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Abstract — Information Extraction (IE) is a natural language 
processing (NLP) task whose aim is to analyze texts written in 
natural language to extract structured and useful information 
such as named entities and semantic relations linking these 
entities. Information extraction is an important task for many 
applications such as bio-medical literature mining, customer 
care, community websites, and personal information 
management. The increasing information available in patient 
clinical reports is difficult to access. As it is often in an 
unstructured text form, doctors need tools to enable them access 
to this information and the ability to search it. Hence, a system 
for extracting this information in a structured form can benefits 
healthcare professionals. The work presented in this paper uses a 
local grammar approach to extract medical named entities from 
French patient clinical reports. Experimental results show that 
the proposed approach achieved an F-Measure of 90. 06%. 
 

Keywords — Information Extraction, Electronic clinical 
reports, medical entities recognition, natural language 
processing. 
 

I. INTRODUCTION 

ECOGNITION and classification of named entities in  
texts is recently considered as an important task in 
automatic natural language processing (NLP) as they play 

a significant role in various types of NLP applications, 
especially in Information Extraction, Information Retrieval, 
Machine Translation, Question-Answering and , 
Parsing/Chunking.  

The amount of information written in natural language and 
available in electronic forms is increasing, making the 
development of intelligent tools to process this information an 
urgent need for practitioners such as health care professionals. 
Information Extraction is gaining an increased attention by 
researchers, who seek to acquire knowledge from this huge 
amount of natural language content. Many approaches have 
been proposed to extract valuable information from texts in 
different fields, with the medical domain being one of them.  

We note that the volume of medical information is 
constantly increasing. According to [1] it doubles every five 
years and this wealth of information is difficult to access 
because it is stored in unstructured formats. This is 
particularly true for the case of clinical reports (CRs) where 
information such as pathologies, medical history and 

diagnoses are recorded in a textual format, is ever increasing 
and becoming difficult to search and access. CRs can have a 
positive impact on the quality of care, patient safety and 
efficiencies in medical procedures. However, without accurate 
and appropriate content in a usable and accessible form, these 
benefits may not be achieved. Developing a system for 
extracting unstructured information can benefits healthcare 
professionals.  

These kinds of systems have become very necessary tools; 
they will enable researchers to access accurate data and the 
required information, and reducing the time spent by doctors 
on making decisions about patients’ diseases. Hence, the main 
motivation of this work is to develop an automated system for 
extracting named entities from clinical reports.  

Firstly, most of the elements in CRs are name entities (e.g.., 
the names of patients, diseases, symptoms, and drugs) that can 
be used in various applications, such as seeking information to 
diagnose new patients, conducting epidemiological studies, 
statistical analysis, and data mining. However, these CR are 
difficult to analyze due to their unstructured nature and the 
large volume of records available. Secondly, most existing 
medical entities extraction systems are devoted to English. 
Research in the French language is still at its initial stages [2].  

In this research, we propose to use an original approach 
based on local grammars to extract medical entities from 
French clinical reports. The local grammar based approach has 
recently been applied to extract proper nouns in English, 
Chinese, French, Korean, Portuguese, and Turkish news texts 
[3]. This approach was first used to discuss recursive phrases 
that are commonly found in specialist literature like 
biochemistry and then extended to extract date, time and 
address expressions from letters.  

In this work, we study the application of local grammars for 
extracting medical entities from French clinical reports. We 
focus on the extraction of the following named entities; 
disease, symptom, treatment, drugs and clinical reviews. The 
rest of the paper is organized as follows Section 2 summarizes 
the task of named entity extraction and work related to the 
medical field. In section 3 we describe information extraction 
and methods. Section 4 describes the proposed system and our 
contribution to extract medical entities. Section 5, presents 
evaluation results concerning proposed system performance. 

Aicha Ghoulam1, Fatiha Barigou2, Ghalem Belalem 3, Farid Meziane4 

 

1, 2,3Departmnt of Computer Science, Faculty of Exact and Applied Sciences,  
University of Oran, Ahmed BenBella, Algeria 

4School of Computing, Science and Engineering, University of Salford, Manchester, UK 
 

 

Using Local Grammar for Entity Extraction 
from Clinical Reports  

 

R 

DOI: 10.9781/ijimai.2015.332 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3 
 

-17- 
 

Finally, this paper ends with conclusions and some ideas for 
future works. 

