
Special Issue on Computer Science and Software Engineering

-34-

Abstract — This article presents a set of patterns that can be

found to perform best practices in software processes that are

directly related to the problem of implementing the activities of

the process, the roles involved, the knowledge generated and the

inputs and outputs belonging to the process. In this work, a

definition of the architecture is encouraged by using different

recurrent configurations that strengthen the process and yield

efficient results for the development of a software project. The

patterns presented constitute a catalog, which serves as a

vocabulary for communication among project participants [1],

[2], and also can be implemented through software tools, thus

facilitating patterns implementation [3]. Additionally, a tool that

can be obtained under GPL (General Public license) is provided

for this purpose.

Keywords — Software Process, patterns.

I. INTRODUCTION

he goal of software development is to generate products,

with high levels of productivity and efficiency, that ensure

good levels of quality. To achieve this, it is necessary to use

different strategies. Among such set of strategies, the use of

patterns stands out as one of the most popular one. There is

already an important and recognized work about patterns in

different areas of software engineering, such as design patterns

[4], [5], architectural patterns [6], [7], [8], patterns analysis [9]

and others. However, to our knowledge, there is no work

addressing software process patterns. There is a wide range of

software processes and methodologies, and some concepts that

can be compiled to promote recurrent usage have been

adopted, which may represent a sort of process patterns. This

article proposes a set of patterns, which can be found when we

use different software processes and methodologies, which can

be evidenced in their conceptual cores.

II. UNDERSTANDING PATTERNS

A pattern has a recognizable structure that makes it special

and general. Using a software pattern prevents developers

from “reinventing the wheel”, also preventing out-of-date

reinventions that create more problems than what they really

solve (e.g. reinventing a square wheel). The pattern has

another key ingredient, namely the ease it provides when

communicating an idea, because the pattern itself turns into a

vocabulary, not only accepted but also widely recognized.

Nevertheless, the most important contribution of patterns

might lie in their predictive power. A pattern is a sort of time

machine, it is like the Rosetta Stone that allows the

understanding of the way an appliction was created, initially

employing a language that is difficult to follow – namely,

programming language, design language, the language of

architecture, language processes – and translates it into the

original idea behind such implementation through the

vocabulary of patterns. This means you can see the past of

software applications and the intention with which they were

developed; similarly, you can see into the future of the

applications and attain one of the most desirable software

features, namely scalability. It is possible to structure future

applications to maintain a predictable behavior, and allow for

evolution. One can say that the patterns become more powerful

because beyond being good practice, patterns become a

widely-accepted, spoken vocabulary used by a whole

community that has found a simple and effective way of

communication [10].

III. SOFTWARE DEVELOPMENT PATTERNS

Software processes have produced a framework of

concepts that originate familiar, widespread recurrent

structures that are used over and over again when developing

software projects. These patterns can be categorized as process

workflow between the different activities that constitute the

process architecture. Such categories involve the participants

and stakeholders within the software process according to the

inputs and outputs that affect software development and also

according to the knowledge involved. The form [11] of the

process pattern is given by its definition, consequences, its

advantages and disadvantages. The definition establishes the

concept of pattern, the consequences define the effects that the

pattern causes; the advantages establish all positive

contributions of the pattern, while the disadvantages set

unfavorable situations caused by the pattern. It is important to

note that, unlike other forms of patterns, these patterns indicate

their own potential problems and thus alert developers so as to

be aware. This is because in the application of software

process patterns, it is important to note the potential risks

entailed.

A. Workflow Patterns

 With regard to the desired process architecture, there are

three possible configurations for the activities, namely parallel,

linear or cyclic. Out of these configurations, combinations that

produce more complex processes can be obtained in turn.

Patterns of Software Development Process
Sandro Javier Bolaños Castro

1
, Rubén González Crespo

2
, Víctor Hugo Medina García

1

1
District University “Francisco José de Caldas” - Bogotá (Colombia)

2
Pontificial University of Salamanca - Madrid (Spain)

T

DOI: 10.9781/ijimai.2011.146

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-35-

 1. Linear Workflow Pattern

The first and most important antecedent of linearity was in

Royce's proposal, about his waterfall model [12]. The fact of

the matter is that, despite much progress, the waterfall model

isn’t quite dead yet [13]. Linear Workflow pattern suggests

that software processes should focus on a linear workflow

[14], that is, a set of activities is clearly identified and linked

so that each link is used to configure a chain. Under these

conditions there is a permanent pre and post activity for almost

every activity, except for the initial and final activities (Figure

1).

