Optimized DWT Based Digital Image Watermarking and Extraction Using RNN-LSTM

Author
Keywords
Abstract
The rapid growth of Internet and the fast emergence of multi-media applications over the past decades have led to new problems such as illegal copying, digital plagiarism, distribution and use of copyrighted digital data. Watermarking digital data for copyright protection is a current need of the community. For embedding watermarks, robust algorithms in die media will resolve copyright infringements. Therefore, to enhance the robustness, optimization techniques and deep neural network concepts are utilized. In this paper, the optimized Discrete Wavelet Transform (DWT) is utilized for embedding the watermark. The optimization algorithm is a combination of Simulated Annealing (SA) and Tunicate Swarm Algorithm (TSA). After performing the embedding process, the extraction is processed by deep neural network concept of Recurrent Neural Network based Long Short-Term Memory (RNN-LSTM). From the extraction process, the original image is obtained by this RNN-LSTM method. The experimental set up is carried out in the MATLAB platform. The performance metrics of PSNR, NC and SSIM are determined and compared with existing optimization and machine learning approaches. The results are achieved under various attacks to show the robustness of the proposed work.
Year of Publication
2021
Journal
International Journal of Interactive Multimedia and Artificial Intelligence
Volume
7
Issue
Regular Issue
Number
2
Number of Pages
150-162
Date Published
12/2021
ISSN Number
1989-1660
URL
DOI
Attachment