’ vulnerability to attacks, in 
federated learning.

Whether it is the unbalanced data distribution or the local data 
anomalies caused by client attacks, both can lead to deviations in local 
model training, thereby reducing the accuracy of the global model. 



- 2 -

International Journal of Interactive Multimedia and Artificial Intelligence

Therefore, it is essential to consider the impact of non-Independent 
and Identically Distribution (non-IID) on the accuracy of the global 
model, while also distinguishing between anomalies caused by attacks 
and biases resulting from unbalanced data distribution.

To address the accuracy issues caused by non-IID data, existing 
studies have employed methods such as shared mapping spaces [6], 
global feature dictionaries [7], data distribution information [8], 
and the addition of loss terms related to the global model during 
local training [9], [10] to enhance model accuracy under non-IID 
conditions. However, these methods do not consider the presence of 
data anomalies and overlook that abnormal data can affect the update 
direction of the global model.

Existing methods primarily focus on robust aggregation techniques 
to address the decline in model accuracy caused by data anomalies. 
These methods aim to reduce the impact of model updates from 
abnormal data on the global model by eliminating or adjusting the 
weights of abnormal updates. However, removing abnormal updates 
can lead to the loss of certain data information [11]–[14], making 
it impossible to predict some categories of data and compromising 
the stability of the model. While methods that adjust the weights of 
abnormal updates [15], [16] do not lose data information, they can 
suffer from reduced accuracy when faced with many contaminated 
clients. Both approaches lack the utilization of real data information 
and may not be suitable for non-IID situations.

To address the decline in model accuracy caused by data anomalies 
under non-IID conditions, this paper proposes a robust method called 
FedCM. This approach effectively trains local models on benign 
clients to obtain noise-resistant models. Doing so reduces the negative 
impact of data anomalies on global updates and improves the accuracy 
of the global model. FedCM consists of the following components: 1) 
Contrastive Learning Based on Improved Data Features: This method 
gains improved local features by weighting local model features 
from the previous round, less affected by noise. By mitigating the 
detrimental effects of noisy features, this approach brings similar 
data points closer together and enhances model accuracy. 2) Meta-
Learning Based on Gaussian Noise Model Parameters: This approach 
employs contaminated data with randomly added Gaussian noise 
alongside the original data to train noise-resistant local models 
through meta-learning. The global model is then used to correct the 
update direction of the local model, which improves its generalization 
capability, alleviates non-IID issues, and enhances the model’s 
robustness to data anomalies , which is applicable to multiple 
practical application scenarios.For example, in the field of medical 
image analysis, hospitals can use FedCM to jointly train disease 
detection models while adapting to the data distribution of different 
institutions; in the financial fraud detection scenario, FedCM can 
enhance the model’s adaptability to different bank fraud patterns 
and improve detection accuracy; in IoT anomaly detection, FedCM 
optimizes feature extraction and model generalization capabilities to 
enable smart devices to more accurately identify anomalies. These 
features make FedCM have broad application potential in real-world 
environments with data privacy and non-IID data.

The main contributions of this work are as follows:

•	 A robust federated learning method, FedCM, is proposed, which 
consists of contrastive learning based on improved data features 
and meta-learning based on Gaussian noise model parameters, 
which can effectively improve the model accuracy.

•	 A contrastive learning method based on improved data features 
is proposed, which performs contrastive learning using the 
weighted data features of the previous and current rounds of 
models to reduce the impact of noise features and thus improve 
the model’s accuracy.

•	 Meta-learning is performed based on Gaussian noise model 
parameters to obtain noise-resistant model parameters, thereby 
improving the robustness of the model to data anomalies under 
non-IID.

•	 On the CIFAR10, CIFAR100, and SVHN datasets, the proposed 
method improves the model accuracy by at least 8.2%, 6.1%, 
and 0.58%, respectively. Additionally, on the SVHN dataset, the 
number of training rounds required for convergence is reduced by 
approximately 34.78% compared to other methods.

The remainder of this work is organized as follows: Section II reviews 
and analyzes the existing achievements related to the unbalanced 
data distribution in federated learning. Meanwhile, Section III briefly 
introduces the foundational knowledge and algorithmic theories 
relevant to our scheme. Section IV provides a detailed description of 
the proposed solution, and Section V presents a thorough analysis of 
the experimental results. Finally, Section VI concludes the paper with 
a summary and directions for future research.

II.	 Related Work

In federated learning, non-IID data is a significant factor affecting 
model accuracy. There has been relevant research on the issue of 
statistical heterogeneity of data. For example, FedProx [9] addresses 
the non-IID problem by introducing a regularization term to train 
local models, thereby narrowing the gap between local model updates. 
However, the uncertainty and dynamics of data anomalies make 
selecting the optimal regularization parameter a challenge. FedAlign 
[10] trains models using alignment loss to ensure consistent model 
updates and alleviate the non-IID issue. However, FedAlign performs 
poorly in the presence of data anomalies.

The Virtual Homogeneity Learning (VHL) method [6] maps the 
data of each client to a virtual homogeneous space, then utilizes the 
representation of the obtained unified feature distribution to train the 
model and employs a weighted aggregation mechanism from the virtual 
homogeneous space to obtain a global model, thereby improving model 
accuracy. However, anomalous data can lead to abnormal information 
in the feature distribution, misleading the model update direction and 
decreasing accuracy. FedCA [7] uses a feature dictionary to assist local 
training and enhance feature consistency to solve the non-IID problem. 
However, anomalous data can introduce abnormal features into the 
feature dictionary, misleading the model update direction and reducing 
accuracy. The Classifier Calibration with Virtual Representations 
(CCVR) algorithm [25] uses virtual representations generated by a 
Gaussian mixture model to calibrate the classifier and introduces 
a weighting mechanism to balance the impact of models trained on 
different clients on the global model, thus improving model accuracy 
under non-IID conditions. However, anomalous data may lead to 
weight imbalance, affecting the global model.

