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Abstract —This paper introduces an improved Differential 

Evolution algorithm (IDE) which aims at improving its 

performance in estimating the relevant parameters for metabolic 

pathway data to simulate glycolysis pathway for yeast. Metabolic 

pathway data are expected to be of significant help in the 

development of efficient tools in kinetic modeling and parameter 

estimation platforms. Many computation algorithms face 

obstacles due to the noisy data and difficulty of the system in 

estimating myriad of parameters, and require longer 

computational time to estimate the relevant parameters. The 

proposed algorithm (IDE) in this paper is a hybrid of a 

Differential Evolution algorithm (DE) and a Kalman Filter (KF). 

The outcome of IDE is proven to be superior than Genetic 

Algorithm (GA) and DE. The results of IDE from experiments 

show estimated optimal kinetic parameters values, shorter 

computation time and increased accuracy for simulated results 

compared with other estimation algorithms 

 
Keywords— Parameter Estimation, Differential Evolution 

Algorithm, Kalman Filter, Simulation. 

 

I. INTRODUCTION 

he crucial step in the development of predictive models 

for cells or whole organisms is building  dynamic models 

of biological systems. Such models can be regarded as 

the keystones of Systems Biology, ultimately providing 

scientific explanations of the biological phenomena [1]. Hence, 

one of the major challenges in the age of post-genomics is 
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considered to be the understanding of dynamic metabolic 

behaviour of living cells [2]. Understanding of biological 

pathway’s functions  due to their complexity is difficult. Thus, 

not only we need to determine the components and their 

characteristics but also we need to focus on their continuous 

dynamic changes over time. One method to deal with this 

problem is to study the pathway as a network of biochemical 

reaction and subsequently model them as a system of ordinary 

differential equations (ODEs) [3, 4].  ODE based mathematical 

models can be implemented in various applications such as to 

simulate experiments before actual experiment is being 

performed, to study the phenomena that cannot be solved with 

experimentally, to aid in understanding the functions of a 

system etc. [5]. Design, analysis, optimization, and controlling 

of the biological system can be done with these ODEs. 

Different types of kinetic models such as Michaelis–Menten 

model or power law model are introduced with the purpose of 

studying the dynamic behavior of biological reaction systems 

[6]. Differential equations were used by scientists to simulate 

these dynamic changes in metabolic concentration but they 

require information which is related to the network structure 

and plethora of experimental data such as detailed kinetic rate 

laws, initial concentrations of metabolites and kinetic 

parameters [2]. Several models in metabolic networks 

modeling such as the threonine synthesis pathway in 

Escherichia coli have been developed by researchers [7].  

The expert’s proposition on dynamic model, how it is later 

fitted to the data, and how changes are taken into 

considerations if the predictions were not good enough are the 

process of modelling. Estimation of the parameters’ value in 

the mathematical models for biochemical networks is typically 

done through minimization means [8]. Simulated result 

retrieved from simulation of the mathematical model with the 

aims to compare model results with the experimental data is 

called the forward problem. The inverse problem, on the other 

hand is the process where estimation of parameters of a 

mathematical model is done based on the measured 

observations [5]. This step is called parameter estimation and 

is one of the essential parts of model building. Without 

identifying the model parameters that define the data can cause 

inaccuracy in the conclusion [9]. Only some of these 

parameters in the model can be retrieved from experiments or 
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from the previous works that have been done by other 

researchers and others have to be retrieved by comparing 

model results with experiments data [5]. Gathering data via 

experiments on genomic, proteomic, and metabolomic scales 

are growing generally in biological sciences. An accurate 

model building methods which can handle the high complexity 

is highly needed when the quality and the size of experimental 

data continue to grow rapidly [1]. Nevertheless, when the 

available data is noisy and sparse, i.e. widely and unevenly 

spaced in time, as is generally when measuring biological 

quantities at the cellular level makes the parameter estimation 

problem even more difficult to solve [10]. Noisy data can also 

occur when the collected results differ from each other and this 

is caused by the human error or apparatus limitation.  