Figure 1. Linear Workflow

Consequences:

The main effect of this linear configuration is that the

activities are executed sequentially; therefore, an activity i

occurs after the i-1 activity and prior to an i+1 activity only.

Advantages:

- There is order and control over the activities

- It is possible to budget resources for activities.

- There is clarity in both roles and disciplines involved.

Disadvantages:

- Activity i is highly dependent on activity i-1 and is also

the starting point for an activity i +1 in such a way that

a domino effect is created between activities whenever

there is a problem.

- Time is the most difficult resource to estimate, due to

the holistic effect resulting from the integration of

activities.

- There are overloaded times for a the roles associated to

the activities in execution; when such activities finish,

there is uderutilization, wasting a considerable amount

of human resources.

- The fall of an activity produces a fall in activity i +1, i

+2, ..., i + n, which makes requirements engineering the

most critical activity.

2. Parallel Workflow Pattern

Process models, such as the model V [15] propose to

mitigate the problem of linearity through the simultaneous

development of activities. In the case of V model, activities

are confronted with tests during the process. Parallel

Workflow pattern suggests that software processes focus on

a parallel workflow. The particularity of this model is the

execution of parallel activities, at least two activities. The

results of the activities that are performed in parallel add

their outputs to the next tuple of activities, and so on, until

reaching a final result (Figure 2).

Figure 2. Parallel workflow

Consequences:

Running parallel activities may produce effects such as

the need for activity synchronization and the addition of

results to configure unified inputs.

Advantages:

- Clear identification of activities.

- Optimization of resources by the simultaneous

execution of activities.

- Creation and integration of roles society.

Disadvantages:

- Proper activity synchronization is a difficult task.

- Collaboration between roles requires prior training (as

its nurturing factor), which is something most teams

lack.

3. Cyclic Workflow Pattern

The cyclical nature of the software process is a

recurring concept in different software process proposals
[16], [17], [18], [19]. Process models such as the spiral

model [20], offer feedback processes which suggest the

cyclical nature present not only in this model. Cyclic

Workflow pattern suggests that software development

processes focus on a workflow with feedback, that is, the

pattern clearly identifies a set of interlinked activities and

closes a loop with them. It is clear that there is an initial

activity that can recycle the product of a final activity

(Figure 3).

Special Issue on Computer Science and Software Engineering

-36-

Figure. 3. Cyclic Workflow

Consequences:

This cyclic configuration identifies a loop in which the

output of an activity is the input of another previous activity;

such a feedback can even occur with respect to the same

activity.

Advantages:

- Settings of product refinement cycles are possible.

- Allows activity repair whenever mistakes are made.

- Enhances knowledge of the process as a result of

repetition.

Disadvantages:

- Developers may fall into indefinite cycles and therefore

lose control of the process.

- It is necessary to make a big efforts and large

investments.

B. Patterns according to Participants

Modeling of participants allows to reflect the most

important resource in a software process [21]. Individuals

and interactions over processes and tools [22]. According to

the stakeholders of the process, developers, their

communication and role rotation can be modeled.

1. Doer Pattern
Stakeholder theory is an area of strategic management that

defines a stakeholder as someone who affects or is affected by the

actions of the organization [23], [24], [25], then the processes of the

organization are reflected in the software process and these in turn,

by the individuals according to Conway's law. Doer pattern allows

clear identification of the key parts present when in the

execution of the process, namely the doers of the software

process and also the consumers along the process. A doer of

the software process directly executes an activity of the

process and is responsible for carrying it out, while a consumer

is the one who benefits from the products of the process

without directly affecting the corresponding activities, except

for the activities perception. In other words, while a director is

an active performer, a consumer is passive. (Figure 4).

Figure 4. Doers

Consequences:

Defining who executes the software development process

is essential to define roles and responsibilities and clear

roles. Roles also isolate the posibility of noise that is caused

by ghost roles (non-doers), who appear in the process due

to poor scope estimation.

Advantages:

- It is clearly identified who will perform the process,

allowing a good estimate of resources.

- This pattern encourages the identification of roles,

functions and responsibilities.

- Ghost roles, which generate noise in the process, are

removed.

Disadvantages:

- The identification of roles should be consistent with

their own process-specific creation.

- Ensuring the existence of doers for a particular software

process means a considerable investment in skilled

labor.

- Organizations do not have the wide range of doers that

may arise in the process.

2. Communication Pattern

Communication, or rather lack thereof, leads to

tremendous problems in the workplace and in software

[26], the quality of communication within the

development team and between the development team and

external entities impacts on the performance of the

software project [27]. Communication undoubtedly

impact the software development [28]; this development

may flow better if the interactions of the participants allow

effective exchange that is regulated by good

communication mechanisms. Communication pattern

enhances the communication structure within the process.

