
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 2.

- 57 -



Abstract — Planific@ is a route planning project for the city of

Madrid (Spain). Its main aim is to develop an intelligence system

capable of routing people from one place in the city to any other

using the public transport. In order to do this, it is necessary to

take into account such things as: time, traffic, user preferences,

etc. Before beginning to design the project is necessary to make

a comprehensive study of the variety of main known route

planning algorithms suitable to be used in this project.

Keywords— ADL, HTN, JSHOP2, JSHOP2GUI, Method,

Moviliz@ , Operator, PDDL, Planific@, SHOP, STRIPS

I. INTRODUCTION

OWADAYS, more people live in cities and much of this

population uses public transport every day to move

everywhere. It is noticeable that there is a lack of information

for the citizen, who does not know all the options available

when making a journey.

 This leads to distrust and less use of public transport.

Unless citizens are sure to know beforehand how to get to a

place, they will never go by bus or subway. Also, the lack of

information precludes the option of combining these two ways

of transport, losing their effectiveness as a whole. People will

only combine bus and subway in everyday situations, which

are familiar to them.

 In turn, the difficulty of calculating times for journeys using

public transportation tend to be a handicap when you have to

decide on this type of transportation. Madrid. EMT (Empresa

Municipal de Transportes) and Metro de Madrid, the public

transport companies operating in Madrid, provide trip

estimates on its web pages, however there is no connection

between them, nor provided through mobile devices that is

where, in most cases, the system will be useful for the

traveler.

We find that the optimal implementation of this

functionality is in mobile device, since the vast majority of

people use to carry one on at all times and it is precisely when

you are not at home when this functionality is most times

needed. For this reason the development will be oriented

towards these devices.

The main problem in this Project is how to calculate the

optimal route between two locations within a city, taking into

account all potential bus and subways routes.

To resolve this problem we must create an algorithm that

takes into account all the possibilities offered by public

transport in the city of Madrid. This involves planning routes

that may include several stages in different modes of transport

(subway, bus and walking). It must also take into account the

route preferences set by the user such as prices, maximum

number of transfers, shortest, cheapest, etc.

The desired result is a novel and very useful product for the

citizens who know well the city as well as for tourist people,

as it facilitates and encourages the use of public transport in

the city. Equally interesting from the technological point of

view to giving added value to mobile devices which could

become the best city guide.

II. MOTIVATION

 In this section we discuss those factors that have influenced

in the choice of the development of this project. We could

classify the reasons for our decision opted into two main

branches: on the one hand we see great interest and potential

in the urban transport sector, on which there are many things

to do and improve. On the other hand we are interested in

logistics field and the route planning algorithms used in this

field.

A. International economic and social situation

 The world today is under the influence of globalization.

There is no developed country that is not clearly influenced.

This influence derives, among other things, in a migration to

the cities of the population living in rural areas. Consequently

there is a growth in these, and is thus an improvement in

public transport services.

B. Environment

 Another factor to consider is the environment. For many

years man has been aware of the influence that society has on

the environment. However, until recently, no one talked about

global warming, environmental awareness, etc.. Therefore, we

conclude that all those issues that help improve the situation

of the environment, while encouraging the use of public

transport to replace private transport are of great importance.

C. Status of public transport

 In large cities, public transport becomes a daily essential

element. From the standpoint of government, public transport

has become a very complex system, only manageable with

information technology.

Route planning algorithms: Planific@ Project

Carlos Martín García and Gonzalo Martín Ortega

OpenLab

N

Special Issue on Business Intelligence and Semantic Web. ISSN - 1989-1660

- 58 -

 From the standpoint of people who decide to commute by

such cities in their own car we can see that appears a large

number of problems such as traffic, parking problems, fuel

costs, etc.. A priori, the most immediate and simple solution

that could give the user would be using public transport.

 However, as we mentioned a few lines above, we have

identified some shortcomings in this system, such as poor or

even no information that the user has on rates, commuting

times, distances in time and transfers, number of stops to

destination, etc. Furthermore, the user does not have a system

that will efficiently provide the interconnections between

different modes of transport, and more importantly, there is

currently no system that combines the different transport

networks of a city to offer the user the optimal route.

Such claims may be or not met in more or less degree by the

government, but reality is that there are deficiencies. While

these deficiencies continue to exist, the current public

transport users and potential users will try to improve this

situation with alternative solutions such as the application we

want to accomplish.

D. Technology

 All previous motivations that make us challenge the current

system of public transport in big cities need some help. But

this aid passes inexorably by the application of new

technologies.