Parameter estimation (also known as model calibration) 

aims at finding the parameters of the parameters’ value which 

give the best fit to a set of experimental data [1].  Biological 

data usually are nonlinear and dynamic. This problem is 

considered as a nonlinear programming (NLP) problem which 

generally known to be non-trivial and multimodal. Hence, 

traditional approach such as gradient-based or local 

optimization methods fail to provide optimal solutions. In 

order to overcome this limitation several state-of-the-art 

deterministic and stochastic global optimization methods are 

used by many researches [11]. The subsequent session is the 

explanation of few methods which include basic estimation 

approach and evolutionary algorithms. 

In 1965, The Nelder-Mead algorithm (NM), also known as 

non-linear simplex method [12], is one of the best known 

algorithms for multidimensional unconstrained optimization 

without the need of derivatives information, which makes it 

appropriate for problems with non-smooth functions. NM is 

commonly used to solve parameter estimation problem which 

the function values are uncertain or in the cases where noise 

exists. It can also be implemented in problems with 

discontinuous functions which often occur in statistics and 

experimental mathematics. NM is very effective, particularly 

with a large number of parameters [13]. As a limitation of NM, 

where information regarding the convergence is very 

constrained and many of the iterations can run without a 

significant decrease of function values while the current results 

are still far from the optimal result. Besides that, the location 

of the initial seed for NM may affect convergence of the 

algorithm in the case of a function with more than one 

minimum. 

Simulated annealing (SA) is another method which aimed at 

finding a better approximation to the global optimum in a large 

search space of a given function. SA is a generic probabilistic 

and metaheuristic approach and is implemented where the 

search space is discrete. One of the benefits of SA is its 

capability of not  getting stuck in the local minima and the 

convergence is guaranteed in case of existence of large number 

of iterations [14, 15]. In addition, choosing the initial 

temperature or cooling schedule is challenging in SA. 

Furthermore, waste of computation time result by using too 

high temperature and using too low temperature would cause 

the reduction of quality of the search [14] and as a result, 

solving a complex system problem becomes very slow and 

uses more processor time [16]. Richard and his colleagues 

(2007) did use SA to estimate the relevant kinetic parameter in 

solving biochemical nonlinear parameter estimation problem. 

[17]. 

Genetic Algorithm (GA) is a subclass of evolutionary 

algorithms which is based on inheritance, mutation, selection, 

and crossover. Many scholars and researchers like Katera et 

al., 2004, and Donaldson and Gilbert (2008) used this 

algorithm to solve parameter estimation problem [9, 18]. The 

advantages of GA are its parallel search and searching 

efficiency [19] whereas finding local minima which may not 

be a true solution is considered as a disadvantage of genetic 

algorithm [20]. 

As a parallel search method, the Differential Evolution 

algorithm (DE) optimizes a problem by repeatedly trying to 

enhance a candidate solution with the goal of achieving the 

defined measure of quality. It is generally categorized as 

metaheuristic approach due to the fact that it works on no 

assumptions regarding the problem being optimized and can 

deal with substantial spaces of candidate solutions. The 

advantages of DE are considered to be high speed, efficiency, 

simplicity, and ease of use [21]. It was implemented by 

Moonchai Sompop et al. (2005) to enhance the production of 

bacteriocin, aspartate, beer, and cell process simulation by 

utilizing control and kinetic parameters [22]. DE shows to be 

very sensitive to control parameters: crossover constant (CR), 

population size (NP), and mutation factor (F) [23]. 

We proposed an improved Differential Evolution algorithm 

(IDE), a hybrid of DE and the Kalman Filter (KF), to solve the 

problems regarding the existence of noisy data that leads to 

low accuracy for estimated result and the increasing number of 

unidentified parameters which results in adding to the 

difficulties of the model in estimating the kinetic parameters. 

DE which is a stochastic-based approach, proved to be the best 

optimization algorithm out of the others. Stochastic-based 

approach is more appropriate to implement in the biological 

data in which they are usually non-convex and are easily 

trapped in local minimal [24]. Parameter estimation with DE is 

done without noisy data handling process. IDE takes 

advantage of KF which adds the feedback gathering feature 

from the noisy measurement to improve the performance of 

each output that was resulted by DE which provides higher 

accurate results. Biochemical pathways are regulatory 

pathway, signalling pathway, and metabolic pathway. Cell 

cycle pathway and aspartate biosynthesis pathway are the 

metabolic pathways which are the series of events that 

happened in a cell causing its division and duplication 

(replication) and synthesis aspartate, the essential amino acid. 

