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Abstract — We outline a solution to the problem of 

intelligent control of energy consumption of a smart 

building system by a prosumer planning agent that acts on 

the base of the knowledge of the system state and of a 

prediction of future states. Predictions are obtained by 

using a synthetic model of the system as obtained with a 

machine learning approach. We present case studies 

simulations implementing different instantiations of agents 

that control an air conditioner according to temperature 

set points dynamically chosen by the user. The agents are 

able of energy saving while trying to keep indoor 

temperature within a given comfort interval. 

 

Key words — hybrid agents, mas, energy management, 

prosumer node, hvac, energy efficient buildings 

I. INTRODUCTION 

nergy management of modern smart buildings requires 

distributed intelligent control in order to save energy [21]. 

A smart building with energy management capability is a 

node which is part of a smart grid of energy; such kind of 

energy node can be conceived of as a prosumer, i.e. producer 

and consumer of energy in different forms. An energy efficient 

building already has its passive intrinsic energy efficiency 

which is embedded by design in its structure and materials, 

however further improvements in energy efficiency can be 

achieved by adopting a control methodology inspired to 

intelligent agents. An intelligent control should be intrinsically 

dynamic taking into account real-time requirements in 

response to the building dynamical thermo-physical behavior, 

considering that it is immersed in a dynamical environment 

where weather events can change its energy footprint. In other 

words a proper control that aims at achieving energetic 

optimality must rely on a detailed model of the thermal 

behavior of the building areas in the range of observable 

values of environmental variables. 

Such a dynamical model, more complex than the one used 

during the design of the building, is seldom available and its 

analytic construction can be highly costly and deemed to be 

imprecise due to physical complexity of building system and 

its environment; on the other hand, current techniques in 

machine learning and model synthesis, when properly fed with 

sample data, allow an inexpensive run-time prediction of the 

system behavior much like predictions that an analytical model 

could give, that can be valuable in planning a heuristical 

control of the system aimed at specific optimization goals. 

In this work we outline a possible implementation of the 

prosumer agent architecture that is able of a predictive 

dynamic control of a smart building that, when applied to an 

air conditioner controller, achieves a better energy efficiency 

over the usual thermostatic control as implemented in 

commercial HVACs. The agent is equipped with an intelligent 

control scheme based on a learning phase that constructs a 

synthetic model by sampling the system in different 

environmental and controlled situations. The synthetic model 

could be used for local forecasting of the system state in order 

to plan an efficient control. 

Our agents architecture includes a perception layer -that 

incorporates the prosumer forecaster- and a reasoning layer -

the prosumer planner. The perception layer has the job of 

transforming the sensors array signals into abstract predicates, 

i.e. fluents, that can be handled by the reasoning layer.  

The application that we consider falls into the realms of 

Distributed Intelligent Control Systems that can be described 

in terms of Complex Event Processing (CEP) [3], where the 

need for some degree of autonomy is crucial in order to enable 

components to dynamically respond to ever-changing 

circumstances while trying to achieve overarching objectives, 

and properly handle many events. In fact, each definite area of 

the building -e.g., the dining room, the bathroom, the hall, etc.- 

can be managed by a hybrid agent which plays the role of the 

prosumer, in communication with its siblings of the other 

areas, in order to accomplish the performance goals. 

Therefore, the energy management of the building can be 

represented in terms of a Multi-Agent Systems (MAS), where 

each agent deals with the others in terms of planning and 

forecasting, as in [2]. 

The trends extracted from load predictions, energy 

consumption, and system variables made by the forecaster feed 

the symbolic interpretation needed for a rule-based logical 

agent, described in the DALI language. From the planner point 

of view, this abstraction becomes a fluent in an event calculus 

context, i.e. events to be handled proactively by the DALI 

MAS. The latter should also take into account external 

requirements and user preferences, in order to achieve the 

performance goals, which are defined a priori by the user 

management. 
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II. THE PROSUMER NODE 

In Fig. 1 an average daily power consumption profile of a 

prosumer node is shown, where energy load can be obtained 

by integration. There are times of the day when energy is in 

surplus, and times were it is in deficiency. An ideal energy 

manager should level its energy with the given goals, limiting 

peaks and avoiding surplus periods, and founding its decision 

 

 
Fig.1: Daily average power consumption of a prosumer nod. PB is the 

required power level, zone B is the daily load, zone A is the peak demand, 

zone C is surplus. 

