Explaining Query Answers in Probabilistic Databases

Author
Keywords
Abstract
Probabilistic databases have emerged as an extension of relational databases that can handle uncertain data under possible worlds semantics. Although the problems of creating effective means of probabilistic data representation as well as probabilistic query evaluation have been addressed so widely, low attention has been given to query result explanation. While query answer explanation in relational databases tends to answer the question: why is this tuple in the query result? In probabilistic databases, we should ask an additional question: why does this tuple have such a probability? Due to the huge number of resulting worlds of probabilistic databases, query explanation in probabilistic databases is a challenging task. In this paper, we propose a causal explanation technique for conjunctive queries in probabilistic databases. Based on the notions of causality, responsibility and blame, we will be able to address explanation for tuple and attribute uncertainties in a complementary way. Through an experiment on the real-dataset of IMDB, we will see that this framework would be helpful for explaining complex queries results. Comparing to existing explanation methods, our method could be also considered as an aided-diagnosis method through computing the blame, which helps to understand the impact of uncertain attributes.
Year of Publication
2023
Journal
International Journal of Interactive Multimedia and Artificial Intelligence
Volume
8
Start Page
140
Issue
Regular Issue
Number
4
Number of Pages
140-152
Date Published
12/2023
ISSN Number
1989-1660
URL
DOI
Attachment