 Today we can find on the market mobile devices with GPS,

wifi and high data processing capability. They have touch

screens and highly usable interfaces. Furthermore, the

development of such applications has been facilitated by the

development of very simple to operate SDKs. Other factors to

consider are that people are more and more familiar with this

type of device, its affordable price and that there is not any

application in the market that offers a system for mobile

devices that lets you know what is the best option to reach

your destination.

III. OBJETIVE

In the following sections we will concentrate on the

scheduling algorithm necessary to carry out the project. In

particular, we will perform a comprehensive analysis of

planning in Artificial Intelligence, the main existing planning

algorithms and their characteristics. With this study we will be

able to choose the algorithm that best suits our problem. Once

located, dig into their characteristics, both technical and

operational, with the aim of acquiring the knowledge needed

to solve the problems mentioned above.

IV. SPECIFICATIONS LANGUAGES

To achieve efficient planning is so important to have good

modeling languages, with good algorithms. The language of

STRIPS [1] has conditioned the vast majority of planning

work since the early '70s, due to its effective solution to the

problem context [1] and his support for the strategies of divide

- and - conquer. This section briefly describes this language as

well as its two major extensions: ADL [2] and PDDL [3].

A. STRIPS

In artificial intelligence, STRIPS (Stanford Research

Institute Problem Solver) is an automated planner developed

by Richard Fikes and Nils Nilsson in 1971. The same name

was later used to refer to the formal language of the inputs to

this planner. This language is the base for most of the

languages for expressing automated planning problem

instances in use today. This section only describes the

language, not the planner.

An operator  O is defined on STRIPS as a tuple (Name,

Pre, Eff). Name is the name of the operator and is represented

by a syntactic expression of the form or (X1, X2, ..., Xn)

where each Xi is a variable symbol is called a parameter of

the operator. Pre and Eff are respectively the preconditions

and effects of the operator, and are represented by:

• An atomic formula (predicate_name arg1, ... argn), where

the predicate describes the type of fact and arguments are

symbolic variables that correspond to the parameters of the

operator. An atomic formula can also occur if it appears

negated the effects of the operator.

• A conjunction of atomic formulas. An action is obtained

after replacing all the parameters of an operator for specific

values. An action, therefore, is a specific instance of an

operator. Pre (a) is a set of facts that represents the

preconditions of the action. The effects of the action Eff (a)

are the facts that add and remove action. The positive effects

are represented as Add (a), and negative effects such as Del

(a). The result, therefore, to apply a sequence of actions on a

state can be formalized as shown below:

For convenience, any action can be initiated within a state,

but only takes effect if their preconditions are met. If its

preconditions are met, the positive effects of the action are

added to the state, while the negative effects are eliminated.

A plan P is defined as a sequence of sets of actions

applicable (A0, A1, ..., An), and indicates the order in which

the actions of these sets will run. If a set of actions Ai contains

more than one action, such actions can be executed in parallel.

Therefore, if | Ai | = 1  i = 1 ... n says that the plan P is

sequential and parallel otherwise. A plan P is a solution to a

planning problem if result (I, P) is a state objective, ie, if G ⊆

result (I, P).

B. ADL

Although the STRIPS language is very limited for most

complex domains, allows a high degree of enlargement. A

major expansion has been carried out is language ADL

(Action Description Language [2]). ADL is more expressive

than STRIPS and is based on an algebraic model to

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 2.

- 59 -

characterize the states of the world. The main extensions

added are:

• Types: ADL allows assigning types to objects of the

problem and the parameters of the operators. This facilitates

understanding of problems and reduces the number of

predicates (fact types) needed.

• Preconditions and negated goals: ADL can include negated

atomic formulas in the preconditions of an operator. Similarly,

you can specify negated literals in the goals to represent those

who do not want facts in an objective state.

• Disjunctive Preconditions: ADL allows a precondition can

be a disjunction of atomic formulas.

• quantified preconditions: preconditions may include

quantified formulas, both existential (exists) as universal

(forall).

(forall (? v1 • v2 ...) [formula])

(exists (? v1 • v2 ...) [formula])

• Comparisons: ADL introduces a new type of atomic

formula in the pre-conditions (= arg1 arg2), which is satisfied

when its two arguments are equal. This equality predicate

(called Equality) symbols compares variables within an

operator.

• Effects conditionals in ADL domain, operators can contain

conditional effects (when condition [formula]). Conditional

effects have effect only if specified condition is satisfied in

the state on implementing the action. Conditional effects are

mainly situated in quantified formulas.