 

 
Fig.2: General scheme of the prosumer node reference model. 
 

on an accurate dynamical behavioral model of the underlying 

building infrastructure in its environment. A smart building 

connected to a smart energy grid can be considered at the same 

time a consumer and a producer of energy. So, a energy 

prosumer node, as defined by [11], should have local energy 

sources which are independent from the grid. Usually, these 

sources include sustainable energy types – e.g. solar thermal 

and PV, wind, geothermic, etc. – but also conventional fossil 

fuel based sources, as for instance continuity groups and diesel 

generators that need to be managed appropriately. The energy 

prosumer definition should also take into account the local 

consumption profile and the locally available energy metering 

tools. An intelligent energy manager should also be present in 

order to improve the energy efficiency of the prosumer node. 

The intelligent prosumer manager should derive its behavior 

from the capability to dynamically predict the energy 

consumption and production given the intrinsic time constant 

of the building itself – e.g. 15 minutes as a typical thermal 

inertia of a modern energy efficient building. 

In Fig. 2, a general block diagram of a prosumer node is 

shown. The building energy status is given at each time instant 

by: external weather conditions, internal user behavior, 

internal signals and settings in terms of comfort, i.e. internal 

temperature and reference point. Also the internal sensors set 

should include what a modern smart building can be equipped 

with, such as energy load sensors at the power plugs of 

electrical equipments or at the electrical cabinet for each floor. 

In this way, a complete energy consumption profile of the 

building can be obtained at each sampling time. The prosumer 

controller will then implement a first local control loop that 

should keep at equilibrium the goals given by the prosumer 

planner, having an impact on the energy flows by means of the 

actuators, i.e. heaters, water chillers, air conditioners, windows 

controls, etc., together with other controllable energy 

generators or accumulators. The external sensors array should 

return the state of the most important environmental signals 

with an impact to the energy profile of the building, i.e. 

external temperature, solar radiation, humidity, etc.. The 

resolution and the distribution of the external sensors at which 

such signals should be sampled depends on the structural 

configuration of the building. Diffused solar radiation has a 

major impact on the energy demand of the prosumer node, also 

can depend on neighborhood buildings for the shading 

account. 

The prosumer planner gets the whole set of signals, internal 

and external, as well as possible weather models of the area, so 

as to feed the prosumer forecaster. Then, the prosumer 

forecaster dynamically produces an estimate of the near future 

energy requirements (i.e. at the next time sample) of the 

prosumer node, as well as possibly other environment and 

system variables, relevant for plan generation and for goal 

adherence. It can also give the best estimates of internal 

climate signals, i.e. temperatures, so to that the prosumer 

planner can reason about comfort evolution and take decisions 

about the best action to perform. 

III. THE ENERGY MANAGEMENT PROBLEM 

The energy management problem at a hand could be 

summarized as in the following. Planning goals could be 

targeted to possibly conflicting functions such as to minimise 

energy, cost and CO2 emission, and to keep comfort within a 

specific interval. Possible conflict between goals might arise 

due to the different type of resources available like grid, 

photovoltaic panels, wind rotors or fossil fuel. 

Let us define the global goal set such as: 

 

G = {EnergySaving, CostReduction, EmissionReduction, 

HighestComfort } 

 

These goals are selected by the human energy manager who 

defines the current general energy policy of the building. Let 

us consider a prosumer node with a wide range of possible 

energy actions A, each with a different energy/cost/emission 

profile, as, for instance: 
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A={Ep , Ec , Ea , Eb , Es } 

 

where subscripts stand for {produce, consume, accumulate, 

buy, sell} energy. The planner agent might choose an energy 

generation sequence among feasible ones, as constrained by 

the given global goals, user preferences, and other local 

requirements. 