It identifies the communication transmitter and receiver as

well as the channel and the message. Communication is

the key to maintaining synergy in the process; it is also the

best mechanism to maintain integrity within a project. See

Figure 5.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-37-

Figure 5. Communication

Consequences:

Keeping a communication scheme facilitates the

monitoring and the process control. It eliminates the noise

generated by information islands and promotes

strengthening knowledge management processes

Advantages:

- It facilitates the exchange of experiences and insights

within the project.

- There is elimination of the noise generated by

information islands.

- It promotes role societies and the creation of

collaborative communities.

Disadvantages:

- Difficulties arise when there are particular interests.

- It is difficult when developers do not speak within the

same knowledge domain and there is no attempt to use

interfaces in such cases.

3. Role Rotation Pattern

Roles are very useful in modeling the authority,

responsibility, functions, and interactions associated with

managerial positions within organizations [29]. Roles in

software projects should be similar to a surgical team

where there is clarity in the responsibilities with a

hierarchical collaboration [30]. There have been studies

that show the importance of the dynamics that should have

the roles within the organization and the possibility of

change as a way of empowering their activities [31]. Role

Rotation pattern defines the impact one role may have on

the transformation of another role, motivated by doers

engaging in a new activity that is different form their

previous activity. To take this step, it must be taken into

account that the role is competent to assume such a

responsibility. This can be seen in two ways. In the first

approach, a role produces certain qualities that will be used

by a role that accepts them as input. A role played by the

same author who assumes another role. (Figure 6).

Figure 6. Role Rotation

Consequences:

For an organization, stepping from one role to another

within the mind of one actor is essential so that the actor

has a broader view of the process he is running. This

results in maintaining continuity and consistency in the

development process.

Advantages:

- The actor who rotates activities maintains a more

complete understanding of the process.

- It is possible to further extend the human resource.

Disadvantages

- Actors get overloaded.

- There is partial and collaborative invasion on actors

C. Patterns based on Inputs - Outputs

In a process, some settings may appear, such as the input-

output setting, the document-management setting and the

traceability setting, each emphasizes in some features related

to the input-output of the process.

1. Input-Output Pattern

The classical Leontief model on the correlation of the

economy in different industries with respect to their inputs

and outputs [32], is also a generalized model of software

processes, for example in testing [33], [34], requirements

engineering [35], programming [36], among other

activities of the development process. Input-Output

pattern allows clear identification of the process inputs

that are required for its execution and that will be

transformed to achieve the expected outputs (Figure 7).

Figure 7. Input - Output

Consequences:

Defining inputs and outputs allows estimating the

resources that will be transformed by the process into

products and / or services to be consumed. It is important to

understand what enters the process and what exits in order

to plan how the process will behave and so determine the

needs and outcomes.

Advantages:

Special Issue on Computer Science and Software Engineering

-38-

- It clearly identifies the resources used for the process and

the results to be obtained after completion of the process.

- It encourages the planning of the software process since

the available resources as wel as the desired outcomes

are known.

- It promotes the structuring of the process to transform

inputs into outputs, represented in products and / or

services.

Disadvantages:

- It is not always easy to identify inputs and outputs.

- Traceability of an input into a product is a wasteful and

costly task.

2. Document Management Pattern

Documentation is a factor to consider when you want

to succeed in a software project [37], people within a

development process tend to have a shared understanding

of the software documentation [38], creating the channel

through which communication flows and provides support

for the project; there are patterns of documentation which

detail problems related to intensive use and interaction

between the documents [39], the pattern proposed in this

paper is a general pattern present in the software

development process from the perspective of its use and

generation. Document Management pattern clearly

identifies the documentation required for the process and

the resulting documents after execution of the process

(Figure 8).

Figure 8. Document Management

Consequences:

Defining the documentation used and also the resulting

documentation in the software process is critical to support

each of the activities carried out and to support the decisions

that are defined as the process unfolds. A document sets the

source and history that deals with the project management.

When you lose a role, that role represented the mind of an

expert. A document that builds a good description of the

tasks performed by this role and also of his decisions and

experiences in a single record, is are a key asset for the

organization.

Advantages:

- It supports decisión making.

- It storages requirements, contracts and agreements.

- It allows retaking actions based on decisions previously

recorded.

- Corrections and defect tracking are recorded.

Disadvantages:

- The cost is too high for its realization.

- Updating and maintenance is wasteful.