These extensions can reduce the number of instantiated

actions, because each action is possible to express a wider

range of situations. You can take this advantage to improve

the efficiency of many planning systems [2].

C. PDDL

 ADL has been one of the extensions of STRIPS most used

by planners, but not alone. For example, FStrips (Functional

STRIPS) is a first-order language, without quantification,

working with constants, functions and relational symbols - but

not symbols variables - and increases the expressiveness of

the language. However, the extent of greatest success has

undoubtedly been PDDL (Planning Domain Definition

Language [3]). PDDL was developed for the international

planning competition in 1998 [McDermott 2000] with the aim

of providing a common notation for modeling planning

problems and evaluate the performance of the planners. Since

its inception, PDDL has been a point of reference as modeling

language for the vast majority of planners.

 Apart from STRIPS and ADL, PDDL has been influenced

by many other formalisms: SIPE-2, Prodigy 4.0, UCMP,

Unpop and UCPOP [1]. The PDDL goal is to express the

physics of a domain, ie which predicates are, what actions can

be performed and what are its effects, without providing any

additional knowledge about it. PDDL provides a wide variety

of features, among which are:

• Model-based action STRIPS.

• Conditional effects and universal quantification, as

proposed in ADL.

• Specification of hierarchical actions. The actions are

broken down into sub-actions and sub goals that can

contribute to more complex problems.

• Definition of domain axioms. The axioms are logical

formulas that establish relationships between things that are

satisfied in a state (as opposed to equity, which define

relations between successive states).

• Specification of security restrictions. These restrictions

allow to define a set of objectives to be met throughout the

planning process.

 Given the large number of features that PDDL can express

virtually any existing planner is able to handle them all.

PDDL brings these features into a set of requirements. In this

way, planners can quickly check if they can handle a

particular domain.

D. PDDL Extensions

One of the main contributions of the competition in 2002 was

planning a new version of PDDL language: v2.1 PDDL [4].

The most important characteristics are incorporating the

ability to define actions with duration and to describe the

effects that time has on stocks. It also modifies the treatment

of numeric expressions and to specify, as part of the problem

itself, an objective function (called metrics) that establishes

the criteria for optimizing the plan.

PDDL v2.1 is organized into the following four levels:

• Level 1: includes propositional and ADL levels of the

previous version of PDDL.

• Level 2: establishing a definitive syntax for handling

numeric expressions. The numerical expressions are

constructed by arithmetic operators and numeric functions.

 These functions associate numerical values to tuples of

objects of the problem. The numerical terms the actions are

always comparisons between pairs of numeric expressions,

while the effects can modify the values of numerical

functions.

• Level 3 makes use of discrete durative actions. Thus, it is

possible to indicate the moments during and after the

implementation of an action effect occurs.

• Level 4: Allows durative actions that have continuing

effects. To model this effect, introduce the symbol # t which

represents the continuum over time during the execution of a

durative action.

 More recently, a new extension called PDDL+ a fifth level.

This level allows you to model efficiently the occurrence of

events during the execution of a plan. PDDL+ also supports

modeling of business processes that are activities that, while

they last, cause continuous changes in the values of numerical

expressions.

Special Issue on Business Intelligence and Semantic Web. ISSN - 1989-1660

- 60 -

V. CHOICE OF THE SHEDULING ALGORITHM

After analyzing the world of planning in Artificial

Intelligence, the main existing algorithms and the

requirements for carrying out the main project exposed

before, we can reach an important conclusion. The most

appropriate algorithm for our problem is JSHOP2. The

reasons that led us to this choice are detailed below.

The main difference between SHOP2 and most other HTN

planners is that SHOP2 plans tasks in the same order will be

executed knowing the current status of each step of the

planning process. This reduces the reasoning complexity by

removing the large uncertainty degree about the domain and

allows to easily incorporate power of expression to SHOP2.

Besides the common HTN methods and operators, the

description includes SHOP2 domain axioms, mixed symbolic

and numerical conditions and external function calls. The

planning process is complete according to Turing, consistent

and complete for a typology of planning problems.

Like other HTN planning systems, SHOP2 plans

decomposing tasks into subtasks. A key idea in the use of any

HTN planner is to design a set of methods that encode

standard operating procedures catching several passes

techniques for refining a task. Some features of the domain

are expressed in a much more natural in a notation that HTN

in a stock-based notation.

JSHOP2 is SHOP2 Java implementation. From a global

standpoint, it is important to consider the programming

language being used in the project. We have decided to use

J2EE to develop the main solution, so JSHOP2 becomes the

most appropriate algorithm.