Thus, given the input data set I = Ie + Ii as the union of the 

set of external sensors/variables Ie array and the set of internal 

sensors/variables array Ii , the prosumer forecaster F can 

extract relevant variables values from the model f constructed 

by the machine learning module, behaving as a function F=f(Ie 

, Ii). The prosumer planner would then generate a plan P as a 

sequence of possible actions taken from the predefined set A 

of possible energy related actions, given the prosumer 

forecaster estimates: P=p(F)=a1(q1)...an(qn), with ai∈A and 

qi∈Real represents the quantity relative to the action ai. The 

building energy management goals are processed by the he 

overall planner, whose results are broadcast, via a FIPA 

compliant middle layer, to every active prosumer node 

(supervised by a local agent) managed by the MAS. The 

agents are in charge of adapting the planner results to the 

specific situation they are responsible for. As an example, we 

can consider the case when the global goal at a given time is 

EnergySaving, and the state goals for the prosumer controller, 

as example the air conditioner, is the set point at which the 

thermal zone temperature should be, within the user comfort 

interval. A domotic7 technology could embed a planner agent 

which send control signals to the local controller of a specific 

area that would co-impose the goal to its local control loop, 

that is the temperature set point. 

The DALI [6] knowledge base with preferences of a 

prosumer planner agent can be expressed as following: 

 

 
 

This very concise planner agent knowledge base is 

interpreted as follows. The local planner, relative to a single 

thermal zone, has three possible actions: increase the 

temperature set point of the air conditioner, decrease it or 

standby (hold). There are two preferences, expressed by the 

rules with connective ‘ > ’. Each rule states that the leftmost 

action is preferred. The preference rule applies whenever its 

body (the part after the ‘:-’) holds, and preferences apply to 

feasible actions. An action is feasible if its preconditions (if 

any) are verified. Preconditions are expressed by rules with 

connective ‘:<’. A basic precondition for an action to be 

feasible is that the action has been enabled by the overall 

 
7 home automation 

planner (e.g., the planner might not enable temperature 

decrease if too much energy is being consumed at the 

moment). If the perception layer, in other words the prosumer 

forecaster agent, detects that the external environmental 

signals of temperature and solar irradiance shows the same 

variation trend, then the planner agent would prefer to increase 

the temperature set point so to temporally save energy, waiting 

for a better thermal equilibrium between the building and its 

environment. 

Also, in order to further save energy, it would prefer not 

doing anything rather than reducing the set point, i.e., 

decreasing the room temperature, unless user comfort 

requirements are no more satisfied. In this latter case, being 

this a precondition to all action, it would definitively reduce 

the temperature set point until the system is in equilibrium and 

user comfort requirement is met. An other important pre-

condition is the plannerHasEnabled predicate. It allows to 

configure a hierarchy of planner agents: a global planner agent 

associated to the whole building and many other sub-agents 

associated to each thermal zone, or rooms. In this way the 

knowledge base of the global planner can enable or disable the 

possible actions of the local planners, depending on global 

energy reasoning goals, like energy availability or special 

energy needs. 

The above rule is re-evaluated periodically, at a certain 

(customizable) frequency. This mechanism (which is a 

generalization of the DALI internal event construct) makes the 

agent proactive, i.e., capable of autonomously operating on its 

environment. The frequency will be customized according to 

the kind of appliances that are being controlled and to the 

granularity of results that one needs to obtain about 

temperature and energy consumption. 

This kind of multi-agent system based control allows the 

temperature to be kept within user preferences, overcoming the 

control scheme of a simple thermostat, which is based only on 

a kind of “infinite energy supply” hypothesis in order to keep 

the temperature constant, a policy that is no longer feasible in 

modern buildings. 

IV. CASE STUDY 

In a preliminary work [23] we argue that the prosumer 

forecaster could be implemented with any suitable machine 

learning approach, where we proposed and experimented using 

a neural net to predict energy consumption that showed good 

performance, given the relative smoothness of the response of 

the system to changes. 

In this work we present an experimental simulation of a 

single instance of a prosumer node as depicted in Fig. 3. In this 

experiment no real planning is involved yet. Here plans are 

single actions to achieve a single given goal, so we could 

collapse the prosumer planner and the prosumer node since the 

agent acts as a simpler consumption forecaster agent. 