MOON [17] mainly uses the current local model, the global model and 
the previous round of local model for contrastive learning to solve the 
non-IID problem. However, the existence of data anomalies may cause 
the update direction of the global model to deviate, and MOON’s local 
training depends on the data features extracted by the global model, 
which leads to a decrease in model accuracy. FedProc [18] mainly uses 
class prototypes as global knowledge to propagate to all clients. Each 
client uses the global class prototype for contrastive learning to make 
the local training direction consistent with the global one. FedPCL [19] 
uses local and global prototypes for contrastive learning to solve the 
non-IID problem; however, if data anomalies occur, the feature mean of 
the data may deviate from the true category center, resulting in errors 
in the global class prototype, which may cause fluctuations in the client 
training direction and affect model convergence.
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In response to the label noise problem, Jinchui Zhang et al. [22] 
proposed a noise-aware local model training mechanism, which 
mainly uses a label correction network to convert noisy labels into 
soft labels, and optimizes the model through meta-learning to reduce 
the impact of noise on the performance of the local model. FedLN [21] 
mainly uses embedding-based discovery of noisy labels to estimate 
noise, uses the nearest neighbor label correction to correct labels, uses 
adaptive knowledge distillation to guide local training to reduce the 
impact of incorrect labels, and uses noise-aware weighted averaging 
on the server to reduce the impact of noisy clients. The above two 
methods are used to solve the label data noise problem. In response 
to the data noise problem, FedNS [23] uses gradient norm analysis 
to identify noisy clients in the initial round, and uses noise-aware 
aggregation methods to optimize model aggregation, thereby reducing 
the impact of noisy clients. It is suitable for scenarios with obvious 
noise data. FedNS mainly operates at the client level, not directly at 
the data level. If the proportion of client noise data is small, FedNS 
may not be able to distinguish well. The abnormal data generated by 
the client attack is random and unknowable, so FedNS may sometimes 
not recognize significant gradient changes, which affects FedNS’s 
detection ability.

On the client side, Mean Augmented Federated Learning (MAFL) 
[20] mixes local updates to approximate Mixup data augmentation, 
improving model generalization and effectively addressing the non-
IID issue. However, data anomalies can produce feature mean shifts 
and amplify abnormal knowledge, reducing model accuracy. Astraea 
[8] uses the global data distribution for data augmentation and creates 
intermediaries to regulate local model training on clients, employing 
adaptive weights to balance the contribution of each local model, thus 
effectively solving the data heterogeneity problem and improving 
model accuracy. However, suppose a client has severe anomalous 
data. In that case, it may prevent the self-balancing mechanism 
from effectively calibrating the data distribution, causing the global 
model to aggregate the anomalous information from that local 
model, amplifying the impact of the anomaly and reducing accuracy. 
Additionally, some methods utilize knowledge distillation [26]–[28] 
and personalization [29], [30] to obtain globally shared knowledge to 
address the non-IID problem. Still, anomalous data may cause global 
knowledge to contain abnormal information, thus lowering model 
accuracy.

Regarding model aggregation methods, FedAvg [31] is the 
mainstream aggregation method. However, it cannot effectively 
address the reduction in model accuracy caused by anomalous data. 
Existing methods primarily minimize the impact of anomalous data on 
the global model by eliminating anomalous updates and adjusting the 
weights of these updates, achieving robust aggregation.

Methods for updating models by eliminating anomalous updates 
include trimmed mean, median, Krum method, and norm bound. The 
trimmed mean method [11] calculates the mean of each dimension of 

local updates after removing the maximum and minimum values to 
obtain the aggregated global model. This calculation is simple and can 
effectively resist potential anomalous updates, but it may lead to the 
loss of information corresponding to small or large categories in the 
data. The median method [12] updates the global model by calculating 
the median of model updates, reducing the impact of large deviations 
on the global model, effectively alleviating the problem of data 
heterogeneity, and decreasing the interference of malicious updates on 
model aggregation. However, when the data distribution is highly non-
IID, model updates trained on overly concentrated data from certain 
categories or insufficiently trained small data categories may deviate 
significantly. Krum algorithm [24] calculates the Euclidean distance 
between local updates and selects a local update most similar to n-m-2 
adjacent updates to aggregate into a global model, thus eliminating 
relatively deviated local updates and making the model more robust, 
where m is the expected number of malicious clients. However, this 
method struggles to effectively distinguish between noisy and benign 
updates under non-IID conditions, reducing model accuracy. The 
Multi-Krum algorithm is an extension of Krum that is suitable for 
non-IID scenarios. The norm bound algorithm [13] sets a threshold, 
treating local updates with norms above this threshold as malicious. 
Only benign updates are aggregated during aggregation, effectively 
reducing malicious updates’ impact on global performance. However, 
if many malicious local updates occur in a single communication 
round, the aggregated global model will only retain the knowledge of 
a few categories, significantly reducing model accuracy and slowing 
convergence.

Methods that adjust the weights of anomalous updates include RFA 
[15], which utilizes an approximate geometric median operation as 
an aggregation method, effectively reducing the impact of anomalous 
data on the global model under non-IID conditions. Residual [16] 
uses a median estimator to calculate the residual of each local model 
parameter and dynamically adjusts the aggregation weight based on the 
residual. The larger the residual, the more significant the gap between 
the local update and the global model, which increases the likelihood 
that the corresponding client contains anomalous or malicious data, 
thus requiring a smaller aggregation weight. This adaptive method is 
more robust and can withstand uncertain and dynamic attacks better.

Although anomaly detection [32]–[34] can be employed on the 
client side to improve model accuracy by eliminating local anomalous 
data, under non-IID conditions, small category data on the client 
may be misidentified as anomalous data, leading to the loss of 
information for small category samples and making it impossible to 
predict such data accurately. Table I summarizes the above methods 
from the perspective of adapting to non-IID, adapting to data 
anomalies(abbreviated as AD), and adapting to the coexistence of non-
IID and data anomalies. Among them, the methods based on robust 
aggregation are also divided according to whether there is a problem 
of information loss in small sample data.