These are the symbolic pathways that are studied in this paper. 
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II. PROPOSED ALGORITHM 

A. Experiment Setup 

This paper proposes a hybrid of DE [25] and KF [26], 

which is an improved differential evolution algorithm (IDE). 

In parameter estimation, existing algorithms [22] merely 

implement DE whereas IDE implements a hybrid of DE and 

KF. Fig. 1 shows the details of the IDE. Kinetic parameters 

existed in the glycolysis pathway model for yeast [27] and 

Novak Tyson Cell Cycle in frog egg cell [28] go through IDE 

to estimate its optimal value. Fixed control parameter values 

used in this study are  

i. population size, NP = 10, 

ii. mutation factor, F = 0.5, 

iii. crossover constant, CR = 0.9. 

 

SBToolbox in Matlab 2008a and Copasi are the two main 

software implemented in this study. The mentioned metabolic 

pathways were collected from online database called Biomodel 

which is sustained by European Bioinformatics Institute 

(EMBL-EBI). 

 

B. Improved Differential Evolution Algorithm (IDE) 

In IDE, we added the process of updating the population as 

a new step that improved the conventional DE. This is a self-

adapt approach. In conventional DE, the original population 

which is an m x n population matrix, is generated from the first 

generation (Gen_1) and continues until it reaches the 

maximum generation (Gen_i) in initialization process. m 

represents the number of generations and n represents the 

number of identifiable parameters. In evaluation process, the 

fitness function, J represented as 
2

1

|),0,()0,0,(|



N

i

XYfXXfJ                    (1) 

is applied to evaluate the fitness of each individual. X 

represents the state vector for measurement system, Y 

represents the state vector for simulated system, 0 represents 

a set of original parameters,  represents a set of estimated 

parameters, X0 represents the initial state, N=the ending index, 

and i=the index variable.  

In mutation process, three individuals (Ind1, Ind2 and Ind3) 

first being selected then treated with the formula showed in Fig 

1. In the mutation section, temp_population represents the 

mutated population matrix, F represents the mutation factor, 

and Pop represents the original population matrix. The 

subsequent crossover process is mainly performed based on 

CR, which indicates crossover constant value, and Randb(i) 

which indicates i-th random  evaluation of a uniform random 

number generator [0,1]. If the randb(i) value of the individual 

in mutated population is lower than the CR value then that 

individual becomes the individual for the resultant population 

of the crossover process and vice versa. This is followed by 

the updating process that is performed according to the 

Equation 2. This step updates the population, which is 

generated by the crossover process and it is based on the 

Kalman gain value K, retrieved from the Equation 3. The 

Kalman gain value from the Equation 3 takes into account the 

process noise covariance and measurement noise covariance. 

These noisy data values were obtained from the experiment 

and in this study the noisy data values used are 0.1. After 

handling the noisy data, the updated population once again 

undergoes the evaluation process and the whole process is 

repeated till the stopping criterion is met. The stopping criteria 

are set via predefined maximum loop values or when the 

fitness functions have converged. The updating population 

process is highlighted with the dotted box in Fig. 1 and is 

carried out according to the following formula. 

)''_(_ Kpopulationtemppopulationtemp          (2) 

)'**('** RHPHinvHPK                                      (3) 

Table 1 

Pseudocode for IDE 

Algorithm: IDE 

BEGIN 

STEP 1: Initialize population P based on D and evaluate it.   

WHILE (k<Max)  

FOR (i = 0 ; i < NP ; i++)  

STEP 1.1: Initialization 

Randomly select parents P [i1], 

P [i2], and P [i3] where i, i1, i2, 

and i3 are different. 

 STEP 1.2: Mutation 

Create initial candidate C1[i] = 

P [i1] + F *(P [i2] - P [i3]). 