II. RELATED WORKS 

The Named Entity Extraction (NEE) task aims to recognize 
named entities and classify them into categories like 
organization names, person names, location names, date and 
time expressions, monetary amounts and documents’ 
references [4]. Named Entity Extraction systems are based on 
two main approaches: the rule based and the machine learning 
approaches [5]. Hybrid systems combine these two approaches 
[6].  

The Rule-Based approach is a manual technique based on a 
specific domain extraction rules written by an expert using 
morphological and syntactic information like trigger words, 
capitalization, and gazetteer. This approach gives very good 
results however requires great human efforts and a 
considerable time for data analysis and rule writing. It is time 
consuming during development and it lacks portability which 
limits its extension to other domains.  

On the other hand, the machine learning approach, is a 
trainable technique that is capable to improve its ability to 
extract information from input automatically or under 
supervision, but it requires large annotated corpora for 
training, which are both expensive and time-consuming to 
train the models [7]. Many different models have been 
proposed over the years. The most prominent of these are 
Hidden Markov Models (HMM) [8], Support Vector Machine 
(SVM) and Conditional Random Fields (CRF) [9]. 

Several studies have used the NEE task, [5,7,10]. Most 
systems were mostly interested with named entity like 
organization names, place names, date expressions and 
numeric expressions [11] with different languages [12] and 
gave promising result. Recently, NEE has been applied to the 
medical field to extract entities such as protein names, gene 
names, disease names and treatments from medical documents 
[7]. Various systems have been developed, using rule-based 
approaches, including MedLEE [13], SymTex [14], MetaMap 
[15] and MedIX [16].  

The MedIX system [16] was applied to patient CRs using 
natural language processing techniques. It performs some 
processes such as preprocessing the text, tokenizing, and 
tagging, recognizing special formatting and then it identifies 
entities and classifies them into categories that included 
patient name, disease name and symptom names. Others 
classify entities into problem, treatment, test classes [9] and 
drug properties [17]. 

Authors in [18] proposed an approach relying on linguistic 
pattern and canonical entities to extract five categories of 
medical entities from CRs namely, disease name, treatment 
name, drug name, and test and symptom names. Other systems 
extract useful entities from radiology and mammography 
reports to identify patients with lung cancer [19] or with 
tuberculosis [20].  

Recent studies are mostly based on the machine learning 
approach; [1] and [21] employ support vector machines to 

attribute semantic categories to each word in discharge 
summaries. Markov models-based methods are also frequently 
used [8]. Others used unsupervised methods were based on 
seed term collection [22].  

In the past couple of years, researchers have been exploring 
the use of machine learning algorithms in the clinical concept 
detection. To promote the research in this field many 
organizations such as ShARe/CLEF, SemEval have organized 
a few clinical NLP challenges. Both rule based [23,24,25] and 
machine learning based methods as well as hybrid methods 
[26,27,28,29] were developed. In this shared-task sequential 
labeling algorithms (i.e., CRF) [30,31,32,33,34,35], and 
machine learning methods (i.e., SVM) [36] have been 
demonstrated to achieve promising performance when 
provided with a large annotated corpus for training. 

The system that was top-ranked in the SemEval 2014 Task 
7 among all participating teams is given in [32]; authors 
developed three ensemble learning approaches for recognizing 
disorder entities consisting of an ensemble learning-based 
approach and a Vector Space Model based method for 
disorder entity encoding. Extracted features from clinical 
notes were used to train two machine learning algorithm-based 
entity recognition models, CRF and Structural Support Vector 
Machines (SSVMs). These two models were ensembled with 
MetaMap. Their approaches achieved top rank in both 
subtasks (disorder entities recognition and encoding), with the 
best F-measure of 81.3% for entity recognition and the best 
accuracy of 74.1% for encoding, indicating that their proposed 
approaches are promising. 

Another work [37] presented a comparison of two 
approaches to automatically de-identify medical records 
written in French; rule based system and CRF based system. 
They achieved an F-measure of 84.3% and 88.3% for each 
system respectively in cardiology reports. They achieve an F-
measure of 68.1% and 63.8% for each system respectively in 
fœtopathologie reports. They concluded that a rule based 
system allowed them to achieve good results on nominative 
and numerical data, and the machine learning approach 
performed best on more complex categories.  