VI. SHOP2: SIMPLE HIERARCHICAL ORDERED PLANNER 2

A. Introduction

 SHOP2, Simple Hierarchical Ordered Planner 2 [5] is a

domain-independent planning system based on Hierarchical

Task Network (HTN) planning. In the 2002 International

Planning Competition, SHOP2 received one of the top four

awards, one of the two awards for distinguished performance.

This paper describes some of the characteristics of SHOP2

that enabled it to excel in the competition.

 Like its predecessor SHOP, SHOP2 generates the steps of

each plan in the same order that those steps will later be

executed, so it knows the current state at each step of the

planning process. This reduces the complexity of reasoning by

eliminating a great deal of uncertainty about the world,

thereby making it easy to incorporate substantial expressive

power into the planning system. Like SHOP, SHOP2 can do

axiomatic inference, mixed symbolic/numeric computations,

and calls to external programs.

 SHOP2 also has capabilities that go significantly beyond

those of SHOP:

• SHOP2 allows tasks and subtasks to be partially ordered;

thus plans may interleave subtasks from different tasks. This

often makes it possible to specify domain knowledge in a

more intuitive manner than was possible in SHOP.

• SHOP2 incorporates many features from PDDL, such as

quantifiers and conditional effects.

• If there are alternative ways to satisfy a method‘s

precondition, SHOP2 can sort the alternatives according to a

criterion specified in the definition of the method. This gives a

convenient way for the author of a planning domain to tell

SHOP2 which parts of the search space to explore first. In

principle, such a technique could be used with any planner

that plans forward from the initial state.

• So that SHOP2 can handle temporal planning domains, we

have a way to translate temporal PDDL operators into SHOP2

operators that maintain bookkeeping information for multiple

timelines within the current state. In principle, this technique

could be used with any non-temporal planner that has

sufficient expressive power.

 The rest of this paper is organized as follows. Section 2

gives some background on HTN planning, and Section 3

describes SHOP2‘s features and planning algorithm. Section 4

describes how to write domain descriptions for SHOP2: in

particular, Section 4.1 discusses basic problem-solving

strategies, and Sections 4.2 and 4.3 describe aspects of

SHOP2 that are specific to handling temporal and metric

domain features. Section 5 discusses SHOP2‘s performance in

the competition, Section 6 discusses related work, and Section

7 gives a summary and conclusion. Appendix A contains a

SHOP2 domain description for one of the problem domains in

the planning competition.

B. HTN Planning

 HTN planning is like classical AI planning in that each

state of the world is represented by a set of atoms, and each

action corresponds to a deterministic state transition.

However, HTN planners differ from classical AI planners in

what they plan for, and how they plan for it.

 The objective of an HTN planner is to produce a sequence

of actions that perform some activity or task. The description

of a planning domain includes a set of operators similar to

those of classical planning, and also a set of methods, each of

which is a prescription for how to decompose a task into

subtasks (smaller tasks). Figure below gives a simple

example.

 Given a planning domain, the description of a planning

problem will contain an initial state like that of classical

planning—but instead of a goal formula, the problem

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 2.

- 61 -

specification will contain a partially ordered set of tasks to

accomplish.

 Planning proceeds by using the methods to decompose

tasks recursively into smaller and smaller subtasks, until the

planner reaches primitive tasks that can be performed directly

using the planning operators. For each nonprimitive task, the

planner chooses an applicable method, instantiates it to

decompose the task into subtasks, and then chooses and

instantiates methods to decompose the subtasks even further,

as illustrated in figure below.

 If the plan later turns out to be infeasible, the planning

system will need to backtrack and try other methods.

 HTN methods generally describe the ―standard operating

procedures‖ that one would normally use to perform tasks in

some domain (e.g., see Figure 1) Most HTN practitioners

would argue that such representations are more appropriate

for many real-world domains than are classical planning

operators, as they better characterize the way that users think

about problems.

 Like most other HTN planners, SHOP2 is ―hantailorable:‖

its planning engine is domain-independent, but the HTN

methods may be domain-specific, and the planner can be

customized to work in different problem domains by giving it

different sets of HTN methods. The ability to use domain-

specific problem-solving knowledge can dramatically improve

a planner‘s performance, and sometimes make the difference

between solving a problem in exponential time and solving it

in polynomial time. In experimental studies, handtailorable

planners have quickly solved planning problems orders of

magnitude more complicated than those typically solved by

―fully automated‖ planning systems in which the domain-

specific knowledge consists only of the planning operators.

