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Abstract — The main problem faced by naval radars is the 
elimination of the clutter input which is a distortion signal 
appearing mixed with target reflections. Recently, the Pareto 
distribution has been related to sea clutter measurements 
suggesting that it may provide a better fit than other traditional 
distributions. The authors propose a new method for estimating 
the Pareto shape parameter based on artificial neural networks. 
The solution achieves a precise estimation of the parameter, having 
a low computational cost, and outperforming the classic method 
which uses Maximum Likelihood Estimates (MLE). The presented 
scheme contributes to the development of the NATE detector for 
Pareto clutter, which uses the knowledge of clutter statistics for 
improving the stability of the detection, among other applications.  
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I. InTRoducTIon

ARAdAR scans the surrounding area emitting electromagnetic waves 
that produce echoes after being reflected on nearby objects. 

Echoes are then received back in the transceiver containing the objects’ 
information [1]. Depending on the type of application, radars must 
ignore certain reflections and focus on others [2].

In the specific case of coastal and ocean exploration, the reflective 
properties of the sea surface result in the generation of unwanted echoes 
that may reach high magnitudes. The elimination of these echoes, 
known as sea clutter, is one of the main problems faced by naval radars 
whose objective is to detect targets like ships or low altitude aircraft 
[3].

The representation of clutter is one of the topics most discussed in 
the literature [4-10]. Clutter modeling, as it’s also called, facilitates the 
simulation of radars’ performance before site implementation. As the 
clutter is a random signal, its modeling falls in the field of probability 
distributions.

Many distributions have been used in the modeling of sea clutter. 
The Weibull [11], K [12], Log-Normal [13], WW [14] and KK [15] 
are among the most commonly employed alternatives. However, in 
recent years evidence have been provided suggesting that the Pareto 
distribution may achieve a better modeling of the phenomenon than 
its traditional counterparts, while having a simple mathematical 
formulation [16]. Consequently, a significant amount of papers have 
been presented in a short period of time including the Pareto distribution 
in radar related solutions [17-22].

Among the different components of clutter modeling, the estimation 
of the distribution parameters has occupied a prominent place in 
multiple studies [23-26]. In the specific case of the Pareto distribution, 
various estimators have been proposed for the shape parameter that 
has a remarkable influence in the quality of the detection [21, 27, 28]. 

Nevertheless, the Maximum Likelihood Estimator (MLE) is commonly 
regarded as the classical estimator [29].

The Radar Research Team from the Instituto Superior Politécnico 
Jose Antonio Echeverria (ISPJAE-CUJAE) has developed improved 
parameter estimation techniques for the Weibull and K distributions 
using artificial neural networks (ANN) [30, 31]. Given the similarity 
of the above distributions and the Pareto alternative, the authors aimed 
at creating a new method for estimating the Pareto shape parameter 
using ANN.

The neural network, which was finally designed, achieves a precise 
and low computational cost estimation of the Pareto shape parameter 
in a wide range of possible values. Its design contributes to the 
development of the NATE (Neural Adaptive Threshold Estimation) 
detector for Pareto clutter, which uses the statistical knowledge of 
the clutter to improve the stability of detection in different scenarios. 
Similarly, the precise estimation of the clutter has application in the 
DRACEC scheme and in identifying anomalous sea surface conditions 
such as fish gatherings, oil spills or shipwrecks.

The paper is structured as follows. The second section introduces 
the fundamentals of the Pareto distribution, and the third one presents 
the method used in the design and training of the neural network. 
The four section entitled “Results and Discussion” characterizes 
the performance of the solution and compares it with the classical 
MLE alternative. Finally, in “Conclusions and Future Research” the 
contributions of the paper are summarized and recommendations are 
given for future research lines.

II. PAReTo dIsTRIbuTIon

The Pareto distribution has been used in modeling the income of 
a population [32] and in several fields of engineering [27, 28, 33], 
including sonar [34] and radar [16, 35, 36] applications. Particularly in 
[16], the application of the Pareto distribution in the representation of 
high-resolution X-band sea clutter, observed at low grazing angles, was 
examined. The investigation compared the Pareto fit with the popular 
Log-Normal, Weibull, K, KK and WW intensity models. As a result, it 
was found that the Pareto distribution achieved a better fit than these 
traditional models.

It was also reported that the closest competitor to Pareto was the 
KK distribution. As the Pareto distribution is characterized by a simple 
PDF (Probability Density Function), the results are very promising. 
It is suggested that the Pareto distribution will become a natural 
replacement for the KK which uses between 4 and 5 parameters with a 
complicated PDF that includes Bessel functions.

The PDF of the Pareto distribution is given below.

)
 (1)



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº2

- 8 -

Where α is the shape parameter and β is the scale parameter [29], 
also referred to as location parameter or x – minimun value [37]. The 
β parameter specifies the region where the distribution have positives 
values which always covers the interval [β, ∞); whereas the shape 
parameter controls how fast the tail of the distribution drops. Figure 
1 ilustrates the effect on the Pareto PDF of the parameters variation.