TABLE I. Summary of Each Method

Approaches non-IID AD non-IID+AD RSSI

Client-level
Fedprox [9], FedAlign [10], MOON [17], FedProc [18], FedPCL [19], MAFL [20]

FedLN [21], [22]

 label noise

Aggregation-based
RFA [15], Residual [16], FedNS [23]

trimmed mean [11], Median [12], Krum [24], Norm [13]











Feature-based VHL [6], FedCA [7], CCVR [25], Astraea [8] 

1 Note:  indicates the scenario that the method is suitable for. 
2 Note: RSSI indicates that small sample data information is retained.
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III.	Preliminaries

In this section, we first formulate the question of the robustness of 
federated learning to data anomalies under non-IID conditions and 
then introduce the foundation of FedCM.

A.	Problem Formulation
In federated learning, a classification task is implemented. Under 

non-IID, assume that there are n clients in total, and the sample data x 
and the true label y on client i are both distributed under distribution 
Di, and Di are different for each client. Let the dataset of client i be Si, the 
model be f, and the model parameter be θ. Then, the model’s prediction 
value for the sample data is p = f(x; θ). The main goal of training θ in 
traditional federated learning FedAvg (the default aggregation method 
in this article) is:

	 (1)

Considering that the client’s local private data may be attacked and 
thus generate abnormal data, the local model trained using abnormal 
data may cause the global model to be contaminated, thereby 
decreasing the accuracy, as shown in Fig. 1.

dataset local model

client 1

dataset local model

global model

server

client m

dataset local model

client m+1a�ack a�ack

dataset local model

client m

Fig. 1. In federated learning with non-IID, the client is attacked and thus 
generates abnormal data.

In Fig. 1, the red dots represent abnormal data generated by the 
attack, and the dots of other colors represent different categories of 
data. The red straight line indicates that the abnormal data affects the 
model. The color depth suggests the degree of noise in the model, i.e., 
the degree to which the abnormal data affects the model. The darker 
the color, the more significant the impact.

Existing methods mainly reduce the impact of abnormal models on 
the global model by adjusting the weight of abnormal local models 
during aggregation or eliminating abnormal updates on the server 
side. Let the benign client subset be Sn, the attacked client subset be 
Sa, the robust global aggregation function be g, and the local model 
parameter received from client i (i ∈ Sn ∪ Sa) in round t be . Then 
the aggregation weight assigned to client i is , and the 
parameters of the updated global model are:

	 (2)

This reduces the impact of local updates obtained from abnormal 
data training on model accuracy.

Considering that the robust aggregation method on the server side 
ignores that the proportion of attacked clients is relatively large and 
may not be suitable for non-IID, the FedCM proposed in this article 
aims to make the model more robust to abnormal data and have better 
accuracy by adjusting the local model training process under non-IID.

B.	Contrastive Learning
Moco [35] mainly uses momentum encoder and queue storage 

to construct a large number of negative samples and maintain 
the stability of feature representation. The query feature q = fq (xq)
is extracted using the main encoder fq(⋅), and the key feature k = fk 
(xk) is extracted using the momentum encoder fk(⋅). The contrast loss 
InfoNCE is:

	 (3)

Where, xq is the query, xk is the key, k+ is the corresponding positive 
sample (i.e., different perspectives of the same image), ki is the negative 
sample taken from the queue, and τ is the temperature hyperparameter 
used to control the distribution of similarity. If the data used is image 
data, q and k+ can be constructed by random changes such as cropping 
and color change.

The core idea of SimCLR [36] is to make the enhanced same images 
(positive samples) close in the feature space, while different images 
(negative samples) are far away.

Assuming a dataset D of size N, the contrast loss NT-Xent is:

	 (4)

Where zi and zj are different enhanced views of the same image, τ 
is a temperature parameter used to control the softness/hardness of 
contrastive learning. Negative samples come from other samples in 
the mini-batch.

Contrastive learning (SupCon) [37] mainly improves the feature 
representation of the model by bringing the features of samples of the 
same type closer and the features of samples of different types farther 
apart. In a dataset, there are M categories Ck(k = 1, 2, .., M) and a total 
number of samples N, then the contrast loss is:

	 (5)

Where I represents all samples, P(i) represents samples of the same 
category as sample i, A(i) represents all samples except sample i, sim(zi, 
zj) represents the cosine similarity between feature zi of sample i and 
feature zj of sample j, and τ is the temperature parameter.

Since MoCo and SimCLR construct positive and negative samples 
through data augmentation, and SupCon directly uses category labels, 
it has better generalization ability and is suitable for scenarios where 
data are not independent and identically distributed, so SupCon is 
used for improvement.

C.	Meta Learning
Meta-learning  mainly trains models on a set of tasks and extracts 

experience from them to quickly adapt to new tasks and improve the 
model’s performance in new tasks. A task distribution p(Γ), task Γi ∼ 
p(Γ) is trained on a dataset Di, and meta-learning obtains the model 
parameters θ by minimizing the following loss, making the model 
more adaptable to new tasks:

	 (6)

MAML [40] mainly trains the initial parameters of the model so that 
it can achieve good generalization performance on the new task with 
only a small amount of gradient updates. In the meta-training phase, 
a batch of tasks is randomly selected from the task distribution p(Γ). 
For each task, the gradient ∇θ ℒΓi (fθ) of the model under the current 
parameters θ is first calculated, and then the adapted parameters are 
obtained by gradient descent θ'i = θ − α∇θ ℒΓi (fθ). Then, based on the 



- 5 -

Article in Press

performance of the adapted parameters on the task (i.e. ℒΓi (fθ'i) ), the 
initial parameters are updated, and the update formula is:

	 (7)

Where α is the step size of the gradient update within the task, and 
β is the step size of meta-learning.

IV.	Proposed Method

A.	Overview
We propose a robust federated learning framework, FedCM, to 

solve the problem of model performance degradation caused by 
data anomalies under non-IID conditions. The overall framework of 
FedCM, as shown in Fig. 2, mainly includes contrastive learning based 
on improved data features and meta-learning based on Gaussian noise 
model parameters.

Contrastive learning based on improved data features is used to 
improve model accuracy–using the data features of the local model of 
this round and the previous round, calculating their cosine similarity, 
weighting to obtain the improved features, and performing contrastive 
learning training on the enhanced features to get a local model with 
higher accuracy.

Meta-learning based on Gaussian noise model parameters is used 
to improve the robustness of the model to abnormal data– adding 
noise to the local data to obtain noise data, using the global model 
to adjust the model update direction, and using the noise data and 
the original data to get a noise-resistant local model through meta-
learning training.