STEP 1.3: Crossover 

Create final candidate C[i] by 

crossing over the genes of P [i] 

and C1[i] as follows: 

FOR (j = 0 ; j < NP ; j++)  

IF (U(0, 1) < CR) 

C[i][j] = C1[i][j] 

ELSE 

C[i][j] = P [i][j] 

END-FOR 

 

STEP 1.4: Updating Population 

C[i] = inv(inv(C[i]) + K) 

                 K= P*H'*inv(H*P*H'+R) 

 

STEP 1.5: Evaluate C[i] 

IF (C[i] is better than P [i]) 

P’[i] = C[i] 

ELSE 

P’[i] = P [i] 

END-IF 

END-FOR 

P = P’ 

END-WHILE 

END 
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Note: Updating population process is added after the crossover process to 

improve DE performance and it is highlighted with the dotted box. 

 
Fig. 1. Schematic Overview of IDE. 

 

Where  

K = Kalman gain value,  

H = observation matrix,  

Q = process noise covariance,  

D = number of the unknown parameters,  

R = measurement noise covariance,  

B = covariance of the state vector estimate,  

H’ = inverse of matrix H,  

P = population of the current generation,  

P’ = the population to be formed for the next generation,  

C[i] = the candidate solution with population index i,  

C[i][j] = the j’th entry in the solution vector of C[i],  

N = the problem dimensionality,  

U(0, 1) = a uniformly distributed number between 0 and 1,  

k = the scaling factor,  

inv = the inverse function,  

Max = maximum generation. 

III. EXPERIMENTAL RESULT 

Three estimation algorithms (GA, DE, and IDE) are 

compared in this study. Kinetic parameter values in Table 

1and Table 2 are produced by the estimation algorithms and 

collected from literature review [27, 28]. Time series data for 

concentration of adenosine monophosphate (AMP) and Clycin 

were generated in order to evaluate the accuracy of each 

estimation algorithm. AMP and Clycin are significant 

metabolites. AMP acts as an energy regulator and sensor while 

Cyclin acts as a regulator for cell cycle. From the time series 

data, we calculate the average of error rate. The details of the 

accuracy measurement are discussed in this session. 

 
Table 1. 

Kinetic parameter values of IDE compared with GA and DE. 

 Measurement kinetic 

parameter values[27] 

Simulated kinetic 

parameter values  

Kinetic 

parameters GA DE IDE 

k9f  10 26.57 1.12 2.21 

k9b  10 6.184 54.37 10.15 

Note: Table shows the kinetic parameter values used in the calculation of 

average of error rate for metabolite AMP in Table 3. 

  

                                                   Table 2   

            Kinetic parameter values of IDE compared with GA and DE. 

Kinetic 

parameters 

Measurement 

kinetic 

parameter 

values [28] 

Simulated kinetic 

parameter values 

 GA DE IDE 

k1 0.01 0.026 0.028 0.0102 

k3 0.500 0.140 2.028 0.602 

V2p 0.005 0 0.01 0.018 

V2pp 0.250 0.069 0.658 0.347 
 

Note: Table shows the kinetic parameter values used in the calculation of 

average of error rate for metabolite Cyclin in Table 4. 
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temp_population=Pop(individual3)+F*(Pop(individual1)-

Pop(individual2)) 

Ind. 1 

Ind. 2 

Ind. 3 

n 

0.3 0.2 0.1 1.34 2.78 Gen_1 

0.2 0.4 0 2.00 3.12 Gen_2 

  

 

   

0.5 0.2 0.1 2.20 3.72 Gen_i 

 

 

Initialization 

m 

Selection of the individual with lowest fitness value after 

the fitness function evaluation. Evaluation  

Crossover 

Original  Mutated                                New Population 

0.3  0.2 Randb(1) < CR 0.2 

0.1  0.4 Randb(2) > CR 0.1 

 

 

 

  

 
0.5  0.9 Randb(i) < CR 0.9 

Note: Illustration above shows the crossover for one parameter 

only. 

Optimal 

Parameter  

values 
0.2 

0.4 

0.3 

0.9 

0.1 

 

Update  

Population  

Process 

Update Population.  

temp_population= (temp_population’+K)’ 

 

 

Yes 

Evaluation  

Are stopping 

criteria satisfied? 