- The documentation becomes another project that is

parallel to obtaining the code. Documents and code

should match and support each other 100%.

3. Traceability Pattern

Traceability plays an important role in facilitating

software evolution [40], in software maintenance and

reengineering [41]; in general, traceability is critical to

maintain consistency between business processes and

system software [42]. Traceability pattern establishes the

way artifacts are linked in a process to illustrate how an

idea can be transformed into a product resulting from a

concept that starts from an abstraction until getting a

concrete product (Figure 9).

Figure 9. Traceability

Consequences:

Traceability enables actors to etablish a road map of the

different elements that are developed within the software

process. Each concept sets a milestone that can be woven

together with the others to ceate a consistent tissue that is

visible and understandable.

Advantages:

- It allows displaying the process.

- It establishes a roadmap, based on the tissue, which

forms traceable items.

- There is support to repair errors due to the easy

identification of their causes.

Disadvantages:

- There is difficulty in the necessary traceability that

must be carried out from the idea itself to its

realization.

- There is a lack of inclusive language in the different

layers of abstraction.

D. Knowledge Patterns

Software companies can decrease the time and cost for

development, increase quality, and make better decisions if they

manage their knowledge better[43]. There is a direct implication

of knowledge management as a theory support for many

aspects of software engineering, one of these trends is the

school of engineering toward the process [44]. Software

process from the perspective of knowledge, can produce

knowledge, change their states, and reside in process

participants, this is reflected as patterns.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-39-

1. Knowledge Production Pattern

Knowledge is produced by the interactions of

participants through the processes they run [45]. If we see

software engineering as a process it is clear that their

results are also knowledge. Knowledge Production pattern

provides the knowledge used within a process and the

knowledge that is produced: On one hand, the knowledge

used is the conceptual framework necessary for carrying

out the process, while the knowledge gained is the result

of empirical experimentation, resulting in the execution of

the process. See Figure 10.

Figure 10. Knowledge Production Pattern

Consequences:

Defining the conceptual framework to be enlarged in a

process is critical because it establishes the characteristics

that qualify the process and that will be the input to

obtain a wealth of experience, which ultimately forms the

generated knowledge.

Advantages:

- This pattern promotes clear identification of the

concepts to substantiate and characterize the process.

- It encourages the establishment of the roles that contain

knowledge.

- It generates new knowledge from the experience gained

when implementing the process.

- Knowledge sets the differentials in the use and

performance of processes.

Disadvantages:

- Knowledge is difficult to appropriate by the

organization.

- Knowledge is volatile when those responsible for

assuming the roles are also volatile in the process.

- Knowledge and experience are not easily transferable

to new scenarios and projects.

2. Knowledge States Pattern

With this pattern, the possible states of knowledge are

set, and the processes that affect such states are formed by

states and transactions. In the software process, this is a

valuable resource for monitoring the development from

the perspective of the artifacts produced, as it is typically

done, but adding a description of the knowledge involved

to obtain such results (Figure 11).

Figure 11. Knowledge States

Consequences:

A definition from the perspective of knowledge

management proposed by Nonaka [9]. Socialization

processes between aspects such as: tacit knowledge,

processes of combination between explicit knowledge,

externalization processes from tacit to explicit

knowledge, and internalization from the tacit to explicit

knowledge; form an important conceptual framework for

managing organizational knowledge.

Advantages:

- Defining the states knowledge passes through allows

identifying not only the principles that affect it, but also

the conditions that surround such knowledge within the

software process.

- It is clear that distinguishing tacit knowledge from

explicit knowledge allows locating the origin of

knowledge, provided it is possible to encrypt it through

computer systems, or else, provided it resides in people.

Disadvantages:

- Managing knowledge is not always clear and requires

greater effort on the process.

- An additional knowledge-management expert role is

necessary for the process.

3. Knowledge Bowl Pattern

The software crisis is due to a knowledge gap resulting

from the discrepancy between the knowledge integrated in

software systems and the knowledge owned by

organizational actors [47], people involved play a major

role, because upon them rests the knowledge. Knowledge

Bowl pattern establishes who the source of knowledge is.

Such a source may reside in an author or a role, and

knowledge can be soft or hard knowledge (Figure 12).

Figure 12. Knowledge Bowl

Consequences:

Defining the source of knowledge present in a software

process is critical because it allows identifying both the

actors and the important roles within the process, like for

example knowledge systems and networks that are being

developed during the management of the process.

Special Issue on Computer Science and Software Engineering

-40-

Advantages:

- Prioritizing the roles and actors who posess valuable

knowledge allows managing the knowledge that

resides in them.