III. INFORMATION EXTRACTION AND METHODS 

Information Extraction (IE) has been defined in the 
literature by many researchers [38, 39]. The most common 
definition is that IE is an automatic process for extracting 
structured information which can be relevant for a particular 
domain from unstructured documents like free text that are 
written in natural language (e.g. news article, clinical reports) 
or semi-structured documents that are pervasive on the Web, 
such as tables or itemized and enumerated lists. The obtained 
data are then arranged to be incorporated into machine 
readable databases and ontologies which, in turn, are used to 
improve applications such as Question Answering engines or 
Information Retrieval systems. 

Five separate component tasks, which illustrate the main 
functional capabilities of current IE systems, were specified by 
recent MUC-7 evaluation [5]: 
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• Named Entity Recognition (NER), involves the 
recognition of named entities such as organizations, 
persons, locations, dates and monetary amounts. In the 
clinical domain, this might include entities such as disease 
and drug. 

• Relation Extraction (RE) task; is the task of detecting and 
characterizing the semantic relations between entities in 
text. In the clinical field, it includes for example relation 
between disease and drug. 

• Co-reference Analysis task, is a task which determine 
linguistic expressions that refer to the same real-world 
entity in natural language, has not yet been widely applied 
to clinical documents [40]. 

• Template Filling, the information to be extracted like 
entities, relationships and events in natural language texts 
is pre-specified in user defined structures called templates 
(or objects), each consisting of a number of slots (or 
attributes), which are to be instantiated by an IE system as 
it processes the text.   

• Event Description, [41] defined a medical event as 
anything that is clinically important and that can also be 
mapped to a timeline. They created the i2b2 2012 
challenge; a clinical temporal relation corpus that includes 
clinical events, temporal expressions, and temporal 
relations. 

 
An information extraction system supports one of the two 

basic methods of extraction, namely, rule-based information 
extraction method, and statistical information extraction 
method.  
• The Rule-Based IE methods: rule-based methods extract 

the information by rules, and these rules can be generated 
by human hand-coded, or by learning from examples. The 
most representative examples of this kind of systems are 
FASTUS [42], GE NLTOOLSET [43], PLUM [44] and 
PROTEUS [45]; these systems are well described in [46]. 
They can achieve good performance on the specific target 
domain. Human hand-coded rule-based system, in some 
sources also called knowledge engineering method, gives 
very good results. However, it involves a great human 
effort and a considerable time for data analysis and rule 
writing. It is time consuming during development [55].  

• Statistical learning IE methods: statistical learning 
methods or Machine Learning (ML) methods; are 
trainable techniques able to improve their ability to 
extract information from input automatically or under 
supervision see the survey of [5]. Most recent studies use 
supervised machine learning starting from a collection of 
training examples; the idea of supervised learning is to 
study the features of positive and negative examples of 
information to be extracted (e.g. entities, relations, 
attributes) over a large collection of annotated documents 
and design rules that capture instances of a given type. 
Many different models have been proposed over the 
years. The most prominent of these are (HMM), 
Maximum Entropy Markov Models (MEMM), SVM or 

even a vector classification model for which the features 
are not terms, but graph metrics [47] and CRF. Other 
studies used unsupervised machine learning methods; a 
class of problems in which one seeks to determine how 
the data are organized such as clustering; a common 
technique for statistical data analysis used in many fields 
as used in [48]. 

•   Wrapper induction: many approaches for data extraction 
from web pages have been developed to transform the 
web pages into program-friendly structures such as a 
relational database. Wrapper induction system considers 
web pages as a source data. It is a program that wraps an 
information source like a database server, or a web server 
[49]; it usually performs a pattern matching procedure 
like a form of finite-state machines which relies on a set 
of extraction rules. 

• IE using Ontology: Ontology is a formal and explicit 
specification of a shared conceptualization; it plays a 
crucial role in the process of IE. The relation between 
ontologies and IE is involved in two tasks: on the one 
hand, Ontology is used for information extraction; IE 
needs ontologies as part of the understanding process for 
extracting relevant information [50]; on the other hand, 
information extraction is used for populating and 
enhancing a domain ontology from the web as shown in 
[51]; they developed an ontology of a scene from the 
essential semantic components for the semantic 
structuring of the Web3D. The construction of ontology 
for the definition of tridimensional spaces will allow the 
Web3d to standardize the development of scenarios and 
the creation of manufacture agents that will make easier 
the modeling and texturing processes. 