C. JSHOP Characteristics

This section describes SHOP2‘s planning algorithm and some

of SHOP2‘s distinctive features. The Basic Elements of a

Domain Description are:

1) Tasks: A task represents an activity to perform.

Syntactically, a task consists of a task symbol followed

by a list of arguments. A task may be either primitive or

compound. A primitive task is one that is supposed to be

accomplished by a planning operator: the task symbol is

the name of the planning operator to use, and the task‘s

arguments are the parameters for the operator. A

compound task is one that needs to be decomposed into

smaller tasks using a method; any method whose head

unifies with the task symbol and its arguments may

potentially be applicable for decomposing the task. The

details are discussed in the following subsections.

2) Operators: Each operator indicates how a primitive task

can be performed. The operators are very similar to

PDDL operators: each operator o has a head head(o)

consisting of the operator‘s name and a list of parameters,

a precondition expression pre(o) indicating what should

be true in the current state in order for the operator to be

applicable, and a delete list del(o) and add list add(o)

giving the operator‘s negative and positive effects. Like

in PDDL, the preconditions and effects may include

logical connectives and quantifiers. The operators also

can do numeric computations and assignments to local

variables. Just as in PDDL, no two operators can have the

same name; thus for each primitive task, all applicable

actions are instances of the same operator. Each operator

also has an optional cost expression (the default value is

1). This expression can be arbitrarily complicated and can

use any of the variables that appear in the operator‘s head

and precondition. The cost of a plan is the sum of the

costs of the operator instances.

3) Methods: Each method indicates how to decompose a

compound task into a partially ordered set of subtasks,

each of which can be compound or primitive. The

simplest version of a method has three parts: the task for

which the method is to be used, the precondition that the

current state must satisfy in order for the method to be

applicable, and the subtasks that need to be accomplished

in order to accomplish that task.

4) Axioms: The precondition of each method or operator

may include conjunctions, disjunctions, negations,

universal and existential quantifiers, implications,

numerical computations, and external function calls.

Furthermore, axioms can be used to infer preconditions

that are not explicitly asserted in the current state. The

axioms are generalized versions of Horn clauses, written

in a Lisp-like syntax: for example, (:- head tail) says that

head is true if tail is true. The tail of the clause may

contain anything that may appear in the precondition of

an operator or method.

VII. PLANNING TOOLS: JSHOP2

As we said before, planning was conducted using JSHOP2.

JSHOP2, is a planning system based on HTN (Hierarchical

Task Network).

Special Issue on Business Intelligence and Semantic Web. ISSN - 1989-1660

- 62 -

A. JSHOP2: Design and Implementation Details

 As specified in previous paragraphs, JSHOP2 is based on

PDDL. However, it does not recognize the PDDL literally.

Therefore, it is used an equivalent PDDL language written in

LISP.

 The domain is composed of operators, methods, and

axioms. Domain components (operators, methods, and

axioms) are logical expressions. These logical atoms combine

logical expressions in a variety of forms (conjunctions,

disjunctions, etc.). The atoms incorporated symbols of

predicate logic plus a list of terms. Task lists the problems are

composed of atoms of tasks.[6]

 The problem consists of logical atoms (initial state) and a

list of tasks (high-level actions).

B. JSHOP2GUI 1.0.1

Although the JSHOP2 command line is enough to obtain a

planning, it is difficult to analyze the different steps that the

planner performs during the planning process. The Graphical

User Interface (GUI) for JSHOP2 solves this problem by

offering the user a way to analyze the task decomposition tree.

The goal of any GUI is to bring users a fast, easy and

intuitive way to work with a program. In this case, the GUI

allows you to see graphically the steps that planning is

composed of. Its main advantage is that it facilitates analysis

of the results and finds possible errors in the algorithm. [7]

The actions performed by JSHOP2 to achieve a planning

are represented by the GUI as a series of steps. These steps

can be traversed forwards using the corresponding buttons.

The main window of the GUI shows the task decomposition

tree. In the information window shows data on the state of the

world domain and the action undertaken.

The main window of the GUI shows the task

decomposition tree where each node represents a task atom.

The task atoms that appear in the tree are always the initial

stages of the most high that are used to find the current plan.

Nodes can vary in size.

A large node is a visited node, while small ones correspond

to those for which has not been yet visited. Furthermore,

nodes may be of a different color. Yellow indicates a node

that is part of a total order among their brothers. A blue node

indicates a unordered task. If the cursor is on any node of the

tree, and ordered states visited node will be shown in a popup

window.

 Leaf nodes have a number surrounded by brackets

preceding the name of the atom of its task. Indicates the

position of the primitive action in the sequence of actions that

create the planning.