- The process is guided in its implementation by using

the knowledge being generated.

- A knowledge-based process is more reliable and

robust.

Disadvantages:

- It is not easy to identify the knowledge repository.

- Knowledge management is a task that goes beyond the

engineering discipline.

IV. PROCESS PATTERNS SUPPORT THROUGH SOFTWARE

Figure 13. Coloso Software, www.colosoft.com.co

One of the advantages of having a catalog of patterns for

software processes is the power to implement the catalog using

automated tools, in this case, a process patterns component has

been developed for the Coloso platform [10] - (Figure 13) .

Patterns implemented on the Coloso PSEE [49] - Process-

centered Software Engineering Environments - are modeled

with the Process Modeling Language PML [50] that is not

matter in this paper but can be used in the tool.

V. CONCLUSION

In the same way software patterns have been proposed in

other engineering disciplines such as software design, software

architecture, analysis, and so on; in the area of software

processes, a proposal that compiles a set of best practices that

occur repeatedly in the software development process is also

needed. The patterns proposed in this article, constitute a

valuable vocabulary to facilitate communication among the

participants in a software process, who will be able to quickly

and accurately identify the way a software development

process has been structured.

The proposed patterns, compile common elements that are

present in the software development processes and

methodologies. Additionally, these patterns clearly outline

aspects such as the structure, the participants, the knowledge

and the input-output, which constitute a software development

process and through which it is possible to trace a path

towards good practice and implementation of a software

process.

REFERENCES

[1] Jessop, A., Pattern language: A framework for learning. European

Journal of Operational Research, Volume 153, Issue 2, 1 March 2004,

pp. 457-46.

[2] Seffah, A., The evolution of design patterns in HCI: from pattern

languages to pattern-oriented design. ACM PEICS '10: Proceedings of

the 1st International Workshop on Pattern-Driven Engineering of

Interactive Computing Systems. 2010.

[3] Christensen. H. B., Frameworks: putting design patterns into

perspective. ACM ITiCSE '04: Proceedings of the 9th annual SIGCSE

conference on Innovation and technology in computer science

education. 2004.

[4] Gamma, E., Helm, R., Ralph, J., & Vlissides, J. Design

Patterns.Addison Wesley. 1994.

[5] Larman, C. UML y Patrones. Pearson. 2003.

[6] Dikel, D., Kane, D., & Wilson, J. Software Architecture. Prentice Hall.

2001.

[7] Shaw, M., & David, G. Software Architecture. Prentice Hall. 1996.

[8] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M.

Pattern-Oriented, Software Architecture. John Wiley & Sons. 2002.

[9] Fowler, M. Analysis Patterns. Addison Wesley. 1997.

[10] Abdullah, N. N. B., Honiden, S., Sharp, H., Nuseibeh, B., Notkin, D.,

Communication patterns of agile requirements engineering. Proceedings

of the 1st Agile Requirements Engineering Workshop, AREW'11 - In

Conjunction with ECOOP'11 , art. no. 1. 2011.

[11] Fowler, M. (2011, octubre). Martin Fowler. Disponible en

http://martinfowler.com/articles/writingPatterns.html

[12] Royce, W. W., Managing the development of large software systems.

Proc. of IEEE WESCON . 1970. pp. l-9

[13] Laplante, P., Neill, C., The Demise of the Waterfall Model Is Imminent.

ACM Queue, Volume 1 Issue 10. 2004.

[14] Pressman, R. Ingenieri de Software. Mc Graw Hill. 2002.

[15] Forsberg, K., Mooz, H., The relationship of system engineering to the

project cycle. At NCOSE, Chattanooga, Tennessee. 1991.

[16] Ruparelia N. B., Software development lifecycle models. ACM

SIGSOFT Software Engineering Notes , Volume 35 Issue 3. 2010.

[17] Emami, M. S., Ithnin, N. B., Ibrahim, O., Software process engineering:

Strengths, weaknesses, opportunities and threats. Networked Computing

(INC), 2010 6th International Conference on. 2010.

[18] Graham., DR. Incremental development: review of nonmonolithic life-
cycle development models. Information and Software Technology,
Volume 31, Issue 1, January-February 1989, pp. 7-20.

[19] Madhavji, N. H., The Process Cycle. Software Engineering Journal,
September 1991.

[20] Boehm, B. W., A spiral model of software development and
enhancement. IEEE Computer. Vol 21 No 5. 1988. pp. 61-72

[21] Voinov, A., Bousquet, F., Modelling with stakeholders. Environmental
Modelling & Software, Volume 25, Issue 11, November 2010. pp. 1268-
1281.