IV. PROPOSED APPROACH 

In this study; we use and evaluate a rule based approach 
relying on local grammar the motivation and the description of 
this approach is presented in this section. 

A. Benefits of the proposed system 
Fig.1 show some benefits of such system for clinical staff. 

An UML use case diagram is used to describe the expected 
functionalities of the proposed system. Medical named entities 
recognition, as shown in Fig.1, is essential to built new 
systems to help doctor and clinical staff in their work. Doctors 
need quick and easy access to quality information resources to 
be able to make informed decisions regarding patient care; 
they also need systems to help them answer clinical questions. 
 
1) Question-Answering systems: 

i. Clinical staff asks to obtain medical response. 
ii. A research in medical ontology must be done. 

iii. The construction of medical ontology based on 
medical entity recognition and relation extraction 
between medical entities. 
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iv. The extraction of relation between medical entities 
task necessities that the medical entities must be 
chucked. 

2) Decision support system: 
i. Clinical staff requests a decision. 

ii. A research in past problems is done to make decision. 
iii. Past problems input by doctors must be checked 

using medical entity recognition to facilitate research 
for similar cases.  

 

B. Local grammar based approach  
The Local Grammar (LG) approach was initiated by Harris 

[52] to discuss recursive phrases that are commonly found in 
specialist literature like biochemistry (immunology) [53]. 
Harris defines a local grammar as a way of describing 
syntactic restrictions of certain subsets of sentences which are 
closed under some or all of the operations in the language. 

More specifically, LG is a way of recognizing the behavior 
of words that are used in a specific domain, finding how these 
words are used in sentences and inferring their usage patterns. 

For example, Traboulsi [53] considered frozen expression 
as a subset of sentences that have some syntactic restrictions.  

Certain expressions such as ‘compound words’ (e.g. stock 
market) are strictly frozen and others are  partially frozen and 
are included in expressions such as  the director of a small 
company, the director of a doctoral thesis as illustrated in the 
following patterns:  

 
(financial + stock + E) market 
Director of (company + thesis) 
The 20 March (next + 2006) 

 
Local grammar were extended by Gross [54] to extract date, 

time and address from letters. Gross defined LG as a finite 
state grammar and used it for finding words related by 
prefixation, suffixation, and sentences having similar syntax. 

For certain expressions such as dates, times, and other types 
of proper names, it appears impossible to individually identify 
the set of all possible constructions and much more effective a 

representation in the form of automata. This representation is 
easy to be read of course if the graphs are well arranged. We 
give in Fig.2 an example of a local grammar for French date 
expressions. 

It can recognize expressions like: “dimanche, le 02 
septembre 2014”. 

Local grammars as finite state local automata have been 
used by [3] to recognize English person names in textual 
documents and then extended it to extract Arabic person 
names in [24]. 

C. Local Grammar based Approach for Extracting Named 
Medical Entities 
In this work we study French CR to extract medical named 

entities using local grammar. In table 1, we gave the classes of 
entities and examples for each one. 

We noticed that medical entities occur frequently at 
constructions having consistent structures in the proximity of 
Reporting Words (RWs) like “consulte pour” (consulting for), 
“présentant” (having) in the case of disease entities, “signe 
de” (sign of) in the case of symptom entities which are 
sufficiently frozen to be described in the form of local 
grammars. An example of these local grammars is shown in 
Fig. 3. 

 

 
Fig.2. Example of a local grammar for French date expressions  

 
Fig.1. Medical entity recognition’s benefits 
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This graph is able to recognize constructions like: 
• [Un malade nommée X présente une fistule de 

fémur droite] 
(A patient named X has a right femoral fistula) 

•  [Un malade Y consulte pour un  traumatisme 
lombaire] 
(A patient named Y consults for lumbar trauma) 

 
The boxes labeled <disease>, <organ>, <location>, 

<adjective> are the names of sub-graphs that recognize 
candidates of disease names, organ names (anatomy), location, 
and adjectives respectively. Local grammar graphs containing 
sub-graphs shows similarity to recursive transition networks. 