Consulting the investigations of [21, 22, 38], the authors concluded 
that the interval of 2 < α < 10 is the more suitable for the Pareto clutter 
modeling. Additional simulations verified that samples generated with  
α < 2 produce high magnitude values too often and those corresponding 
to α > 10 have a too short PDF tail.

III. desIgn And TRAInIng of The neuRAl neTwoRk

For the design of the neural network, the authors took as a start 
point the solutions given in [26, 30, 39-41] for different situations. 
Consequently, the initial configuration of the network internal 
variables was the one presented in Table 1. For the full understanding 
of the meaning of these parameters, the reader is referred to specialized 
literature [42, 43].

The configuration displayed in Table 1 was enough to achieve the 
desired results. Several parameters were modified looking for a better 
performance without obtaining virtually any gain. The only exception 
to this rule was the training algorithm. The best results were obtained 
after applying Bayesian Regularization [44] instead of Levenberg-
Marquardt.

TAble I
confIguRATIon of The InTeRnAl neuRAl neTwoRk VARIAbles

Network Variables Choice

Network Type Feed Forward Network (Multilayer Perceptron)

Training Function BackPropagation (Levenberg-Marquardt)

Number of Layers 3 (Input Layer – Hidden Layer – Output Layer)
Transference or 

Activation Function
Hyperbolic Tangent Sigmoid (Hidden Layer), 
Lineal Transference Function (Output Layer)

Activation Order Topological (Asynchronous Activation)

Error Measurement Mean Square Error

Training Set Division 70% Training - 15% Validation -  15% Test

Samples’ Presentation Batch Training

A. Preparation of the Training Set
An essential element in the design of a neuronal estimator is the 

preparation of the training set. In order to execute the supervised 
training, a set of 16000 groups of 3000 Pareto samples each was 
computer-generated by changing the value of the shape parameter (α) 
every 10 groups. Therefore, the first group was generated with α = 2, 
 the group number 11 with α = 2,005, the group number 21 with α = 2,010, 
and so on until α = 10. The Pareto scale parameter was maintained at 
β = 0.001 in all simulations.

The task of the neural network is to estimate the shape parameter for 

each of the 3000 samples groups. To present samples to the network, 
histograms were prepared from each group. The histograms reduced 
the 3000 intensity values to 50, performing therefore the feature 
extraction from sea clutter. The number of values in the histograms 
was chosen imitating what was applied in [30, 31].

So, the network had 50 inputs designed to read histograms and an 
output conceived to estimate the value of the α parameter. The number 
of neurons in the hidden layer was left to optimize by successive trials.

IV. ResulTs And dIscussIon

After executing multiple trainings with ANNs, whose hidden 
layers contained between 5 and 50 neurons, it was concluded that the 
improvement by increasing the number of neurons was very low, as 
can be seen in Figure 2. In fact, the gain was less than a 5% in the 
mean absolute error when a 5 neurons ANN was replaced by a 50 
neurons ANN. The mean absolute error was measured by averaging 
the absolute magnitude of the deviation of each parameter estimation 
from the exact value known a priori.

Each value from Figure 2 resulted from choosing the best network 
after performing 50 training with schemes containing the specified 
number of neurons in the hidden layer. Afterwards, the network 
performance was measured with a new dataset independent from the 
one used in the training.

Consequently, the authors selected a network with five neurons as 
the final proposal. It exhibited a mean absolute error of 0,0897 and a 
maximum error of 0,5748. These values  represent only a 1,12% and a 
7,2% respectively of the search interval.

Figure 3 presents 3 graphs corresponding to the ANN’s performance. 
Graph A shows the shape parameter estimation performed by the ANN 
together with the ideal estimate. Graph B shows the committed error 
obtained by subtracting both quantities. As can be seen, the deviation 
is greater for high values   of the shape parameter. This is a result of the 
saturation of the parameter’s influence in the heavy tail property of the 
Pareto distribution and it verifies what it was observed in [30] for the 
Weibull distribution. As α increases, the PDF curves will become more 
and more similar to each other, making more difficult the accurate 
estimation of the parameter.

Finally, graph C from Figure 3 presents a histogram of the committed 
error. As it’s shown, the error exhibits a Gaussian-like behavior which 
is a positive feature for an estimator.

A. Comparison with the MLE Estimator
Generally, the shape parameter of clutter related distributions such 

as Weibull, K and Log-Normal is estimated by one of two methods: the 
Method of Moments (MoM) and the MLE method. In the case of the 
Pareto distribution, the MoM does not provide good estimates due to 
the long tails of the distribution and to limitations in the definition of 

Fig. 1. Effect of the parameters variation in the Pareto PDF.

Fig. 2. Mean absolute error of ANN with different amounts of neurons in the 
hidden layer.
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the moments that require a certain value of β as a condition of existence 
[29]. In fact, the use of this estimator is strongly unadvised. So, the 
most widely employed estimator is the MLE that uses the following 
expressions [29, 45]:

= min
∑ log − log

 
 (2)

Where  is the estimate of the scale parameter,  is the estimate 
of the shape parameter and  is the sample number  of a given set.