[22] Manifesto for Agile Software Development
http://www.agilemanifesto.org/.

[23] Power, K., Stakeholder Identification in Agile Software Product
Development Organizations: A Model for Understanding Who and What
Really Counts. AGILE Conference, 2010. 2010. pp 87 – 94.

[24] Kulkarni, V., A Conceptual Model for Capturing Stakeholders' Wish List.
Computer Science and Software Engineering, 2008 International
Conference on. 2008. pp. 275 – 278.

[25] Williams, C., Wagstrom, P., Ehrlich, K., Gabriel, D., Klinger, T.,

Martino, J., Tarr, P. Supporting enterprise stakeholders in software

http://www.colosoft.com.co/
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=258077.258080&coll=DL&dl=ACM&CFID=62447406&CFTOKEN=95346772
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=258077.258080&coll=DL&dl=ACM&CFID=62447406&CFTOKEN=95346772
http://neo-listas.udistrital.edu.co:2060/science/article/pii/S0377221703001656
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100205835&coll=DL&dl=ACM&CFID=61713460&CFTOKEN=59160115
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=1824749.1824751&coll=DL&dl=ACM&CFID=61713460&CFTOKEN=59160115
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=1824749.1824751&coll=DL&dl=ACM&CFID=61713460&CFTOKEN=59160115
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100285245&coll=DL&dl=ACM&CFID=61713460&CFTOKEN=59160115
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100285245&coll=DL&dl=ACM&CFID=61713460&CFTOKEN=59160115
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100285245&coll=DL&dl=ACM&CFID=61713460&CFTOKEN=59160115
http://neo-listas.udistrital.edu.co:2057/authid/detail.url?origin=resultslist&authorId=23090482500&zone=
http://neo-listas.udistrital.edu.co:2057/authid/detail.url?origin=resultslist&authorId=35233704500&zone=
http://neo-listas.udistrital.edu.co:2057/authid/detail.url?origin=resultslist&authorId=7101843009&zone=
http://neo-listas.udistrital.edu.co:2057/authid/detail.url?origin=resultslist&authorId=12644975200&zone=
http://neo-listas.udistrital.edu.co:2057/authid/detail.url?origin=resultslist&authorId=35389140000&zone=
http://neo-listas.udistrital.edu.co:2057/record/display.url?eid=2-s2.0-83255170963&origin=resultslist&sort=plf-f&src=s&st1=software+ptterns++and+comunication&sid=4PEJPIR0xkCVe13DwP8uzT8%3a90&sot=q&sdt=b&sl=58&s=TITLE-ABS-KEY-AUTH+%28+software+patterns+and+communication+%29&relpos=8&relpos=8&searchTerm=TITLE-ABS-KEY-AUTH%20%28%20software%20patterns%20and%20communication%20%29
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100025798&coll=DL&dl=ACM&CFID=61713460&CFTOKEN=59160115
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100275347&coll=DL&dl=ACM&CFID=61713460&CFTOKEN=59160115
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=971564.971573&coll=DL&dl=ACM&CFID=61713460&CFTOKEN=59160115
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81456620054&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=1764810.1764814&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=5484845&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DSoftware+Process+Engineering
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=5484845&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DSoftware+Process+Engineering
http://neo-listas.udistrital.edu.co:2060/science/article/pii/0950584989900499?_alid=1873050137&_rdoc=8&_fmt=high&_origin=search&_docanchor=&_ct=163459&_zone=rslt_list_item&md5=e35c73baba33405862fe63e39ada411d
http://neo-listas.udistrital.edu.co:2060/science/article/pii/0950584989900499?_alid=1873050137&_rdoc=8&_fmt=high&_origin=search&_docanchor=&_ct=163459&_zone=rslt_list_item&md5=e35c73baba33405862fe63e39ada411d
http://neo-listas.udistrital.edu.co:2134/xpl/RecentIssue.jsp?punumber=2
http://neo-listas.udistrital.edu.co:2060/science/article/pii/S1364815210000538
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=5562805&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DStakeholders+Identification
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=5562805&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DStakeholders+Identification
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=5562805&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DStakeholders+Identification
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=4722052&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DStakeholders+Identification
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81331507218&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81318496756&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81331492075&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81466643805&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100330971&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100508902&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100131551&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=1833310.1833328&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-41-

projects. ACM CHASE '10: Proceedings of the 2010 ICSE Workshop

on Cooperative and Human Aspects of Software Engineering. 2010.
[26] Huffman Hayes, J., Do you like Pina Coladas? How improved

communication can improve software quality. Software, IEEE. 2003.

pp 90 – 92.