As shown in [24] a way to extract information from a large 

set of measured data is the so-called knowledge discovery in 

databases (KDD). In this work we applied the KDD method to 

the thermal measurements taken in the laboratory so that the 

prosumer agent could embeds a model of the environment, 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4. 

 

-63- 

 

room, and HVAC8 system. Such model was constructed using 

the Eureqa symbolic regression program [18,19] fed with real 

data sampled in the Roio's HVAC thermal laboratory, as later 

explained in the experimental setup section. The derived 

analytical model is capable to give a good estimate of the 

internal temperature and HVAC electrical consumption, given 

the external weather condition, as shown in Fig.5. 

 

 
Fig. 3: Simplified prosumer implementation as used in the experimentation. 

The internal temperature forecaster takes into account also the consumption 

forecast. 

 

 
Fig. 4: The overall data set measured in the thermal lab located at Roio's 

Monteluco hill. "Tint" is the output coming from the global system model 

fitted with components obtained by symbolic regression machine learning. 

The lower signals, Solar irradiance and kW are out of scale, just for showing 

their shape over time. All signals are sampled every 30 minutes 

 

Target variables that constitute the forecaster model are 

energy consumption in function of all the remaining system 

variables and indoor temperature in function of the remaining 

system variables, i.e. temperatures sensors across the room. 

Results after running Eureqa on real data are depicted in Fig. 

4. Fig. 5 depicts the data fitting of the Eureqa's model data. 

The models that we obtained were used both for running 

simulation of different controlling agents and for predicting 

variables values in near future as needed by some agents 

controlling strategies. We run two simulations with four 

different agents. The first set of four simulates the behavior of 

simple heuristic strategies. The second set simulate the same 

agents when their strategies are improved with some predictive 

ability.  

 

A. Non-predictive control 

 
8 heating, ventilation and air conditioning 

With the aim of validating the synthetic models, and of 

showing that better energy managements than usual 

thermostatic control are possible, we used the model for 

simulating the behavior of the system when controlled by four 

simple controlling agents using different strategies with which 

they would act in setting the set point of the air conditioner. 

The agents behaviors we analyzed are: 

 

A) The picky agent: It acts by keeping the thermostatic set 

point of the air conditioner as set by the user's dynamical 

choice. This agent is picky and strict -and in fact implemented 

as null- as it relies only on the air conditioner hardware and the 

user's setting 

 
Fig.5: Electrical power consumption model fitted from thermal lab 

measurements with components obtained by Eureqa symbolic regression 

program [18,19], in function of external weather conditions and user set 

point. 

 

B) The cheap agent: It acts by keeping the set point at the 

extreme of the comfort interval, in this case defined as the set 

point chosen by the user + 3° Celsius. This agent is cheap as it 

tries to save energy by keeping temperature at the highest 

possible point within the defined comfort interval as chosen by 

the user.  

 

C) The parsimonious agent: It acts by increasing the set 

point to the highest possible within the comfort interval, 

behaving as the cheap agent, if both outside temperature and 

solar radiation are increasing, or decreasing, among the out of 

thermal equilibrium condition principle. It is parsimonious as 

it accepts to relax the strict adherence to the set point chosen 

by the user when it expects a heat wave that would be 

expensive to combat or when is coming a natural cooling 

period. On the other hands, when trends have different sign, 

the set point correction is zero. 

 

D) The heuristic agent: It acts according to a rule that has 

been heuristically constructed after an human guided analysis 

of the behavior of the system trends, observing real data and 

simulated scenarios. It's a variation over the parsimonious 

agent behavior that can be summarized as follows: given the 

trends of both external temperature and solar irradiance by 

means of filtered discrete derivatives, their respective 

amplitudes are summed and the sign of the result Rt is 

considered. If Rt is positive the comfort is relaxed. Rt can be 

positive either if both temperature and solar are increasing, 

either if one of them has a prevalent increasing trend. 
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Fig. 6: Indoor temperature obtained in scenarios of non-predictive agents. 

Simulation done over two days of real weather condition during September 

2013. Steps are due to the dynamical user set point, not shown for clarity, 

that drives the indoor temperatures evolution. 