In the model training process of federated learning, first, the client 
receives the latest global model from the server as a local model. Then, 
the client uses FedCM to perform model training locally on the local 
dataset to obtain the local model. Finally, the client uploads the trained 
local model to the server for model aggregation to get the global model.

dataset corrupted model corrupted model

corruptcorrupt

feature feature

integrate integrate

dataset

local model local model

server

meta learning

contrastive learning contrastive learning

meta learning

global
model

client 1 client m

Fig. 2. Overall framework of FedCM.

B.	Contrastive Learning Based on Improved Data Features
To further improve the model’s accuracy, contrastive learning 

is employed to effectively enhance the similarity of feature 
representations for similar data while reducing the similarity of feature 
representations for data from different classes, thereby strengthening 
the model’s accuracy.

On client i, for each sample (𝑥, 𝑦) ∈ Si, the model’s backbone 

network fbackbone is used to obtain the feature h = fbackbone (𝑥; θi), thus the 
contrast loss is obtained as:

	 (8)

where P(j) represents the samples of the same category as sample 
j, and A(j) represents all samples except sample j. The temperature 
hyperparameter τ is used to adjust the “smoothness” of the distribution.

Considering that the global model is greatly affected by data anomalies, 
in contrast, the local model in the previous round is less affected by 
noise interference, the similarity  
between the feature hpre obtained by the previous round model and the 
feature hcur obtained by the current round model is used to calculate 
the proportional coefficient used to adjust feature:

	 (9)

In Equation(9), the contrastive similarity threshold is μ (μ = 0.5), 
when score < 0, it means that the feature similarity is very low, which 
rarely occurs, and it means that the direction of the feature after the 
local model is updated seriously deviates from the direction of the 
feature of the previous round of model, so only the features of the 
local model are considered at this time; when 0 ≤ score < μ, although 
the similarity is low, the current local model is mainly considered, so 
a larger proportional weight should be assigned to the local model; 
when score ≥ μ, the similarity is higher, but because the current local 
model is more affected by noise, it still needs to be corrected by 
the previous round of local model. Thus, the corrected features are 
obtained as follows:

	 (10)

Using the corrected features to get the contrast loss as:

	 (11)

Next, using this loss and the original cross-entropy loss, the basic 
loss is obtained as:

	 (12)

where  is the cross entropy 
loss. Gradient descent is used to update local model parameters. This 
improves the similarity of feature representations of similar data to a 
certain extent, making them more clustered, thereby improving the 
model’s accuracy while maintaining a certain degree of robustness.

C.	Meta-Learning Based on Gaussian Noise Model Parameters
In federated learning, abnormal clients are highly likely to cause 

deviations in the update direction of the global model, thereby 
reducing the model’s accuracy. To enhance the noise resistance of 
federated learning, this research introduces meta-learning to learn 
noise features and build a model with stronger noise resistance. The 
core idea is to integrate noise features into the original model to obtain 
noise-resistant model parameters, thereby reducing the impact of 
noisy data on the model. The specific approach is as follows.

First, use the local model to learn the features of the noise data. Due 
to the randomness and unknown nature of the attack, this paper uses 
random Gaussian noise to add noise to the original data to simulate 
data poisoning attacks. The small batch in the local dataset Di of client 
i is Bi = {(𝑥, 𝑦)}, where 𝑥 is the sample data and 𝑦 is the true label. The 
Gaussian distribution is set to 𝒩(𝑚, st𝑑), where 𝑚 is the mean of the 
Gaussian distribution, which is set to 0 to avoid excessive deviation of 
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the data, causing the model to be too biased towards the noise direction 
and resulting in performance degradation. st𝑑 is the standard deviation 
of the Gaussian distribution, which is set to a random number. After 
adding random Gaussian noise to the sample data 𝑥, the noisy small 
batch obtained is .

We train the original model f (θi) using the traditional cross entropy 
loss on a noisy mini-batch  and update the model parameters using 
stochastic gradient descent:

	 (13)

	 (14)

where η is the learning rate and  is model parameter with noisy. 
Thus, the noisy local model  is obtained. Then, a meta-update of 
the local model will be performed. The noisy local model will guide 
model training, thereby obtaining noise-resistant model parameters. 
Use the noisy local model  to obtain a correct prediction 𝑦 for the 
original data 𝑥, thereby optimizing the model parameters.

	 (15)

Since the data is not independent and identically distributed, and 
adding noise may cause a certain degree of deviation in the model 
update’s direction, correcting the noisy model parameters is necessary. 
This article uses the global model to fine-tune the noisy local model 
to improve the non-IID problem. The loss of the global model with the 
noisy local model is:

	 (16)

where KL(𝑝||𝑞) is the KL divergence between probability 
distributions 𝑝 and 𝑞, and f(θ) is the global model. Using the above 
loss, the greater the deviation between the noisy local model and the 
global model, the more penalty is added so that the deviation becomes 
smaller after the update; the non-IID problem is alleviated to a certain 
extent. Therefore, the total loss of the meta-learning part is:

	 (17)

As only the original model parameters are updated when the model 
parameters are updated, the influence of noise on the original model 
can be reduced.

D.	Overall Algorithm
The FedCM method is mainly used to solve the problem of decreased 

model accuracy caused by data anomalies under non-IID. As shown 
in Algorithm 1, FedCM is mainly implemented through contrastive 
learning based on improved data features and meta-learning based 
on Gaussian noise model parameters. In contrastive learning based 
on enhanced data features, the similarity is calculated using the local 
model features of the previous round and the current round to obtain 
improved data features (lines 16-19 in Algorithm 1), and then the 
enhanced data features are used for contrastive learning (lines 20-
21 in Algorithm 1) to improve the accuracy of the model; in meta-
learning based on Gaussian noise model parameters, Gaussian noise 
is added to the original data, and then the noisy data and the original 
data are used for meta-learning to train the local model (lines 23-29 in 
Algorithm 1) to improve the robustness of the model to abnormal data.