To extract medical entities from French clinical reports 
written in a free and natural language, our contribution adopts 
the following approach: 

 
- Construction of different Gazetteers;  
- Construction of medical entities classification rules; 
- Describing the rules in the form of local grammars. 

D. System Architecture 
Figure 4 shows the architecture of the system. Our system has 
two major components: the gazetteers and the Grammars. 
 

Pre-processing task:  
It is necessary to properly delimit the clinical report into 

meaningful units. Most natural language processing solutions 
expect their input to be segmented into sentences, and each 

sentence into tokens; so for that we used the Unitex1 open 
source for splitting CR into sentences and splitting sentences 
into tokens. 
 

Gazetteers: 
The gazetteer contains diseases names, symptoms names, 

clinical reviews, treatment and medications, medical 
adjectives, organs and so on. These Dictionaries are in 
electronic format; we have assembled them from different web 
site: 

• A dictionary of adjectives2 containing 514 entries. 
• A dictionary of organ (Atlas: human body)3  

containing 384 entries. 
• A dictionary of diseases4,5 containing 343 entries. 
• A dictionary of treatments6. 
• A dictionary of clinical reviews6 containing 28 

entries   
• A dictionnaire of  symptoms7  containing 67 entries 
• A dictionary of drugs8,9 
• A list of  French medical reporting words or trigger 

words 
• A dictionary of medical names. 

 
Grammars:  
The grammar performs recognition and extraction of 

medical entities from clinical reports based on combination of 
regular expression patterns in the form of local grammars. A 
deep contextual analysis of various French clinical reports was 
performed using the Unitex open source software to build 
local grammars based on keywords or trigger words forming a 
window around medical entities.  

 
1 http://www -igm.univ-mlv.fr/~unitex 
2 http://www.linternaute.com/dictionnaire/fr/definition/abdominal/ 
3 http://www.doctissimo.fr/html/sante/atlas/index.htm 
4 http://www.passeportsante.net/problemes-et-maladies-p69 
5 http://www.vulgaris-medical.com 
6 http://www.e-sante.fr/ 
7 http://www.vulgaris-medical.com/symptomes 
8 http://www.eurekasante.fr/medicaments/alphabetique 
9 http://www.doctissimo.fr/html/medicaments/medicaments.htm 

TABLE I 
MEDICAL NAMED ENTITIES EXAMPLE 

ENTITY MEDICAL ENTITY EXAMPLE 

Disease Masse du pancreas (Mass of the pancreas) 

Symptom Anorexie  (anorexia) 
Amaigrissement  (weight loss) 
Déshydratation (dehydration) 

Clinical 
Review 

Scanner AP 
 échographie Abdomino-Pelvienne 
(abdomino- pelvic ultrasound) 

Treatment Alimentation orale légère (Lightweight oral 
feeding) 
réhydratation 1 fl (rehydration 1 bottle) 

Medication Cefacidal 1g , Gentamicine 80 mg, Flagyl 1 fl 

 
 

         
    Fig.4. Architecture of the system 
 

          
 
Fig.3. Example of the local grammars of disease entity 
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Fig.5. Example of Local Grammar in Unitex 

 

Example rule: 
The following rule recognizes a disease name composed of 

medical name followed by a medical adjective and human 
organ based on a proceeding disease indicator pattern which is 
the RW. 

 
(name + ws+ adjectives +French prepositions + ws + organ(s)) 

Corresponding Local Grammar: 
The following local grammar corresponds to the above rule 

using the Unitex editor: 
 
Writing conventions: 
• ws: whitespace. 
• Name: dictionary of medical names. 
• ADJ: dictionary of medical adjectives. 
• PRE: dictionary of French prepositions. 
• Organ: dictionary of human organ. 

Example: 

The following disease name would be recognized by the 
above local grammar shown in Fig.5:  
“Masse tumoral du colon.”; [Tumor mass of the colon] 

We created a set of rules using Unitex to classify different 
medical named entities into disease, symptoms, clinical 
review, drugs and treatment from French clinical reports. 
Some examples of rules for each class are given in the table II 
below: 

 

V. EXPERIMENTAL STUDY 

In this section we describe the data and metrics used to test 
our approach experimentally and discuss the different results. 