 Initially it is assumed that each node is a leaf node when it

first reached. If the task represented by that node becomes a

complex task, the number of the sheet is removed from the

task and is decomposed into subtasks.

VIII. PLANIFIC@ PROJECT

 So far we have focused on testing the different algorithms

and techniques in the route planning field and optimal paths.

Once you have decided which suites best to the needs

imposed by our project, we will use JSHOP2 based on PDDL.

The application that we want to develop is called Planific@

and will be integrated into a bigger and more ambitious

project called Moviliz@. The project Moviliz@ is a web and

mobile application that guides people through Madrid (Spain)

using the public transport of the city.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 2.

- 63 -

 All HTN-PDDL project consists of two files. One defines

the domain and the other the problem.

 • In Domain file are defined the methods and operators (or

actions) that call the methods.

 • In Problem file it could be found objects that are going to

take part in the problem, the initial state of all components, as

well as the objectives.

A. Domain definition

 At the beginning of this document we describes the

motivations and features of the project Moviliz@. Now, we

are going to define the elements involved in the design of the

planner and their interdependencies.

 The vehicles needed to carry out the project are bus,

subway and on foot.

 • Bus. The application will consist of a series of buses and

lines. Each line consists of several buses that cannot get out of

that line. A bus belongs to a single line and a line can have

multiple buses.

 • Subway. The application will consist of a series of trains

and lines. Each line consists of several trains that cannot get

out of that line. A train is in a single line and a line can take

several trains.

 • Foot. Another option is to travel on foot. A user can

move between two points in the city on foot. In most cases

where we plan a route, the user's point of origin will not

match the bus or subway station near you. It will therefore be

necessary to plan a path to walk to the bus stop. Another

possible option is to get off at any intermediate stops of the

tour, either subway or bus, and walk to another stop to get on

other transportation.

 • Lines. The system consists of several lines for different

modes of transport, not for on foot routing. The lines are

finite, they have several stops, and can be circular or not. The

vehicles move along these lines between different stops.

 The lines are the sections in charge of merging two stops.

When calculating the ideal route these lines are the key

decision. More than lines, the weights associated with each of

the stages are the key element. You have to mark each section

with weight and a long distance. It will take into account the

buses or trains timetable, as well as the time it takes from the

street to the corresponding platform. This time is really

necessary, especially when making changeovers.

 • Stops. A stop is the point where a line is accessed. The

user must get to that station on foot and wait for the

appropriate transport vehicle. Once this vehicle has arrived,

the user must upload this vehicle, the vehicle moves to the

next stop. The operations are equal for both, bus and subway,

so we only need to kind of one type of stop. To determine

whether the stop belongs to subway or bus, we can see the

route through which we reach this stop.

 • Interchange. It is possible to change the public transport

in the middle of planning. This feature implies a change of

line. The change can be performed in two ways:

• Change on foot: in any of the stops the user can move

off and walk to a nearby stops if planner decide that.

• Interchange: some of the stops of the model are

matched with other lines. It is in these places where the

user can change the line without needing to shift on foot,

but with a penalty. You have to get out of your current

vehicle and wait for a new one.

B. Problem definition

 The problem, as stated in previous paragraphs, is the file

that describes the environment that will be applied to the

Domain. That is, the problem initializes the variables with

which to work and the relationships that exist between

different model components.

 It would be necessary to define the graph of the planning

application. Make an association between stops, both subway

and bus, with their respective relationships, indicating the

weights as explained in previous paragraphs. It is necessary to

define the relationship between stops and lines, that is, to tell

which stop belongs to which particular line. This is necessary

because, although we have said that transportation and his

stops behave the same way, we must always know the line the

user is moving on, in order to guide him/her to the destination

correctly.

 Having defined the graph on the schedules were

implemented, we must define the elements within it. First we

must define the position of the moving parts. Buses and trains

are in different positions each time so the system has to

behold it. In addition, the start position from which the user

wants to be indicated varies with each plan. The same applies

to the destination position.

IX. DIFFERENT SOLUTIONS

This section sets out a series of practical examples that

demonstrate the operation of simplified models. These models

let analyze the overall operational of the system by a reduced

example that gradually approach the desired solution.

First, the route-planning problem was addressed using

SHOP, particularly JSHOP2. JSHOP2 is a planner that

obtained a certain impact on the 2002 International Planning

Competition because it was able to resolve all problems on the

proposed domains and it got one of four first prizes.

But beyond this fact, JSHOP2 is not widespread and only

exists a few resolved problems running that those which

where proposed in the competition discussed above.