[27] Hall, T., Wilson, D., Rainer, A., Jagielska, D., Communication: the

neglected technical skill?. SIGMIS CPR '07: Proceedings of the 2007

ACM SIGMIS CPR conference on Computer personnel research: The

global information technology workforce. 2007.

[28] Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., and Still, J.,

The impact of agile practices on communication in software

development. Empirical Software Engineering, Volume 13, Number

3. 2008. Pp 303-307.

[29] Haibin Zhu, MengChu Zhou, Seguin, P., Supporting Software

Development With Roles. Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Transactions on. 2006. pp 1110 – 1123.

[30] Brooks, F. P. Jr., The Mythical Man-Month. Addison - Wesley, 1995.

[31] Biddle B. J. and Thomas E. J., Role Theory: Concepts and Research,

Wiley, 1966.

[32] Leontief, W., Input-output economics. Oxford University Press. 1966-

1986.

[33] Cheng, C., Dumitrescu, A., Schroeder, P., Generating small

combinatorial test suites to cover input-output relationships.

Proceedings. Third International Conference on Quality Software.

2003. Pp 76-82.

[34] Hoare C. A. R., An axiomatic basis for computer programming.

Communications of the ACM. 1969.

[35] Kermarrec, Y., Zein, O., Le Pors, E., Grisvard, O., Towards the use of

requirements as valuable inputs for complex system design. Information

and Communication Technologies: From Theory to Applications, 2008.

ICTTA 2008. 3rd International Conference on. 2008.

[36] Osogami, M., Yamanishi, T., Uosaki, K., A method of input-output

conditions for automatic program generation using Petri nets. SICE

Annual Conference (SICE), 2011 Proceedings of. 2011. pp. 2415 –

2420.

[37] Nasution, M. F. F., Weistroffer, H. R., Documentation in Systems

Development: A Significant Criterion for Project Success. System

Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on.

2009. pp 1-9.

[38] de Boer, R. C., van Vliet, H., Writing and Reading Software

Documentation: How the development process may affect

understanding. Cooperative and Human Aspects on Software

Engineering, 2009. CHASE '09. ICSE Workshop on. 2009. pp. 40-47.

[39] Correia, F. F., Aguiar, A., Sereno, H., Flores, N., Patterns for consistent

software documentation. ACM PLoP '09: Proceedings of the 16th

Conference on Pattern Languages of Programs. 2009.

[40] Rochimah, S., Kadir, W. M. N., Abdullah, A. H., An Evaluation of

Traceability Approaches to Support Software Evolution. Software

Engineering Advances, 2007. ICSEA 2007. International Conference

on. 2007.

[41] Schwarz, H., Towards a Comprehensive Traceability Approach in the

Context of Software Maintenance. Software Maintenance and

Reengineering, 2009. CSMR '09. 13th European Conference on. 2009.

pp 339-342.

[42] Aversano, L., Marulli, F., Tortorella, M., Recovering Traceability Links

between Business Process and Software System Components. Program

Comprehension (ICPC), 2010 IEEE 18th International Conference on.

2010. pp. 52-53.

[43] Rus, I., and Lindvall, M., Knowledge Management in Software

Engineering. IEEE Software, vol. 19, no. 3, 2002, pp. 26–38.

[44] Dingsoyr, T., Bjornson, F.O., Shull, F., What Do We Know about

Knowledge Management? Practical Implications for Software

Engineering. Software, IEEE . 2009. pp. 100-103.

[45] Reihlen, M., Nikolova, N., Knowledge production in consulting teams.

Scandinavian Journal of Management, Volume 26, Issue 3, September

2010. pp. 279-28.

[46] Nonaka, I. A Dynamic Theory of Organizational Knowledge Creation.

Aroganization Science, 1994. pp. 14- 37.

[47] Dakhli, S., Ben Chouikha, M., The knowledge-gap reduction in

software engineering. Research Challenges in Information Science,

2009. RCIS 2009. Third International Conference on. 2009. pp. 287-

294.

[48] Bolaños, S. “SPML”, Registro de Soporte lógico – software, Libro-

tomo-partida 13-28-279, 4-marzo-2011.

[49] Engels, G., Schäfer, W., Balzer, R., Gruhn, V., Process-centered

software engineering environments: academic and industrial

perspectives. ICSE '01: Proceedings of the 23rd International

Conference on Software Engineering. 2001.

