Optimal Parameter Estimation of Solar PV Panel Based on Hybrid Particle Swarm and Grey Wolf Optimization Algorithms

Author
Keywords
Abstract
The performance of a solar photovoltaic (PV) panel is examined through determining its internal parameters based on single and double diode models. The environmental conditions such as temperature and the level of radiation also influence the output characteristics of solar panel. In this research work, the parameters of solar PV panel are identified for the first time, as far as the authors know, using hybrid particle swarm optimization (PSO) and grey wolf optimizer (WGO) based on experimental datasets of I-V curves. The main advantage of hybrid PSOGWO is combining the exploitation ability of the PSO with the exploration ability of the GWO. During the optimization process, the main target is minimizing the root mean square error (RMSE) between the original experimental data and the estimated data. Three different solar PV modules are considered to prove the superiority of the proposed strategy. Three different solar PV panels are used during the evaluation of the proposed strategy. A comparison of PSOGWO with other state-of-the-art methods is made. The obtained results confirmed that the least RMSE values are achieved using PSOGWO for all case studies compared with PSO and GWO optimizers. Almost a perfect agreement between the estimated data and experimental data set is achieved by PSOGWO.
Year of Publication
2021
Journal
International Journal of Interactive Multimedia and Artificial Intelligence
Volume
6
Issue
Regular Issue
Number
6
Number of Pages
145-155
Date Published
06/2021
ISSN Number
1989-1660
URL
DOI
Attachment