Selection between the original population and mutated population.  

Individual with lowest fitness value selected after the fitness 

function evaluation 
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The simulated kinetic parameter values and measurement 

kinetic parameter values were replaced into the ordinary 

differential equations (ODEs) (Equation 4 and Equation 5) of 

AMP and Cyclin respectively. 

 

9reactionAMPflow
dt

dAMP
                            (4) 

321 RRR
dt

dCyclin
                                      (5) 

 

Where  

reaction_9= compartment * (k9f * amp * atp - k9b * 

power(adp,2)),  

AMPflow=compartment * amp * flow,  

compartment=constant value of 1,  

amp=concentration of AMP,  

pyr=concentration for PYR,  

adp=concentration for adenosine diphosphate, 

atp=concentration of adenosine triphosphate,  

R1=+k1,  

R2=+k2*CYCLIN,  

R3=k3* CYCLIN,  

k2=V2p+apcstar*(V2pp-V2p) 

CYCLIN=concentration for cyclin,  

apcstar=concentration of anaphase-promoting complex. 

 

Time series data for concentration of AMP and Cyclin were 

ultimately produced from Equation 4 and Equation 5. The time 

series data contain measurement result, y, and simulated results 

yi for IDE, DE, and GA respectively. Error rate (e) and 

Average of error rate (A) are calculated according to Equation 

6 and Equation 7 respectively. 

 





N

i

yiye
1

2)(                                                             (6) 

N

e
A                                                                               (7) 

 

Table 3 and Table 4 show the average of error rate for AMP 

and Cyclin respectively. 
 

Table 3.  

Average of error rate for AMP. 

Evaluation criteria GA DE  IDE  

Average of  error rate,  A 0.000248 0.059148 0.000010 

Note: Shaded column represents the best results. 

 
Table 4. 

Average of error rate for Cyclin. 

Evaluation criteria GA DE IDE 

Average of  error rate, A 1.156E-

05 

1.338E-

05 

0.001E-

05 
 

Note: Shaded column represents the best results. 

 

For AMP (Table 3), IDE showed the lowest average of error 

rate with 0.000010. DE showed the worst performance with 

0.059148 for the average of error rate. GA showed more 

moderate performance with average of error rate of 0.000248. 

However, for Cyclin (Table 4), IDE once again performed 

better than other estimation algorithms where average of error 

rate is 0.001E-05. The average of error rate for DE and GA are 

1.338E-05 and 1.156 E-05 respectively. Lower average of 

error rate denotes that the simulated results are close to the 

measurement results and this shows the ability of Kalman filter 

to handle noisy data makes the IDE robust to noisy data. 

Table 5 shows execution time of each estimation algorithm 

on a Core i5 PC with 4GB main memory. The result shows 

that DE required the longest time ( 6 minutes and 1 second and 

9 minutes and 30 seconds) to find the optimal value for all 

kinetic parameters compared to IDE which took the shortest 

time (5 minutes and 35 seconds and 6 minutes 55 seconds). It 

is shown that IDE tends to use less computation time than DE 

and GA for glycolysis pathway and Novak Tyson Cell Cycle 

respectively. 

 
Table 5. 

Execution time of IDE compared with GA and DE. 

Execution time (hh:mm:ss) GA DE  IDE  

glycolysis pathway 00:05:42 00:06:01 00:05:35 

Novak Tyson Cell Cycle 00:07:12 00:09:30 00:06:55 

Note: Shaded column represents the best results. 

 

Figure 2 shows the metabolite production graphs for the 

metabolites AMP and Cyclin based on the kinetic parameters 

that are collected from previous works [27, 28] and produced 

by IDE. The results showed that the kinetic parameters 

generated by IDE, enhanced the production rate where the 

dotted simulated lines (generated with the kinetics parameters 

that resulted by IDE) are moved to left when compared to the 

measurement lines (generated with the kinetics parameters that 

retrieved from experimental work). 