In Algorithm 1, lines 1 to 11 show the model aggregation on the 
server side; lines 12 to 31 show the process of training the local model 
using FedCM. Among them, about the acquisition of Sa: in practical 
federated learning scenarios, malicious clients can be identified and 

detected using statistical information derived from robust aggregation 
methods. For instance, the Euclidean distance computed by the Krum 
algorithm [24], the median estimated by the Median algorithm [12], 
and the extreme values removed by the trimmed mean method [11] 
serve as indicators of potential abnormal clients. Clients that are 
consistently flagged and excluded across multiple training rounds can 
be classified as compromised, forming an estimated set of attacked 
clients Sa.

V.	 Experimental Results

In this section, we evaluate the effectiveness of the proposed method 
FedCM on multiple different datasets and different data pollution 
levels, compare it with various baseline methods, and analyze the 
impact of different components and different hyperparameters on the 
overall performance.

A.	Experimental Settings
Data. In the experiment, three benchmark datasets for image 

classification were used: CIFAR10 [41], CIFAR100 [41], and SVHN [42] 
datasets. The CIFAR10 and CIFAR100 datasets contain 60,000 32x32 
pixel images with 10 and 100 categories, respectively, of which 5,000 
images are training sets and 1,000 images are test sets; the SVHN 
dataset includes 73,257 training set images and 26,032 test set images, 
with image pixels of 32x32 and a total of 10 categories. The Dirichlet 
distribution Dr (N, β) is used to control the balance of data distribution. 
The degree of non-IID of the data is controlled by adjusting its 
parameter β (set to 0.1, 0.5, 1, and 10 respectively), where N is the total 
number of clients, the default value is 20, the higher the β value, the 
smaller the degree of non-IID and the closer to IID, and the default 
value is 0.5. And distribute the data divided by Dirichlet distribution 
to different clients.

Implementation details. The number of communication rounds 
is set to 100, and half of the clients are randomly selected to participate 
in training in each round of communication. In each local training, 
only one round of training is performed. Since the ResNet converges 
faster in the federated learning environment with different data 
distributions in image classification tasks, this paper uses ResNet as 
the basic network [43]. ResNet18 is used as the backbone network 
[44], and the SGD optimizer is used, with a learning rate, momentum, 
and weight decay of 0.01, 0.9, and 1e-5, respectively. The batch size 
of local training is 64. The temperature of the contrastive learning 
part is 0.07. Data augmentation, such as horizontal flipping, random 
cropping, and color jittering, is used during local training. Among 
the total clients, the proportion of attacked clients defaults to 0.2, 
i.e., among 20 clients, there are four attacked clients. In each round 
of communication, clients are randomly selected to participate, so 
the situation of participating attacked clients is different. The default 
percentage of contaminated samples is 0.8 (i.e., 80 out of 100 samples 
are corrupted). The method proposed in [45] adds random noise to the 
client’s original data. The degree and mode of damage of the random 
noise are random to achieve the uncertainty of abnormal data caused 
by the attack, which is closer to the actual situation. The intensity 
of the attack can be changed by changing the proportion of attacked 
clients or contaminated samples.

Baselines. A total of 9 baselines are compared: (1) FedAvg 
algorithm is not robust and has no defense; (2) Median calculates the 
median of local updates to obtain the aggregated global model instead 
of using the mean; (3) Trimmed-mean removes the maximum and 
minimum values of each dimension and then takes the average as the 
aggregated model parameter value; (4) Multi-krum algorithm uses 
the Euclidean distance to calculate the distance between updates and 
selects several local updates that are most similar to adjacent updates 
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for aggregation;(5) Norm algorithm sets a threshold and aggregates 
local updates whose norm below the threshold; (6) Residual uses the 
median estimator to calculate the residual and uses the residual to 
calculate the aggregation weight of each local update for aggregation; 
(7) RFA uses the geometric median operation for aggregation; (8) 
FedProx uses the Euclidean distance between the global and the local 
model parameters as a regularization term on the client side and adds 
it to the training objective; (9) Moon mainly uses improved contrast 
loss to optimize local training. For all baselines, the same experimental 
settings as the method in this paper are used for evaluation. For the 
Residual algorithm, the confidence interval was set to 2.0, and the 
threshold was set to 2.0; for RFA, the smoothing parameter was set to 
1e-6, and the maximum number of Weizfeld iterations was set to 100.

Evaluation. All methods are evaluated using the same model 
and experimental settings (e.g., number of clients, proportion of 
attacked clients, proportion of sample contamination, β of Dirichlet 
distribution, number of local model training rounds, total number of 
communications), and accuracy is used as the evaluation metric:

	 (18)

Where 𝑛total represents the total number of predicted samples on the 
test set, and 𝑛correct represents the number of samples with the correct 
predicted category. The average accuracy of the last ten rounds on the 
test set is used as the final accuracy.

B.	Accuracy Comparison Experiment
Under the default experimental settings (attacked client ratio 

ar = 0.2, contaminated sample ratio NR = 80%, non-IID (β = 0.5)), the 
accuracy of each method is compared and analyzed to evaluate the 
performance of the proposed method.

As shown in Table II, according to ANOVA, the FedCM method 
is significantly better than most baseline methods on cifar10 and 
cifar100, which shows that the FedCM method has better performance.

In Fig. 3, the last ten rounds are magnified for display.

As shown in Fig. 3(a) and (b), on the CIFAR10 and CIFAR100 datasets, 
the model accuracy of the FedCM method is higher than that of all the 
comparison methods, increasing by 8.2% and 6.1% respectively (the 
specific values can be seen in Table II, the data when β = 0.5), which 
shows that the FedCM method has better accuracy under non-IID and 
data anomalies.