After an arduous research work we accomplished a close

approximation of the problem solution. Two necessary files,

domain and problem, were written in order to calculate how to

get from one point to another using various means of public

transport.

The conduct and outcome of this research is collected on

the research document attached to this article. Despite the

Special Issue on Business Intelligence and Semantic Web. ISSN - 1989-1660

- 64 -

results obtained using JSHOP2 we decided to take a second

track because of the problems that by their very nature caused

us when we tried to integrate the route reached with this

planner into the Web portal and Google Maps Mashup, the

interface from which users will interact with the system.

 It was therefore decided to initiate a parallel investigation

to resolve the problem. The other idea was to use Dijkstra's

algorithm for solving the planning, integrate this algorithm

into a web portal created to implement and manage route

planning, and finally integrate these planning results in a

Google Maps Mashup. [8], [9].

Having explained the reason for both approaches, we proceed

to detail them.

A. JSHOP2 Solution

The definition of the problem domain takes place in the file

D_Planifica and comprises methods and operators that specify

the tasks and subtasks to perform even a solution to solve a

planning problem.

Moreover P_Planifica file contains the specific problem to

be solved. In this file were created many problems to solve

that will be discussed below. The methods specify tasks and

subtasks to be performed. A method in turn can contain

several methods to execute if it meets a number of conditions.

These methods are included in other subtasks of the task.

The nesting of methods creates a structure of tasks and

subtasks that concludes with the execution of primitive

operators. These operators, entities of lower levels of

abstraction, are responsible for carrying out actions that will

resolve the problem. The solution to it is precisely the

sequence of all primitive operations are carried out to achieve

the objective.

The methods and operators used to define the problem

domain that also contain all the search logic of routes are

described in the documentation attached to this article.

However, below you could find some figures of the execution

of and example with some transport lines.

B. Dijkstra – Google Maps Solution

As it was said at the beginning of this section, with the first

approach did not obtain the expected results. This is the

reason for what we decided to tackle the problem from

another point of view. Not the best way to deal with solving a

complex problem, as are all combinations of public

transportation services at Madrid, but it does provide a good

approximation of what would be the end result.

 • Dijkstra. Dijkstra algorithm is implemented in J2EE,

it is integrated into a web portal and the results are

displayed in the Google Maps Mashup that is integrated

into the web portal.

Dijkstra's algorithm, conceived by Dutch computer scientist

Edsger Dijkstra in 1959, is a graph search algorithm that

solves the single-source shortest path problem for a graph

with nonnegative edge path costs, producing a shortest path

tree. This algorithm is often used in routing. An equivalent

algorithm was developed by Edward F. Moore in 1957.

For a given source vertex (node) in the graph, the algorithm

finds the path with lowest cost (i.e. the shortest path) between

that vertex and every other vertex.

 It can also be used for finding costs of shortest paths from

a single vertex to a single destination vertex by stopping the

algorithm once the shortest path to the destination vertex has

been determined. For example, if the vertices of the graph

represent cities and edge path costs represent driving distances

between pairs of cities connected by a direct road, Dijkstra's

algorithm can be used to find the shortest route between one

city and all other cities. As a result, the shortest path first is

widely used in network routing protocols, most notably IS-IS

and OSPF (Open Shortest Path First). [8]

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 2.

- 65 -

• Google Maps. The Google Maps API allows you to

embed Google Maps in your own web pages with

JavaScript. The API provides several utilities for

manipulating maps and adding content to the map using

various services, allowing you to create robust maps

applications on your site.

Google Maps is a GIS application by Internet company

Google, which its potential for this type of project is very

high. Therefore, we have decided to show route planning

performed by Dijkstra's algorithm using this API.

Moreover, this application will be integrated into a web

portal as a Mashup. [9]

The possibilities offered by the Google Maps API are

many, but not being the main objective of this work we

will not deepen them. However, if you want to do more

research on the subject, this link may be helpful:

http://code.google.com/intl/es-ES/apis/maps/

• Planific@. In order to simplify the comprehension of the

whole project we are going to limit the public transport of

Madrid to the following graph.

The same graph in a schematic way will be as follow:

More details about implementation and web portal integration

could be found at the attached document. However, below

you could find some images of the final solution.

General map view

General Satellite view

Planning view

http://code.google.com/intl/es-ES/apis/maps/

Special Issue on Business Intelligence and Semantic Web. ISSN - 1989-1660

- 66 -

X. CONCLUSION

This paper shows the investigation study carried out about the

different ways to perform route planning. After searching all

possible solutions to resolve this problem we could say that

HTN-PDDL and JSHOP2 is apparently the best way to reach

the objective proposed based on the studied algorithms. So we

started to design the PDDL domain that represented the

proposed problem and it was seemingly easy and powerful.