 
TABLE VII NON-PREDICTIVE AGENTS ENERGY AND COMFORT PEFORMANCE. 

 

Agent kWh Discomfort 

time % 

Total 

discomfort 

picky 40.99 1.60 % 23.38 

cheap 12.58 34.76 % 549.77 

parsimonious 28.15 8.02 % 256.82 

heuristic 21.89 13.90 % 351.46 

 

In Fig. 6 we show the results of the four simulations and in 

Table 1 we report the total energy consumption and the 

estimated discomfort in the simulated time period. Discomfort 

is measured both as number of samples outside the comfort 

interval and as integral of inside temperature distance from the 

set point chosen by the user. As we see, the heuristic agents C 

and D achieve an energy consumption in between the range 

from the maximum consumption of the strict agent A and the 

minimum of the cheap agent B, with a comfort in the range of 

the maximum achieved by A and the minimum achieved by B. 

 

 
Fig.7 Indoor temperature obtained in the predictive agents scenarios.  

Simulation done over two days of real weather condition during September 

2013.  
 

B. Predictive control 

The second experimentation was obtained by providing all 

agents with a rule that would decrease the set point of the air 

conditioner if they would predict an indoor temperature 

beyond the comfort interval. For implementing this rule the 

agents use the constructed model in two ways. First they use it 

to predict energy consumption in the following time period 

given other variables, and in particular actual controlled set 

point. External environment variables are predicted with 

different models: temperature Text is derived from the daily 

temperature distribution function from ASHRAE (American 

Society of Heating, Refrigerating and Air-Conditioning 

Engineers) manual [22], in function of the moving estimate of 

maximum and minimum temperature of the day. Solar 

irradiance S has been with Eureqa symbolic regression 

program fitting it against time of the year, with samples taken 

over the previous 2 weeks, so the get the best approximation of 

future solar irradiance taking into account the local shading 

near the thermal laboratory at Roio's hill.  

Text and S are again used to predict indoor temperature in 

the following time period together with the predicted energy 

consumption, measured in kWatts over the sampling period. 

 
TABLE IVIII PREDICTIVE AGENTS ENERGY AND COMFORT PEFORMANCE. IN 

THE RIGHTMOST COLUMN  SHOWS THE PERCENTUAL IMPROVEMENT IN 

COMFORT OF THE FORECASTING AGENTS.. 

 

Agent kWh Discomfort  

time % 

Total 

discomfor

t 

Improvemen

t 

picky 40.99 1.60 % 23.38 0 % 

cheap 12.58 34.76 % 549.77 0 % 

parsimonious 30.30 2.14 % 206.12 19.74 % 

heuristic 23.98 1.60 % 300.42 14.52 % 

 

In Fig.7 we show the results of the simulations and in Table 

2 we report the total energy consumption and the estimated 

discomfort in the simulated time period. Also, so as to get an 

objective prove of the more efficient functioning of the 

predictive agents we computed the total comfort improvement 

over their non-predictive version. As we see, predictive ability 

does not improve performance of the picky and the cheap 

agent but it does improve performance of the parsimonious 

and the heuristic agent. In fact they both achieve about the 

same discomfort time as the picky agent with a sensible energy 

saving. Moreover both the predictive versions of the 

parsimonious and heuristic agent improve total comfort over 

their non-predictive versions, with a relative smaller increase 

in energy consumption. 

V. EXPERIMENTAL SETUP 

The thermal laboratory is located at Roio's Monteluco hill, 

coordinates 42.33 N 13.37 E, 1100 from sea level. The room 

is 8x8x3 mt, with a small window ( 1msq ) on the east wall and 

a wooden door on the south wall. The HVAC system is made 

by a Mitzubishi MSZ-FD25VA inverter thermal pump and an 

external chiller MUZ-FD25VA. Temperatures are measured 

by means of 3 dry bulb PT100 thermo-resistors sensors, at 

different distance from the air conditioner, connected to a 

Delta-T logger DL2e. 

The thermal control is supervised with a domotic network. 