Algorithm 1. FedCM algorithm
Input: initial model θ0, model parameters θi,t of the i-th client in the t-th round, the dataset of client i is Si, and E is number of epoch of local 
training , the subset of clients attacked is Sa.
On the server side: 
   1:    for iteration t do
   2:        Select the client St for this round of training
   3:        for each client i ∈ St do
   4:            if client i ∈ Sa then
   5:               θi,t ← LCE ((𝑥', 𝑦); θi,t )						                 ▷ update model parameters by cross-entropy loss
   6:            else
   7:               θi,t ← ClientUpdateOfFedCM(θi,t )
   8:            end if
   9:        end for
   10:      θt+1 = ∑i ∈ St

 θi,t × |Si| / ∑i ∈ St 
|Si|  							                        ▷ update the global model

   11:  end for
On the client side: ClientUpdateOfFedCM(θi,t )
   12:  for local epoch k for 1 to E do
   13:       B ← The local dataset is divided into batches of size |B|
   14:       for each sample (𝑥, 𝑦) ∈ B do
   15:           // Contrastive learning based on improved data features
   16:           hpre, hcur						                      ▷ get local features of the previous round and this round 
   17:           score = dot (hpre / | 0hpre | 0, hcur /|0hcur| 0)	 					                     ▷ calculate cosine similarity
   18:           α ← Eq. 9									         	 ▷ calculate feature ratio
   19:           h = α × hcur + (1 − α) × hpre 				    				    ▷ get improved features
   20:           Lcl ← Eq.11 calculate contrast loss	
   21:           L = Lcl + LCE		  								                             ▷ calculate loss
   22:           //Meta-learning based on Gaussian noise model parameters:
   23:           𝑥' ← 𝑥 +  g	 									                             ▷ get noisy data
   24:           Lnoise ((𝑥', 𝑦); θi,t) ← Eq. 13	 					                  ▷ calculate the loss of the noisy model
   25:           θ'i,t ← θi,t − η∇Lnoise	 							                    ▷ get noisy model parameters
   26:           Lmeta ((𝑥, 𝑦); θ'i,t)) ← Eq.15	 							              ▷ calculate meta-loss
   27:           Lkd ((𝑥, 𝑦); θt , θ'i,t)) ← Eq.16		  		  ▷ calculate the KL divergence loss of the global and local model
   28:           Lm = Lmeta + Lkd								                      ▷ total loss of the meta-learning part
   29:           θi,t ← θi,t − η∇(Lm + L)								                      ▷ update model parameters
   30:       end for
   31:  end for
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As shown in Fig. 3(c), on the SVHN dataset, although the accuracy 
of FedCM and the highest accuracy of the comparison method 
are similar, it can be seen that the accuracy of the FedCM method 
improves faster than other methods in the first ten rounds and is 
close to convergence in the 15th round. In contrast, other methods 
are close to convergence in the 23rd round. The number of training 
rounds required for convergence was reduced by 34.78%. FedCM 
demonstrates a clear advantage in convergence efficiency. Due to the 
use of contrastive learning in the FedCM method, the previous round’s 
local model is employed to enhance feature representations, reducing 
interference from noisy information and minimizing the model’s 
susceptibility to noise. As a result, the model’s categories predictions 
are more accurate, leading to minor fluctuations in FedCM during the 
first twenty rounds. This further indicates that contrastive learning 
based on improved data features is effective and maintains stability.

In summary, FedCM shows good accuracy and improves 
convergence speed under non-IID conditions with data anomalies.

Accuracy under non-IID degree. As shown in Table II, FedCM 
has the best model accuracy under different non-IID degrees  
(β = 0.25, 0.5, 1, 10), indicating that FedCM still maintains good 
accuracy for data with high non-IID degree. When β = 0.5 changes to 

0.25, the degree of decrease in FedCM’s accuracy is lower than that 
of the comparison method, indicating that FedCM is less sensitive 
to the degree of non-IID. Since the meta-learning based on Gaussian 
noise model parameters in FedCM uses the global model to adjust the 
update direction of the anti-noise model, it can reduce the deviation 
of the local model from the global model when the local model is 
updated under non-IID so that a local model that is more in line with 
the update direction of the global model can be trained to improve 
generalization. As the degree of non-IID decreases, the accuracy of the 
FedCM method also increases, indicating that FedCM is suitable for 
both non-IID and IID. In the CIFAR10, CIFAR100, and SVHN datasets, 
FedCM improves by at least 2.7%, 4.5%, and 0.58%, respectively, 
compared with the comparison methods, indicating that FedCM has 
better model accuracy at different degrees of non-IID. As β increases, 
the degree of non-IID decreases, and the data distributions of each 
client become more similar. As shown in Table II, the accuracy of the 
model using the method in this paper basically increases as the beta 
value increases. This is because when the data distribution is more 
similar, the contrastive learning part aggregates the characteristics of 
similar data better, and the meta-learning learns more noise knowledge 
that fits the attacked data, thereby better correcting the model update 
direction and increasing the model accuracy.

TABLE II. Comparison of the Accuracy of Each Method Under Different Non-IID Levels

Approaches FedAvg FedProx Krum Median Norm Residual RFA Trimmed 
Mean

MOON FedCM
C

IF
A

R
10

β = 0.25 68.78 69.98 66.75 57.21 65.95 68.99 68.11 67.09 68.92 77.55

β = 0.5 75.39 75.21 71.69* 68.88* 72.13* 74.81 74.49* 74.88 75.84 81.61

β = 1.0 82.11 82.12 81.20 78.83 81.09 81.88 82.30 81.6 81.45 84.56

β = 10 85.24 85.10 84.83 84.22 84.93 85.22 85.23 85.61 85.03 87.93

β = 100 85.32 85.58 85.35 84.68 85.12 85.86 85.77 85.77 85.54 88.17

C
IF

A
R

10
0

β = 0.25 50.71 50.53 49.19 36.09 48.12 49.79 50.50 48.65 50.51 53.02

β = 0.5 50.11** 49.32** 48.12** 42.17** 48.02** 49.41** 49.03** 49.09** 49.12** 53.20

β = 1.0 51.72 51.47 50.44 47.17 51.03 51.59 51.61 51.62 51.55 54.12

β = 10 53.8 53.45 53.05 50.00 53.22 53.87 54.22 53.67 53.54 56.87

β = 100 53.65 53.61 53.19 50.95 53.24 54.11 53.86 53.76 53.75 56.26

SV
H

N

β = 0.25 89.68 90.55 88.83 84.29 87.41 90.4 89.08 89.04 89.29 93.08

β = 0.5 93.05 93.04 92.96 91.14* 93.75 93.59 92.83 93.26 92.89 94.30

β = 1.0 94.79 94.80 94.32 93.88 94.44 94.83 93.97 94.67 94.71 95.81

β = 10 95.63 95.60 95.54 95.53 95.42 95.63 95.48 95.58 95.50 96.39

β = 100 95.65 95.80 95.62 95.57 95.53 95.74 95.60 95.72 95.82 96.53

1 Note: The highest accuracy is marked in bold, and the second highest accuracy is underlined.
2 Note: “*” indicates the p-values of the ANOVA between FedCM and baseline p < 1e-5, “**” indicates p < 1e-6.
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Fig. 3. Performance comparison of various methods under different datasets.
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C.	Robustness Analysis
Experiments are conducted under different experimental parameter 

settings to evaluate the robustness of the proposed method. It mainly 
includes two parameters: (1) the proportion of attacked clients AR and 
(2) the proportion of sample contamination NR.