However, it has to be noted that in PDDL there is a clear

distinction between the description of parameterized actions

that characterize the behavior of the domain and descriptions

of specific objects, initial conditions and goals that

characterize a particular problem. While, PDDL domain

description is robust enough to model the behavior, we think

that language has certain shortcomings when is needed to

express the initial state and the objectives to be achieved in

certain types of problems, for example, PDDL is unable to

indicate a multiple initial state that allows not only minimize

the objective function.

Moreover the language is not flexible when it necessary to

instantiate the predicates and functions describing the initial

state of a problem, which is quite tedious and impractical,

especially when defining the problems as our case in which

initialization involves a large number of nodes. It would be

appreciate a reference to instances of more generic predicate

to avoid having to make an exhaustive list. As for the tool

used, JSHOP2, worth mentioning that the abstraction in which

we must write the file and problem domain is based on LISP.

This implies that clarity offered by PDDL defining operators,

methods and designing the problem is lost, making more

complicated to design the solution. We cannot fail to mention

the great help that involved the use of graphical user interface

used, JSHOP2GUI 1.0.1, which allowed us to do a larger

number of tests because of its ease of use and the ease of

debugging code.

Another problem with JSHOP2 was the great difficulty that

we found to integrate the route reached with this planner into

the Web portal and Google Maps Mashup, the interface from

which users will interact with the system. After seeing all this

difficulties that we find in this approximation to the solution,

we tried a second via to solve the problem. We think that the

best way to accomplish this is by using the Dijkstra algorithm

written in J2EE, the same platform used for the web portal. It

was easier to integrate the planning results with the Google

Maps Mashup and these results were efficient and accurate

enough.

As a final conclusion, we would like to say that throughout

this investigation we have noticed that PDDL is a very

powerful tool in order to write planning domains, but there is

no planner that use it directly, transferring the domain

information in the same language. We think that it would be

very interesting to research on planners that use all the

capacity that it owns. JSHOP2 is an ambitious academic

project with great potential, but nowadays it is quite difficult

to solve a problem that demands some complexity with this

planner.

REFERENCES

[1] Okhtay Ilghami; Dana S. Nau.. A general approach to synthesize

problem- specific planners. Technical Report CS-TR-4597, Department

of Computer Science, University of Maryland. USA. Oct 2003.

[2] Dana S. Nau; Muñoz-Avila, Héctor; Cao, Y; Lotem, A; and S. Mitchell.
Aug 2001. ―Total-order planning with partially ordered subtasks‖. In

Proceedings of the Seventeenth International Joint Conference on

Artificial Intel ligence, Seattle, WA, August 2001.
[3] Nau, Dana. "Simple Hierarchical Ordered Planner. SHOP Automated

Planning.‖ . University of Maryland. USA. 17 Feb 2005 [Online].

Available: http://www.cs.umd.edu/projects/shop/
[4] D. Nau, T.-C; Au, O; Ilghami, U; Kuter, J. W; Murdock, D; Wu, and F;

Yaman. ―SHOP2: An HTN planning system. Journal of Artificial

Intelligence Research‖. Dec 2003.
[5] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. ―SHOP: Simple

hierarchical ordered planner‖. Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), Morgan Kaufmann
Publishers. 06 Aug 1999.

[6] Ilghami, Okhtay. "Documentation for JSHOP2". 24 Aug 2009. [Online].

Available: http:/ourceforge.net/projects/shop

[7] Shin, J. ―A Graphical Interface for JSHOP2‖. Department of Computer

Science University of Maryland, College Pak. Jun 2006

[8] Wikipedia. ―Dijkstra Algorithm‖. Aug 2009. [Online]. Available:
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

[9] Google Map. ―Google Maps API‖. Aug 2009 [Online]. Available:

http://code.google.com/intl/en/apis/maps/

C. Martín García, Madrid, 1984, 5th Year Computing Engineering Student

at Universidad Pontificia de Salamanca, Madrid, Spain. e-mail:

martin.g.carlos@gmail.com

G. Martín Ortega, Madrid, 1982, 5th Year Computing Engineering Student

at Universidad Pontificia de Salamanca, Madrid, Spain. e-mail:

gonzalo.martinortega@gmail.com

mailto:martin.g.carlos@gmail.com
mailto:gonzalo.martinortega@gmail.com

