Forecasting the Behavior of Gas Furnace Multivariate Time Series Using Ridge Polynomial Based Neural Network Models

Author
Keywords
Abstract
In this paper, a new application of ridge polynomial based neural network models in multivariate time series forecasting is presented. The existing ridge polynomial based neural network models can be grouped into two groups. Group A consists of models that use only autoregressive inputs, whereas Group B consists of models that use autoregressive and moving-average (i.e., error feedback) inputs. The well-known Box-Jenkins gas furnace multivariate time series was used in the forecasting comparison between the two groups. Simulation results show that the models in Group B achieve significant forecasting performance as compared to the models in Group A. Therefore, the Box-Jenkins gas furnace data can be modeled better using neural networks when error feedback is used.
Year of Publication
2019
Journal
International Journal of Interactive Multimedia and Artificial Intelligence
Volume
5
Issue
Regular Issue
Number
5
Number of Pages
126-133
Date Published
06/2019
ISSN Number
1989-1660
Citation Key
URL
DOI
Attachment