Robustness to the proportion of attacked clients. As shown 
in Fig. 4, FedCM has the best average model accuracy under different 
proportions of attacked clients (AR = 0.2, 0.5, 0.8) compared with 
the comparison methods. In the non-IID case (β = 0.5), on CIFAR10, 
when the proportion of attacked clients is 0.2, 0.5, and 0.8, FedCM 
improves the average accuracy of the comparison methods by 8.2%, 
7.9%, and 4.6%, respectively. And under different proportions of 
attacked clients, on the CIFAR10, CIFAR100, and SVHN datasets, 
FedCM improves the average accuracy of the comparison methods by 
at least 4.6%, 5.2%, and 0.45%, respectively. These indicate that FedCM 
is more robust regarding the proportion of attacked clients and has 
better model accuracy. As the number of attacked clients increases, 
the information of malicious updates in the model increases, while 
the direction of model updates shifts. Some methods aggregated 
by extracting partial updates may cause this situation in which 
the number of attacked clients participating in certain rounds is 

significant. Thus, most aggregated model updates are noisy, resulting 
in model shifts. However, the meta-learning based on Gaussian noise 
model parameters in FedCM extracts noise-resistant model parameter 
information, thereby correcting the direction of the model update and 
improving model performance, further illustrating the effectiveness of 
the meta-learning based on Gaussian noise model parameters.

Robustness to the proportion of contaminated samples. As 
shown in Table III, FedCM has higher accuracy than the comparison 
methods on different data sets under different proportions of 
contaminated samples (NR=25%, 0.5, 0.8, 1). For example, under 
CIFAR100, FedCM improves the average accuracy of the Median 
method by at least 22.2%; under CIFAR10, CIFAR100, and SVHN data 
sets, the FedCM method improves the accuracy of the RFA method 
by at least 8.4%, 5.2%, and 0.98%, respectively. As the proportion 
of contaminated data increases, the feature information of the 
contaminated data increases, the model is more affected by the 
contaminated data, and the model is prone to deviation. Due to the 
randomness of the contaminated data and the non-IID data distribution 
(β = 0.5), the model accuracy of each method will fluctuate to a certain 
extent as the amount of contaminated sample data increases. Although 
the FedCM method has some fluctuations, its model accuracy is still 
higher than that of the comparison method. Since meta-learning based 
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on Gaussian noise model parameters in the FedCM method introduces 
noise for learning, the model can predict the contaminated data well, 
and using the global model for correction reduces the possibility and 
degree of model deviation caused by the introduced noise so that 
the model update direction is more accurate, showing that FedCM is 
robust in the proportion of contaminated samples.

TABLE IV. Performance Comparison of FedCM With and Without 
Abnormal Updates Removed on the Server Side Under the Default 

Experimental Settings

Scenario CIFAR10 CIFAR100 SVHN

with-a-r 79.94 51.55 93.31

without-a-r 81.61 53.20 94.30

1 Note: "with-a-r" means that the model of the attacked client is excluded 
when the model is aggregated on the server side; "without-a-r" means 
that the model of the attacked client is not excluded when the model is 
aggregated on the server side.

In addition, as shown in Table IV: On the cifar10, cifar100, and 
svhn datasets, compared with the case where abnormal updates were 
removed on the server side, the accuracy of the model using FedCM 
increased by 2.09%, 3.2%, and 1.06% respectively when abnormal 
updates were not removed on the server side, indicating that the 
accuracy of the model that processes the attacked clients is better 
than that of the model that directly excludes them. Because in the 
attacked clients, there is some data that has not been attacked, which 
can provide effective data information to help the model improve 
its accuracy. Especially in the case of heterogeneous data, if some 
categories only exist in the attacked clients, directly removing these 
clients will cause the model to be unable to learn the information of 
this category, affecting the overall performance. Therefore, it further 
illustrates the rationality of the method in this paper to use meta-
learning to learn noise knowledge.

The FedCM method has good model accuracy and robustness under 
different proportions of attacked clients and contaminated samples.

D.	Ablation Experiments
Under the default experimental settings, ablation experiments are 

conducted by splitting and combining components, mainly comparing 

the following four variants: (1) No components (none): Only FedAVG 
is used for aggregation. (2) Only meta-learning: Only meta-learning 
based on Gaussian noise model parameters is used on the client. (3) 
Only contrastive learning: Only contrastive learning based on 
improved data features is used on the client. (4) All components 
(full): The entire FedCM is used on the client, and FedAvg aggregation 
is used on the server.

ac
cu

ra
cy

ac
cu

ra
cy

Round

Round

0
0.0

0.2

0.4

0.6

0.8

0.8

0.7

20

none only meta learning only contrastive learning Full

40 60 80 100

10090 95

Fig. 5. Performance comparison of ablation experiments of FedCM on CIFAR10.