A. Data set: clinical reports 
We analyzed more than 50 French clinical reports to 

construct rules for medical named entities, and evaluated the 
system by using 30 new clinical reports from urology patients 
and general medicine at the hospital of CHLEF (Algeria). We 
have annotated the dataset with the help of a doctor. Five 
classes of medical entities were studied: Disease, Symptom, 
Treatment, Clinical review, Drug or medication. (so, 80 
clinical reports have been collected in total: 50 for the 
development  of  rules and 30 for the evaluation of the system) 

B. Metrics 
Standard metrics for evaluating named-entity extraction are 

used to measure the accuracy of the proposed approach. We 
calculate precision, recall, and F-measure. They are defined 
as: 

- FP)+TP/(TP=Precision  
- FN)+TP/(TP=Recall  
-  

Where: 
- TP: True Positives; number of medical entities that 

were identified correctly. 
- FP: False Positives; number of medical entities that 

were detected by the system and were not present in 
the report. 

- FN: False Negatives; number of medical entities that 
were present in the report but system failed to detect 
them.  

Table III describes in more details those metrics.  
 

 
C. Experimental Results 

In this study, we experiment the approach we have 
described in section 3 to recognize medical entities from 
clinical reports. Five categories were studied and the results 
are discussed in this section. 

Fig. 6 shows the precision, recall and F-measure for each 
class. Analysis of the experiments allowed us to observe that 
the overall performance of our system over the five categories 
is good. The results are shown in table IV below. 

The insufficient coverage of the diversity of all medical 
entities in our small set of rules explains the low results in 
recall. The system failed to recognize entities due to the 
insufficient numbers of entries in dictionnaries and insufficient 

Recall)+recisionRecall)/(P*(Precision*2=Measure-F

TABLE II 
MEDICAL NAMED ENTITIES  RULES EXAMPLE 

 
CATEGORY MEDICAL ENTITY 

EXAMPLE 
RULE EXAMPLES 

Symptom Anorexie (symptom name) 

Clinical 
Review 

Scanner AP (test name)  

Treatment réhydratation 1 fl (treatment name + ws + nbr + ws 
+unit) 

Medication Cefacidal 1g  (name drug+ws+nbr+unit) 

 

TABLE III 
EVALUATION METRICS 

 
  EXPERT (DOCTOR) 

  YES NO 

SY
ST

EM
 YES TP FP 

NO FN TN 

 

TABLE IV 
DETAILED EVALUATION ON THE CLINICAL REPORTS. 

PRECISION (P), RECALL (R) AND F-MEASURE (F) 
 

CATEGORY P R F 
Disease  0,921 0,800 0,856 
Symptom  0,971 0,917 0,943 
Treatment  1,000 0,765 0,867 
Clinical Review 1,000 0,941 0,969 
Drug  1,000 0,765 0,867 
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rules for identifying different entities especially, treatment and 
drugs entities. 

 
 

Generally, the system performs well achieving and it gives 
a macro precision of 97,84% and a macro-recall of 83,78% 
which are the averge as it’s shown in table V.  

 
These results are very  interesting  and need to be evaluated 

in a larger collection of clinical reports, and this is very 
important.  

VI. CONCLUSION 

The work done in this paper is an attempt to broaden the 
coverage for medical entity extraction by incorporating the 
French clinical reports. 

We used a rule based approach relying to the local grammar 
to extract medical entities from French clinical reports. The 
experimentations show that the rule based approach allows 
obtaining a good precision, but having a disadvantage to 
require a great human efforts and a considerable time 
compared to the high variability and the complex structure of 
the clinical reports. 

One of the most important obstacles in identifying medical 
entities is the high terminological variation in the medical 
domain. In other hand the evolution of entity naming such as 
new abbreviations, names for new diseases or drugs constitute 
obstacles which can limit the scalability of the local grammar 
approach. Also the main limitation of the approach is their 
lack portability which limits their extension to other medical 
domains. 

 We plan to extract medical entities by machine learning, 
starting from a collection of training examples; the idea is to 
study the features of positive and negative examples of 
medical entities to be extracted over a collection of annotated 
documents with the need of doctor and design rules that 
capture instances of a given type. Therefore the hybridization 
will be a performance evaluation for future work.  
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