The authors compared the performance of the new neuronal 
proposed estimator with the MLE. After evaluating both schemes with 
a new set of 16000 groups of 3000 samples, it was concluded that the 
neuronal method performs the estimation with a deviation 50% inferior 
to the one exhibited by the MLE, both regarding the mean absolute 
error and the maximum error. The mean absolute error committed by 
the MLE was of 0,1689  and the maximum error of 1,1077.

Additionally, it was observed that the behavior of the estimators 
changed in the different estimation intervals as it’s shown in Tables 2 
and 3. Note that both estimators exhibit a similar performance in the  
2 < α < 3 interval, where only a small gain of less than a 3% is achieved 
by replacing the MLE with the neuronal solution. However, as the 
magnitude of α increases, the gain starts to be significant, reaching a 
figure of 200% for the 9 < α < 10 region.

Moreover, the speed of both the MLE method and the neural 
solution were tested using a personal computer with an Intel Core i5-
4460 CPU (3.20GHz) and 4 GBs of RAM memory. The MLE took 
5,5425 seconds to complete the estimation on a set containing 16000 
groups of 3000 Pareto samples, whereas the ANN consumed 1,8721 
seconds (almost 3 times faster). Nevertheless, the ANN processing 
time can be reduced even more by placing the solution on a FPGA kit 
which will provide parallel processing features. Also, the time elapsed 
in the gathering of the histograms (94% of the 1,8721 seconds) can be 
further reduced by establishing a memory aware system which will 
only replace the older sample when receiving a new one. 

In conclusion, it’s safe to say that the neuronal method outperforms 
the MLE in the region of high magnitudes of the shape parameter; while 
it’s able to maintain an equal or superior performance in the remainder 

of the estimation interval. The proposed ANN achieves an accurate 
and low computational cost estimation of the Pareto shape parameter. 
Therefore, it contributes to the design of radar detectors that guarantee a 
constant false alarm probability when processing clutter with statistical 
variations. Indeed, the neural estimation solution presented in [30] for 
the Weibull distribution led,  together with the contribution of [46], to 
the creation of the W-NATE-CA-CFAR adaptive detector [47]. So, the 
current paper is expected to lead to the creation of the P-NATE-CA-
CFAR (Pareto-Neural Adaptive Threshold Estimation-Cell Averaging-
Constant False Alarm Rate) detector.

TAble II
MeAn AbsoluTe eRRoR In The esTIMATIon of The PAReTo shAPe PARAMeTeR foR 

dIffeRenT InTeRVAls.

Interval MLE ANN Gain

2 < α < 3 0,0380 0,0371 2,42%
3 < α < 4 0,0542 0,0512 5,86%
4 < α < 5 0,0777 0,0669 16%
5 < α < 6 0,1087 0,0840 35%
6 < α < 7 0,1594 0,0977 63%
7 < α < 8 0,2134 0,1157 84%
8 < α < 9 0,2990 0,1325 125%
9 < α < 10 0,4008 0,1343 200%

TAble III
MAxIMuM AbsoluTe eRRoR In The esTIMATIon of The PAReTo shAPe PARAMeTeR 

foR dIffeRenT InTeRVAls.

Interval MLE ANN Gain

2 < α < 3 0,1966 0,1910 2,93%

3 < α < 4 0,2326 0,2 16%

4 < α < 5 0,3361 0,29 15%

5 < α < 6 0,5141 0,3474 48%

6 < α < 7 0,6358 0,4648 36%

7 < α < 8 0,8654 0,5039 71%

8 < α < 9 1,0054 0,5748 75%

9 < α < 10 1,1077 0,5653 95%

Fig. 3. Characterization of the Errors Committed by the ANN.
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At the same time, the new neural method helps improving the 
identification of anomalous sea surface conditions such as fish 
gatherings [48], oil spills [49, 50] or shipwrecks [51, 52]. These 
conditions cause deviations in the clutter statistics, which may be 
identified with a precise estimator of the shape parameter such as the 
one proposed.

Lastly, the presented results contribute to the development of the 
DRACEC method [53] that proposes an alternative detection scheme 
based on the moments domain. One of the major disadvantages 
of DRACEC is the need for the accumulation of a large number of 
samples for further processing. The accurate estimation of distribution 
parameters allows making inferences on the properties of the samples, 
reducing thus the volume of data to be stored.

V. conclusIons And fuTuRe ReseARch

A new estimation technique for the Pareto shape parameter, based 
on artificial neural networks, was proposed. The neural method proved 
to be better than the classic alternative based on Maximum Likelihood 
Estimates mainly in the region of high magnitudes of the parameter. 
The neural solution provides an accurate and low computational cost 
estimation that can be used to improve the stability of radar detectors, 
in the identification of clutter anomalies and in the detection in the 
moments’ domain.

The authors will focus next on the development of the P-NATE-
CA-CFAR detector and in the FPGA implementation of the presented 
solution to profit from the parallel processing advantages of this 
platform. Additionally, the design of similar solutions applied to 
clutter distributions such as the KK, WW and Compound Gaussian is 
recommended.
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