As shown in Fig. 5, the accuracies of the above four cases are 
75.39, 79.59, 79.23, and 81.61, respectively. When only meta-learning 
is performed, compared with no components, the overall fluctuation 
is minor, and the accuracy is improved, indicating that meta-learning 
based on Gaussian noise model parameters maintains the stability of 
model performance and reduces the model’s sensitivity to abnormal 
data. The model accuracy is improved when only contrastive learning 
is performed, compared with no components. Still, the fluctuation is 
significant, indicating that contrastive learning based on improved 
data features can improve the model’s accuracy but is affected by 
noise data. When all components are present, the overall performance 
is improved compared with meta-learning alone, indicating that 
contrastive learning based on improved features can improve 
component performance; compared with only contrastive learning, the 
model accuracy is improved, and the fluctuation is slight, indicating 
that meta-learning can effectively improve the robustness of the 

TABLE III. Performance Comparison of Various Methods Under Different Sample Contamination Ratios

Approaches FedAvg FedProx Krum Median Norm Residual RFA Trimmed 
Mean

MOON FedCM

C
IF

A
R

10

NR=25% 75.32 76.5 72.64 69.25 73.21 75.20 74.75 74.69 75.10 81.07

NR=50% 75.34 75.09 71.99 68.63 72.38 75.70 73.53 74.85 75.79 80.75

NR=80% 75.39 75.21 71.69 68.88 72.13 74.81 74.49 74.88 75.84 81.61

NR=100% 74.67 75.62 70.87 68.51 72.24 74.91 74.24 74.46 76.24 81.13

C
IF

A
R

10
0

NR=25% 50.71 50.26 48.69 43.27 48.73 50.34 50.25 49.26 49.68 52.90

NR=50% 49.77 49.55 48.77 42.56 48.84 49.43 49.61 49.12 49.15 52.86

NR=80% 50.11 49.32 48.12 42.17 48.02 49.41 49.03 49.09 49.12 53.20

NR=100% 49.69 49.02 48.04 42.26 47.91 48.92 49.58 48.19 48.85 53.18

SV
H

N

NR=25% 93.30 93.35 92.86 90.93 93.94 93.57 93.34 93.18 92.72 94.26

NR=50% 93.11 93.13 93.00 90.76 93.92 93.72 93.15 93.22 92.49 94.67

NR=80% 93.05 93.04 92.96 91.14 93.75 93.59 92.83 93.26 92.89 94.30

NR=100% 93.23 93.28 92.75 90.80 93.74 93.45 92.93 93.01 92.60 94.19

1 Note: The highest accuracy is marked in bold, and the second highest accuracy is underlined.
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model to data anomalies. Combining meta-learning and contrastive 
learning can improve the model’s accuracy on abnormal data. Since 
directly using local features for contrastive learning will make 
abnormal information more prominent, contrastive learning based on 
improved data features uses the previous round of anti-noise model 
to improve features and slow down the extraction of noise features; it 
will smooth the performance improvement and make the model more 
stable. In short, when non-IID and there are data anomalies, the two 
components of FedCM proposed in this paper improve the model’s 
accuracy to a certain extent and make the model more stable. In Fig. 
6, none, o-m, o-c, Full indicate the above four cases in turn. As shown 
in Fig. 6, under most different beta, ar, and nr, the accuracy of the 
FedCM model is improved compared to using only the meta-learning 
and only the contrast learning part, indicating that the combination 
of the meta-learning part and the contrast learning part is effective in 
most of the cases.

E.	 Hyperparameter Sensitivity Analysis
Experiments were conducted under different hyperparameter 

settings to evaluate the sensitivity of the proposed method to 
hyperparameters. There are mainly three hyperparameters: (1) 
contrastive similarity threshold µ, (2) temperature of the contrast 
learning part τ , and (3) learning rate lr.

As shown in Fig. 7(a) and (b), as the contrastive similarity threshold 
or the temperature of the contrastive learning part increases, the 
accuracy of the model will fluctuate, but the change is small, which 
shows that the contrastive similarity threshold µ and the temperature 

hyperparameter of the contrast learning part τ have relatively little 
effect on the model performance. As shown in Fig. 7(c), when the 
learning rate is too large (lr = 0.1), it will lead to unstable model 
convergence and a decrease in model accuracy, which shows that the 
learning rate has a greater impact on model performance.

F.	 Scalability Analysis
Experiments were conducted under different client numbers 

(nc = 20, 50, 100, and training rounds were 100, 200, and 300, 
respectively) to evaluate the scalability of the proposed method.

As shown in Table V, as the number of clients increases, although 
FedCM decreases, its overall accuracy is higher than other methods. 
This is because as the number of clients increases, the client data 
becomes sparser, and the noise knowledge learned by meta-learning 
is closer to the noise knowledge of the data distribution. In addition, 
the contrastive learning part uses category information to perform 
loss calculation, which enhances the extraction of category features, 
thereby having better model performance. Therefore, FedCM has good 
scalability.

G.	Time Complexity Analysis
The following is an analysis of the time complexity of the method in 

this paper. The time complexity of the model aggregation on the server 
side is O (N + 𝑑), where N is the number of clients and d is the number 
of model parameters. When using FedCM for local model training, 
the time complexity of the contrastive learning part is O(m × b × f ), 
and the time complexity of the meta-learning part is (m ×(f + 𝑑)), so 
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Fig. 6. Performance comparison of ablation experiments of FedCM.
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the total time complexity of using FedCM for local model training 
is O(E × m × ( b × f +f + 𝑑)), where m is the local dataset size, f is the 
feature dimension, E is the number of local training rounds, b is the 
batch size, usually, 𝑑 >> f and 𝑑 >> b, abbreviated as O(E × m × 𝑑). 
Therefore, the total time complexity of each round of training is 
O(N × 𝑑) + O(E × m × 𝑑), where E × m >> N, usually, abbreviated as 
O(E × m × 𝑑). It can be seen that the computational overhead of the 
FedCM algorithm is mainly determined by the size of the local training 
dataset m and the number of model parameters 𝑑.

VI.	Concluding Remarks and Future Work

Data anomalies under non-IID will lead to degraded model 
performance. Existing methods focus on robust aggregation on the 
server side, ignoring the proportion of malicious updates, and some 
methods have non-IID problems. This paper proposes a robust 
federated learning framework, FedCM, which has two parts: contrastive 
learning based on improved data features and meta-learning based 
on Gaussian noise model parameters. Experiments have shown that 
FedCM has higher model accuracy and faster convergence under 
different non-IID conditions and is robust regarding the proportion of 
attacked clients and the proportion of contaminated samples. Future 
research can explore how to achieve effective, robust model updates 
when the client situation is unknown and how to expand the proposed 
method to achieve practical applications in more abnormal situations 
and personalized federated learning.
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