 

 
Fig. 2 (a).  Production graph for metabolite HSP (ORI generated with the 

kinetic parameters that retrieved from experimental work and IDE generated 

with the kinetic parameters that was produced by IDE) 
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Fig. 2(b).  Production graph for metabolite HSP (ORI generated with the 

kinetic parameters that retrieved from experimental work and IDE generated 

with the kinetic parameters that was produced by IDE) 

 

Mean (mu) and standard deviation (STD) values are 

calculated according to the equation below. 

 

N

e
mu

N

i  1
                                                                       (8) 

2

1

2

1

))((





 

N

muyiy
S

N

i
                                          (9) 

 

 Table 6 shows the mean and STD values of fitness value 

for glycolysis pathway, and theronine biosynthesis pathway for 

50 runs respectively. Fitness function implemented in this 

study is to minimize the difference between measurement 

results and simulated results. Based on the result from the 

table, STD values for metabolites AMP and Cyclin are 0.0992 

and 0.0182. However, the mean for metabolites AMP and 

Cyclin are 0.0453 and 0.0027. The standard deviation is a 

measure of how widely values are scattered from the average 

value (the mean). The mean and STD values are close to 0 and 

this shows that results produced by IDE are consistent with 

low error rate. Other than that, it can also be analyzed that in 

the 50 runs simulation, the differences between each run are 

small as the STD values showed are close to the mean values 

which is close to 0. This deduces that IDE is a stable and 

reliable algorithm. 

 
Table 6 

Mean and standard deviation (STD) values of fitness value for glycolysis 

pathway, and Novak Tyson Cell Cycle for 50 runs. 

 AMP Cyclin 

Mean  0.0453 0.0027 

STD 0.0992 0.0182 

 
According to Lillacci and Khammash (2010), to ensure 

that the final estimates are guaranteed to be statistically 

consistent with the measurements, chi-square test (X
2
 test) as a 

statistical test is implemented. The degrees of freedom, s and 

confidence coefficient, γ implemented in this paper are 1 and 

0.995. Interval estimates, σ
2
 formed based on s, γ, and the 

formula found in Lillacci and Khammash (2010) is 0.0000393 

< σ
2
 < 9.550.  The hypothesis made here is that the simulated 

results are statistically consistent with the measurement results. 

X
2 

value for metabolite HSP is 0.028956054 and metabolite 

Cyclin is 0.0000563 where both are appeared to be in between 

σ
2
. Therefore, IDE passed the X

2 
test, hypothesis accepted and 

the simulated results are proved to be statistically consistent 

with the measurement results.  

IDE exhibits lesser computation time and possesses a higher 

accuracy when compared to both GA and DE. The 

implementation of DE that aims to estimate the relevant kinetic 

parameters and the additional of Kalman gain value which 

targets to handle the noisy data has improved the 

computational time and accuracy. Hence, the IDE, a stable and 

reliable estimation algorithm, which is a hybrid of DE and KF 

minimizes the computational time and also increases the 

accuracy between the simulated results and measurement 

results. 

 

IV. CONCLUSION 

In this paper, the experiment to compare the performances 

of three different estimation algorithms using glycolysis 

pathway data in yeast [27] and Novak Tyson Cell Cycle in 

frog egg cell [28] showed that an improved algorithm, IDE 

which is a hybrid algorithm of DE and KF performed the best 

with the shortest execution time and the lowest average of 

error rate. It successfully minimizes the high difficulty of the 

system in estimating the relevant kinetic parameters resulting 

in shorter computation time. The ability to handle noisy data 

has contributed to an improved accuracy of the estimated 

results. Besides that, IDE shows that it is a stable and reliable 

estimation algorithm by passing the chi square test (X2 
test) and 

showing the mean and STD value closer to 0 with 50 runs. In 

conclusion, IDE, a reliable algorithm is shown to be superior 

compared to both GA and DE in terms of computational time 

and accuracy. IDE can be generalized where it can be 

implemented in the areas which its data consists of noisy for 

example electrical and electronic engineering field [29]. 

DE shows to be very delicate to control parameters: 

population size (NP), crossover constant (CR), and mutation 

factor (F) [23]. Thus, for future work, self-adapting approach 

to these control parameters can be implemented to enhance the 

performance of the IDE. Moreover, additional steps can be 

added to the process of generating new populations with the 

aim of improving the performance of IDE.  
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