[50] Derniame, J. C., Kaba, B. A., Wastell, D., Software process: principles,
methodology, and technology. Springer-Verlag Berlin Heidelberg. 1999.

http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=1833310.1833328&coll=DL&dl=ACM&CFID=62072678&CFTOKEN=26317453
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100158071&coll=DL&dl=ACM&CFID=62273485&CFTOKEN=33273671
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100531781&coll=DL&dl=ACM&CFID=62273485&CFTOKEN=33273671
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100583273&coll=DL&dl=ACM&CFID=62273485&CFTOKEN=33273671
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=1235000.1235043&coll=DL&dl=ACM&CFID=62273485&CFTOKEN=33273671
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=1235000.1235043&coll=DL&dl=ACM&CFID=62273485&CFTOKEN=33273671
http://neo-listas.udistrital.edu.co:2085/content/?Author=M.+Pikkarainen
http://neo-listas.udistrital.edu.co:2085/content/?Author=J.+Haikara
http://neo-listas.udistrital.edu.co:2085/content/?Author=O.+Salo
http://neo-listas.udistrital.edu.co:2085/content/?Author=P.+Abrahamsson
http://neo-listas.udistrital.edu.co:2085/content/?Author=J.+Still
http://neo-listas.udistrital.edu.co:2085/content/23434764682qlr16/
http://neo-listas.udistrital.edu.co:2085/content/23434764682qlr16/
http://neo-listas.udistrital.edu.co:2085/content/1382-3256/
http://neo-listas.udistrital.edu.co:2085/content/1382-3256/13/3/
http://neo-listas.udistrital.edu.co:2085/content/1382-3256/13/3/
http://books.google.com.co/url?id=hBDEXblq6HsC&pg=PA3&q=http://www.oup.com/us&clientid=ca-print-oxford_us&channel=BTB-ca-print-oxford_us+BTB-ISBN:0195035275&linkid=1&usg=AFQjCNFRAKk7RdOIfIHe8ezStjcs_Xp4Qw&source=gbs_pub_info_r
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=1319088&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26pageNumber%3D2%26searchField%3DSearch+All%26queryText%3Dinput+output+in+software+test
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=1319088&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26pageNumber%3D2%26searchField%3DSearch+All%26queryText%3Dinput+output+in+software+test
http://neo-listas.udistrital.edu.co:2134/xpls/abs_all.jsp?arnumber=1319068
http://en.wikipedia.org/wiki/C._A._R._Hoare
http://sunnyday.mit.edu/16.355/Hoare-CACM-69.pdf
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=4530345&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Drequirements+like+input
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=4530345&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Drequirements+like+input
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=6060382&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26pageNumber%3D3%26searchField%3DSearch+All%26queryText%3Dinput+output+in+programming
http://neo-listas.udistrital.edu.co:2134/search/srchabstract.jsp?tp=&arnumber=6060382&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26pageNumber%3D3%26searchField%3DSearch+All%26queryText%3Dinput+output+in+programming
http://neo-listas.udistrital.edu.co:2134/xpl/mostRecentIssue.jsp?punumber=6045373
http://neo-listas.udistrital.edu.co:2134/xpl/mostRecentIssue.jsp?punumber=6045373
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81453610713&coll=DL&dl=ACM&CFID=62420676&CFTOKEN=18226061
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100090852&coll=DL&dl=ACM&CFID=62420676&CFTOKEN=18226061
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81453641364&coll=DL&dl=ACM&CFID=62420676&CFTOKEN=18226061
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81444595825&coll=DL&dl=ACM&CFID=62420676&CFTOKEN=18226061
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=1943226.1943241&coll=DL&dl=ACM&CFID=62420676&CFTOKEN=18226061
http://neo-listas.udistrital.edu.co:2131/citation.cfm?id=1943226.1943241&coll=DL&dl=ACM&CFID=62420676&CFTOKEN=18226061
http://neo-listas.udistrital.edu.co:2060/science/article/pii/S0956522110000503
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100281899&coll=DL&dl=ACM&CFID=62447406&CFTOKEN=95346772
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100656627&coll=DL&dl=ACM&CFID=62447406&CFTOKEN=95346772
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100541592&coll=DL&dl=ACM&CFID=62447406&CFTOKEN=95346772
http://neo-listas.udistrital.edu.co:2131/author_page.cfm?id=81100633460&coll=DL&dl=ACM&CFID=62447406&CFTOKEN=95346772
http://www.google.es/search?hl=es&tbo=p&tbm=bks&q=inauthor:%22Badara+Ali+Kaba%22
http://www.google.es/search?hl=es&tbo=p&tbm=bks&q=inauthor:%22David+Wastell%22