The HVAC consumption is measured with toroidal sensors 

over power lines. The set point is set to the HVAC by means 
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of a IR-remote emulator. The sampling frequency is set at 30 

minutes, during which temperatures are averaged and 

instantaneous HVAC power level is accumulated. There is also 

an external weather station Geoves Micro 3 that measures 

solar irradiance, ambient temperatures, wind 

direction/amplitude and humidity. 

VI. RELATED WORK 

A. Active Logic Programming 

In the field of Active Logic Programming, we have chosen 

to use DALI [4, 6] for its unique features in respect of the 

other development frameworks that are available. The DALI 

semantics is fully defined in [4], while the operational 

semantics of the interpreter is described in [8]. A DALI agent 

is a logic program that contains a particular kind of rules, 

reactive rules, aimed at interacting with an external 

environment. The environment is perceived in the form of 

external events, that can be exogenous events, observations, or 

messages by other agents. In response, the agent can perform 

actions, send messages, adopt goals, etc. The reactive and 

proactive behavior of the agent is triggered by several kinds of 

events: external events, internal, present and past events. When 

an event arrives to the agent from its “external world”, the 

agent can perceive it and decide to react. However, when an 

agent perceives an event from the “external world”, it doesn’t 

necessarily react to it immediately: it has the possibility of 

reasoning about the event, before (or instead of) triggering a 

reaction. Furthermore, internal events make a DALI agent 

proactive.  

In particular, [5] proposes an extension so to manage 

complex reaction in rule-based logical agents using a DALI-

like syntax which associates a set of preference rules, that can 

express the performance goals directly into the language. 

The literature in MAS is wide and large; see [14] for a 

survey. However, there are some points in contact with 

different solutions, both at the domain and at a design and 

development levels.  

3APL [9, 10] is a programming language and a platform 

specifically tailored to implement MAS, where the agents are 

designed in terms of “data structure” or “mental attitudes” 

(beliefs, goals, plans and reasoning rules) and “deliberation 

process” – implemented as programming instructions. Based 

on its beliefs, an agent can reach its goals by planning its 

actions thanks to the deliberation cycle, that can lead also to 

the check and revision of its mental attitudes. Although 3APL 

is based on the concepts of rules and planning, it lacks to 

implement the idea of event, unlike for instance DALI. 3APL 

has been used mostly to realize application for virtual training 

(e.g. [17]).  

A similar approach is known as KGP (Knowledge, Goals 

and Plans), which is based on logic programming with 

priorities, taking beliefs, desires and intentions as a starting 

point, but adding reasoning capabilities, state transitions and 

control – see [15]. Furthermore, it is implemented directly in 

computational logic. KGP could be a valid alternative 

candidate compared to DALI.  

METATEM (and its extension Current MERATEM) [1] is a 

language based on first-order linear temporal logic, and thus it 

is suitable for temporal planning and temporal knowledge 

representation. At the basis it has concepts such as beliefs, 

intentions, goals and plans, but the very fundamental rules are 

of the form “past and present formula implies present and 

future formula“ [16]. So, like DALI, at the center of 

METATEM there are the concept of time and the idea that the 

past determines the present and the future, but it has no 

different classes of events and METATEM agents are just 

reactive agents, unlike DALI. METATEM can have a wide 

range of applications (e.g. patient monitoring, fault tolerance 

system, process control etc.) [13, 12], but as far as the authors 

know, it has not been used for the energy management of a 

building. 

 

B. Energy Saving and Air Conditioning 

From a classical control point of view, the work in [20] 

developed cost efficient control strategies to achieve optimal 

energy and acceptable comfort conditions. The importance of 

agents based intelligent control systems for indoor building 

environments, coordinated through MAS, in the context of an 

energy efficient building has been reviewed in [21], were an 

evolutionary algorithm shapes the fuzzy knowledge base of a 

multilevel hierarchical MAS, to take the overall user comfort, 

including thermal, visual and air ventilation, under control. 

VII. CONCLUSION 

The experimental simulations demonstrate feasibility and 

the effectiveness of predictive agent based control towards 

providing a range of different behaviors to adhere to a given 

goal. This preliminary results calls for embedding predictive 

capabilities in planners as outlined 
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